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FOREWORD

This proceedings is a collection of the lectures of the 24th Minisymposium held at the Department
of Measurement and Information Systems of the Budapest University of Technology and Economics.
In the previous years the main purpose of these symposiums was to give an opportunity to the PhD
students of our department to present a summary of their work done in the preceding year. It is an
interesting additional benefit, that the students get some experience: how to organize such events.
Beyond this actual goal, it turned out that the proceedings of our symposiums give an interesting
overview of the research and PhD education carried out in our department. Last year the scope of
the Minisymposium had been widened; foreign partners and some of the best MSc students were also
involved. This was a real benefit, therefore, this year we have kept this widened scope.

The lectures reflect partly the scientific fields and work of the students, but we think that an insight into
the research and development activity of our and partner departments is also given by these contribu-
tions. Traditionally our activity was focused on measurement and instrumentation. The area has slowly
changed, widened during the last few years. New areas mainly connected to embedded information
systems, new aspects e.g. dependability and security are now in our scope of interest as well. Both
theoretical and practical aspects are dealt with.

The lectures are at different levels: some of them present the very first results of a research, others
contain more new results. Some of the first year PhD students have been working on their fields only
for half a year. Therefore, there are two types of papers. One is a short independent publication; it is
published in the proceedings. The other is simply a summary of the PhD student’s work. This second
one is intended to give an overview of the research done during the last year; therefore, it could contain
shorter or longer parts of the PhD student’s other publications. It does not necessarily contain new
results, which have not been published earlier. It is clearly indicated in each paper that which category
it belongs to. To avoid copyright conflicts, these papers are not published in the proceedings. Anyone
interested, please contact the author.

During this twenty-three-year period there have been shorter or longer cooperation between our de-
partment and some universities, research institutes, organizations and firms. Some PhD research works
gained a lot from these connections. In the last year the cooperation was especially fruitful with the
European Organization for Nuclear Research (CERN), Geneva, Switzerland; Vrije Universiteit Brussel
Dienst ELEC, Brussels, Belgium; Robert Bosch GmbH., Stuttgart, Germany; Department of Engineer-
ing, Università degli Studi di Perugia, Italy; National Instruments Hungary Kft., Budapest; University
of Innsbruck, Austria; University of Geneva, Italy; University of Florence, Italy.

We hope that similarly to the previous years, also this Minisymposium will be useful for the lecturers,
for the audience and for all who read the proceedings.

Budapest, January, 2017

Béla Pataki
Chairman of the PhD

Mini-Symposium
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Szilágyi, Gábor Distributed Runtime Verification of

Cyber-Physical Systems Based on Graph Pattern Matching
78
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Towards Modeling Cyber-Physical Systems
From Multiple Approaches

Márton Búr1,2, András Vörös1,2, Gábor Bergmann1,2, Dániel Varró1,2,3
1Budapest University of Technology and Economics, Department of Measurement and Information Systems, Hungary

2MTA-BME Lendület Research Group on Cyber-Physical Systems, Hungary
3McGill University, Department of Electrical and Computer Engineering, Canada

Email: {bur, vori, bergmann, varro}@mit.bme.hu

Abstract—Cyber-physical systems are gaining more and more
importance even in critical domains, where model-based develop-
ment and runtime monitoring is becoming an important research
area. However, traditional approaches do not always provide
the suitable toolset to model their dynamic characteristics. In
this paper, we aim to overview and highlight the strengths
and limitations of existing runtime and design time modeling
techniques that can help runtime monitoring and verification
from the viewpoint of dynamic cyber-physical systems. We
evaluated instance modeling, metamodeling, and metamodeling
with templates, and provided example use-case scenarios for these
approaches. We also overview the applicability of SysML in these
contexts.

I. INTRODUCTION

Critical cyber-physical systems (CPS) are appearing at our
everyday life: healthcare applications, autonomous cars and
smart robot and transportation systems are becoming more
and more widespread. However, they often have some critical
functionality: errors during the operation can lead to serious
financial loss or damage in human life. Ensuring trustworthi-
ness of critical CPS is an important task in their development
and operation. CPSs have complex interactions with their
environment, however, environmental conditions are rarely
known at design time. In addition, the behavior of CPSs is
inherently data dependent and they have smart/autonomous
functionalities. These properties make design time verification
infeasible. In order to ensure the safe operation of CPSs, one
can rely on runtime verification. Various techniques are known
from the literature for monitoring the different components
constituting a CPS [1], however they do not provide system
level assurance. Moreover, traditional monitoring techniques
do not cover data dependent behavior and structural properties
of the system.

Runtime verification is a technique to check if a system or a
model fulfills the specification during operation by observing
the inputs and outputs. It extracts information of a running
system and checks whether it violates certain properties. We
plan to use models at runtime as a representation of our
knowledge of the systems. The model is built and modified
according to the various information gathered for runtime
verification.

This paper is partially supported by the MTA-BME Lendület 2015 Research
Group on Cyber-Physical Systems.

Models created at design time can be subject to traditional
verification techniques. They can guarantee the correctness of
the system design. In contrast, runtime techniques analyze the
runs of the system during its operation and they can reveal
errors in the real life implementation.

Our approach is similar to the one of model-driven engi-
neering (MDE) that facilitates problem description by utilizing
domain specific languages such as domain specific models. In
terms of this paper models are considered as typed graphs.

In this paper we introduce our envisioned approach for
modeling dynamically changing, extensible cyber-physical
systems. We aim to overview possible model-based approaches
for IoT/cyber-physical system development, and will investi-
gate how these techniques can provide support for runtime
modeling of such systems.

II. VISION

According to our approach, there are two main modeling
aspects: design time and runtime. For each aspect there are
three main pillars of modeling:

• Requirements specify the properties the system must hold.
• Environment information represents the physical environ-

ment.
• Platform information describes the available sensors,

computation nodes and actuators in the system, as well
as encapsulates functional architecture with deployment
information.

In the followings we summarize the goals of modeling at
various phases of the development.

a) Design time models: Requirements, environment in-
formation, and execution platform information are present
in a model of a CPS. The design time models describe (i)
initial configuration, such as structure and topology, or (ii)
behavior. The information contained in such models is static,
the information captured by design time models does not
change during runtime. The implementations of such designs
are typically deployed software components or configuration
files. During the design process the system also has to be
prepared for different operational contexts, because most of
its details are only known at runtime.
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b) Runtime models: Runtime models, also called live
models, capture information about the system dynamically. At
runtime the actual system configuration is known, as well as
sensors can provide details about the operational context of
the system. From design time models deployment artefacts
can be obtained, which link the design time information to
the runtime models. This information is then used in the live
model, eventually amended with additional knowledge.

Since the role of the design time and runtime models differ
in the system life cycle, parts of runtime information may
be omitted from design time models, such as values of data
streams and events. Similarly, design time information may
only be present in the runtime model in an abstract way.

For example, a camera and a computer is represented in
the design time model, but the stream data is not available
at design time, so that it is not present in the design model.
Another example is when a controller and its parameters are
represented in a design time model, but the live model for
the controlled process only has a boolean value expressing
whether the output complies to the requirements, but the used
controller parameters are not included.

The purpose of the live model is both (i) to capture domain-
specific information about the system and its functions, (ii) to
describe the heterogeneous, dynamically changing platform,
(iii) to describe its operational context and environment, and
also (iv) to check runtime verification objectives.

Our vision of using live model-based computations for
different purposes such as operation and monitoring of cyber-
physical systems is depicted in Figure 1. In order to efficiently
handle data obtained by sensors, we envision sensor data
integration step to normalize and transform data so that it is
adapted to the live model. Computation refers to the process of
determining the required actuation to the physical environment
and live model updates using the current state of the runtime
model. This concept shown in Figure 1 can be used both
for live model-based control and runtime monitoring of the
system. The former actuates system processes, while the latter
only observes the system and the environment using the live
model.

Physical environment information
Computation

Live model

Context

Sensor data
integration Execution platform information

Requirements

update

actuate

raw data

preprocessed
data

Fig. 1. Vision of using a live model

In terms of classical control theory concepts, this approach
represents a closed-loop control-like mechanism, where the
physical processes within the system context together are
regarded as the plant, and controller tasks are realized by the
live model-based computation. The processes in the system
context may already be controlled processes.

III. MODELING ASPECTS

In this section we introduce and discuss both design time
and runtime modeling approaches for dynamic cyber-physical
systems. We detail the support provided by the SysML stan-
dard [2] for the approaches, as well as point out their missing
features. We also illustrate the main challenges of defining and
creating both design time and live models using an example of
a fictitious smart warehouse. In example autonomous forklifts
are operating, which are equipped with onboard cameras to
detect changes in their environment. Due to space limitations
we include examples about execution platform models, while
modeling the requirements and environment information are
not discussed.

A. Metamodeling

One of the basic modeling approaches is metamodeling.
Using metamodels, one can define (i) node types, (ii) node
attributes and (iii) relationship types. This allows the modeler
to describe constraints regarding the overall structure of the
system model, on the type-level.

For cyber-physical systems we consider each attribute as
read-only by default, as they represent information sources,
e.g. sensors. A special type signal denotes that the value
of the property is time-varying, based on the data received.
Signals can be discrete time signals or continuous time sig-
nals. In case of discrete time signals, their value may be
changed at given time instants, but stays constant in between.
For continuous time signals change in its value may occur
anytime. Similarly to signal, the type event represents
time-dependent information, but it is provided only at certain
discrete time instants. There are signals of different types in
the metamodel fragment depicted in Figure 2 as well, such as
feed for a camera or currentRPM for ECUs.

Fig. 2. Example metamodel with containment edges and attributes

Metamodels at design time can be used to create a func-
tional model that satisfies the requirements, define platform
model structure, and to describe the possible entities in the
environment.
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The part of the design time metamodel for the system
representing the relevant platform information in our example
system is illustrated in Figure 2. Containment edges show that
the root container element is the Forklift, which contains an
Engine, and at least one Microcomputer, and at least one On-
board camera. Microcomputers are further decomposed into
CPUs and Peripheral adapters, while an engine encapsulates
its corresponding ECU. Cross references between types in the
model are not shown in the diagram.

According to our vision, models also hold information about
runtime properties based on the requirements. In order to
represent requirements as well, we defined Goals for the type
SafetyCriticalDevice, which is added as a supertype of forklift,
as show in Figure 3. Goals are functions in the system that
check whether the system holds the properties specified by the
requirements. If a requirement stated that a device shall not
collide with other devices, the corresponding goal would be a
function that checks whether the device keeps enough distance
from other trucks.

Fig. 3. Example for inheritance and packages for the forklift metamodel

Reusability is an important aspect in engineering. If a
metamodel is already given for a domain, it is the best to
have the corresponding model elements grouped as a toolset
to make it available for reuse. For this reason, one can
define packages that are similar to libraries in programming,
containing model elements for the same domain.

When creating concrete applications, elements in general
packages shall be specialized by inheritance, that can be used
to specify fixed values for properties. Multiple packages can
be used and specialized for the same application.

Figure 3 shows a possible packaging of types in our
example. The package Safety contains essential concepts to
include safety-related verification information in a model, the
Device Ontology package is intended to hold different device
types, such as forklift, and the Acme Truck package is the
application-specific container. In our example Narrow aisle lift
truck is a special type of forklifts, and each of its instances
are manufactured by Acme.

The presented example figures show only views of the meta-
model, so that additional relationships (such as containment,
inheritance) as well as model elements, which are present in
the model, are omitted from Figure 2 and Figure 3.

Design time metamodeling is facilitated at runtime to create
instances based on the defined metamodel, where the model
elements, relationships and properties are representing the
knowledge-base of the system.

Support in SysML: SysML supports metamodeling by
block definition diagrams. Focusing on cyber-physical sys-
tems, however, there is a need for elements that are not neces-
sarily required for traditional software development. First, flow
properties can be used to represent signals in SysML. Second,
binding parameters can be expressed using the combination of
default values and marking the parameter as read-only.

B. Instance Modeling

Instance models can describe a concrete configuration of
the system, for which they can show multiple views. A typical
usage for modeling requirements at design time is to create
behavior models, such as statecharts.

Additionally, the environment and the platform can also be
modeled on instance level at design time. However, it only
has a limited usage to describe concrete arrangements – for
example specifying test cases.

At runtime, however, views of the instance level model of
the system platform and physical environment are essential.
Considering our smart warehouse example, we can represent
the system platform at time point t0 with two forklifts, from
which one is a special type of forklift named narrow aisle
lift truck. The model is depicted in Figure 4a. Forklift main
properties and their internal elements are also present. At a
later point of time t1, if the forklift leaves the warehouse and
a new narrow aisle lift truck appears, the live model changes
to as depicted in Figure 4b.

(a) Live model instance at t0

(b) Live model instance at t1 > t0

Fig. 4. Live models at different points of time
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Support in SysML: SysML has no dedicated support
for instance-level modeling. However, the standard and best
practices recommend using block definition diagrams (BDDs)
to model snapshots of the system at design time.

C. Metamodels with Templates
One can define the structure of the instance models with

metamodels. However, there are cases when it is desired to
describe configurations including predefined attribute values
and reference edges between certain types. For this purpose
templates provide a solution to describe patterns in instance
models. In our example metamodel, the forklift can have on-
board cameras. Additionally in the template shown in Figure 5,
we declare that forklift instances shall have a microcomputer
unit, which has access to the engine and an onboard camera.

Fig. 5. Structure template of forklifts

Another template is defined for a microcomputer, where a
CPU communicates with an ECU via a peripheral adapter.
The ECU is not contained within the microcomputer, yet the
peripheral adapter controls it, so that it is marked with dashed
lines in Figure 6.

Fig. 6. Structure template of microcomputers

Furthermore, for the subtype narrow aisle lift truck this
structure is changed, and the central microcomputer communi-
cates with three different cameras, as depicted in Figure 7. This
can be interpreted as there are exactly three onboard cameras
in this type of truck, and the relation binding is formulated
as cameras = {top, rear, front}. Additionally, for this specific
type the maxRPM of the engine is 12000, and the front,
rear and top camera resolutions are also bound to 800x600,
800x600, and 1504x1504, for each instance respectively.

Fig. 7. Structure template of narrow-aisle lift truck

One of the main benefits of this approach is the description
of certain runtime changes in the live model are more simple

than in a purely metamodel-based case. For example, when a
new forklift is added to the system, the change does not need
to include the elements contained within the forklift or truck,
for they are known from the template of the type, which can
be a huge advantage when the model is changing frequently.

Support in SysML: SysML has internal block diagrams
(IBDs) for template-like purposes. This description is also
connected to a type, but is not found in traditional metamodels.

D. Strengths and Limitations of the Approaches

To conclude the introduction of the approaches, we summa-
rize their strengths and limitations.

Strengths: The introduced modeling techniques support
both design time and runtime modeling and analysis as long
as the metamodel of the system is known at design time and
remains unchanged during runtime.

Limitations: The cornerstone of each of the introduced
approaches above is a metamodel introducing domain-specific
types. It provides a basis for prescriptive modeling, which
means model instances can only have elements of the types
and relations defined within the metamodel. However, in case
of dynamic cyber physical systems and IoT applications it is
possible to extend the system at runtime with new components
having new types. A solution for this issue can be to use
ontologies, where types are assigned to the entities in a de-
scriptive way. In such cases new objects can be classified using
the types included in the ontology based on their capabilities.

IV. CONCLUSION

We overviewed design time and runtime modeling solutions
to describe cyber-physical systems. We discussed metamod-
eling, instance modeling, and metamodeling with templates
approaches, and provided use-case scenarios for them, as well
as added examples how SysML supports each technique.

The provided overview has only covered a few main mod-
eling aspects. In [3] the authors introduce their concept of
evolutionary design time models that try to minimize the dis-
crepancy between the design time and runtime concepts. They
aim to minimize static information in design time models.

Additionally, there are many ways to extend the system
description, one of them is modeling uncertainty. Uncertainty
in cyber-physical system modeling is discussed in [4]. It
is also a possible direction for model-based description of
such systems to include probability and uncertainty models
in graph-like live model-based representations.
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Abstract—Developers of industrial control systems constantly
quest for quality in order to improve availability and safety.
Some of the threats to quality are the development errors due
to incorrect, ambiguous or misunderstood requirements. Formal
specification methods may reduce the number of such issues
by having unambiguous, mathematically sound semantics, which
also allows the development of precise analysis methods. In
this paper we present two of the analysis methods developed
for PLCspecif, our formal specification language targeting PLC
modules: well-formedness analysis and invariant analysis.

I. INTRODUCTION AND BACKGROUND

Industrial control systems (ICS) operate a wide variety
of plants: e.g. chemical, pharmaceutical, or water treatment
plants [1]. Typically these systems rely on programmable logic
controllers (PLCs) which are robust industrial machines, pro-
grammed in variants of the languages defined in IEC 61131-3
[2]. As we rely more and more on such systems, their safety
and availability is a priority. While these systems are often
not safety-critical as there are dedicated systems to ensure the
safety, an outage might cause significant economic loss.

The development errors of the PLC software are threats to
availability and safety. Many of them are caused by ambigu-
ous, imprecise, or incorrect requirements. Formal specifica-
tions provide ways to improve the quality of the specification
both by providing restricted and precise languages (compared
to natural languages) and by having unambiguous semantics,
thus allowing the usage of automated analysis methods which
can reveal potential problems, such as contradictions, impos-
sible cases, etc.

The usage of formal specification in the ICS domain is not
wide yet, as the existing formal specification languages are not
well-suited for the target audience. The existing and widely-
known, general-purpose formal specification methods are not
adapted to the ICS domain, therefore their usage necessitates
deep knowledge and excessive effort. Such effort can only be
justified in case of highly critical systems.

The authors analysed the specialities of the ICS domain
[3] and proposed PLCspecif, a formal language to specify the
behaviour of PLC software modules [4]. We claim that the
specification of PLC software modules (either isolated safety
logics or reusable objects) are the first targets for formal spec-
ification, because their specification provides a good effort–
benefit ratio. However, a formal specification method does

not guarantee by itself that the specified behaviour is well-
formed, correct and matches the intentions. In this paper we
target these challenges by providing two analysis methods for
PLCspecif.

The rest of the paper is structured as follows. Section II
briefly overviews the related work. Section III introduces the
key concepts of PLCspecif, our formal specification language
for PLC software modules. Next, two analysis methods are
discussed: Section IV shows the well-formedness checking
of PLCspecif specifications, then Section V presents invariant
checking. Finally, Section VI concludes the paper.

II. RELATED WORK

Neither formal specification, nor static analysis is a widely-
used technique in the field of PLC software development.

The static analysis of PLC programs was targeted in [5], [6].
Some commercial tools are available as well, such as PLC
Checker1 or logi.LINT2. Although static code analysis may
point out mistakes or code smells without requiring excessive
effort, due to the wide variety of PLC languages and the
different needs in the various application domains, the usage
of static analysis tools is not general yet.

Formal specification is even less wide-spread in the PLC
software development domain. As discussed earlier, the usage
of general-purpose specification languages need great effort,
therefore they are only applied in highly critical systems. There
were several attempts to provide formal or semi-formal speci-
fication methods, directly targeting PLC programs. ST-LTL [7]
is a variant of the LTL formalism, specifically targeting PLC
programs. As this method is rather simple, there is no need
for static analysis methods.

ProcGraph [8], [9] is a semi-formal specification method
based on state machines. According to the published examples,
the specifications may become large and complex. The specifi-
cations often include PLC code snippets, this also increases the
complexity and the difficulty of understanding and therefore
the specification might be error-prone. However, static analysis
or invariant checking methods are not mentioned as part of the
proposed approach [9].

NuSCR [10] is a formal specification method included in
the NuSEE environment for specification and verification of

1http://www.itris-automation.com/plc-checker/
2http://www.logicals.com/en/add-on-products/151-logi-lint
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PLC-based safety-critical systems. Supposedly NuSRS, the
requirement specification editor based on the NuSCR approach
included in NuSEE contains certain well-formedness checks,
but static analysis and invariant checking is not explicitly
mentioned in [10]. The NuSDS tool that is to be used in
the design phase contains certain consistency checks, but the
details are not discussed.

III. THE PLCSPECIF SPECIFICATION LANGUAGE

The PLCspecif language is designed to provide an easy-
to-use, practice-oriented, yet formal specification of PLC
software module behaviours. The behaviour description is
complete (the description does not contain abstract parts left
for later decision), this is why we emphasise that PLC software
modules are targeted, where such complete specification is
feasible.

In [3] the authors reviewed the literature and the real
needs experienced in the PLC-based ICS development pro-
cesses at the European Organization for Nuclear Research
(CERN). Such requirements towards the formalism are
domain-specificity, appropriate event semantics, support for a
variety of formalisms and decoupling of input/output handling
(pre- and post-processing) from the core logic definition [3].

Based on these identified needs, PLCspecif was designed
to be a hierarchical, module-based specification language.
Each module is either a composite module (whose behaviour
is described by submodules) or a leaf module (describing
a certain part of the global behaviour). Each module has
several parts: input and event definitions, core logic definition,
and output definitions. The core logic of the leaf modules
can be described using one of the three defined formalisms:
state machines, input-output connection diagrams (a data-
flow description formalism adapted to PLC programs) or
PLC timers. These formalisms have domain-specific, special,
unified semantics which allow to mix multiple formalisms
in the same specification and to use the most appropriate
formalism for each part of the described behaviour.

The semantics of PLCspecif is described formally. For this
we have defined a simple, low-level timed automata (TA)
formalism, and a precise mapping of PLCspecif specifications
to this TA formalism. TA was chosen to be the underlying
formalism for semantics definition to facilitate the usage of
formal verification directly on the specification.

Due to space restrictions we omit the detailed discussion of
the syntax and semantics of PLCspecif. The reader find the
formal definition of PLCspecif in our report [11].

The formal specification defines the desired behaviour in an
unambiguous way. However, besides the clean description, var-
ious methods were developed to make PLCspecif more useful
in practice. A code generation method was designed [12] that
constructs PLC code with a behaviour that corresponds to its
specification. In case of legacy or safety systems this method
might not be appropriate or applicable, thus a method is
required to show the correspondence of an existing PLC code
to a specification. For this reason, a conformance checking
method was designed too [13]. It checks the conformance

TABLE I
CATEGORIES OF WELL-FORMEDNESS RULES

Category # Rules

(1) Field value uniqueness 3
(2) Object-local checks 12
(3) Reference restrictions 4
(4) Restricting non-local references 9
(5) Expression element restrictions 13
(6) Complex structural checks 18
(7) Type constraints 10
(8) Complex semantic checks 3

Total 72

between the implementation and the specification using model
checkers, with configurable level of conformity.

However, neither code generation, nor conformance check-
ing can guarantee a correct implementation if the specification
is incorrect, contradictory or malformed. Therefore we devel-
oped additional methods to detect malformed or unintentional
behaviour descriptions and therefore to increase the confidence
in the correctness of the developed formal specifications. In
the following sections two such methods are introduced: well-
formedness checking and invariant checking.

IV. WELL-FORMEDNESS CHECKING

The syntax and semantics of the PLCspecif language is
defined in our report [11]. It provides a metamodel (abstract
syntax) and a concrete syntax for the language, furthermore
informal and formal semantics. However as usual, the meta-
model could not express all constraints that a specification
(instance model of the metamodel) has to respect in order
to be considered correct and meaningful. Therefore further
restrictions are formulated as well-formedness rules.

We defined 72 well-formedness rules for PLCspecif in
[11], which are additional restrictions to the abstract syntax
besides the metamodel of the language, ensuring that the
specification is well-formed, meaningful and deterministic. A
possible categorisation of the rules is shown in Table I. For
example, rules in group (3) define additional restrictions for
the references of the objects. Rules in group (4) restrict the
reference to non-local elements (e.g. referring to a state of a
state machine from a different module). The rules in group (5)
restrict the set of elements of an expression (e.g. an expression
which is not in a state machine module should not refer to a
state). Group (7) contains rules constraining the expression
types (e.g. a transition guard should have a Boolean type).

Most of these rules (mainly in groups (1)–(5)) are simple,
restricting the use of certain incorrect or undefined constructs
that are not forbidden by the metamodel; restricting the types
of references; or prescribing name uniqueness.

Obviously, the definition of these rules is not enough, it
has to be checked automatically whether they are respected
or not. This checking is done after reading and parsing the
specification, on its abstract syntax graph (instance model of
the defined metamodel). Most of the simple well-formedness
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rules (in groups (1)–(5)) are implemented in Java. Many of
these rules can be efficiently implemented in a dozen lines of
code, not necessitating any more advanced methods. Others,
typically rules in groups (6)–(7), need more implementation
effort, e.g. to check whether the guard of a transition has a
Boolean type or not, the type inference has to be implemented.

The implementation of the complex semantics checks (rules
in group (8)) is more difficult, for example to analyse that the
outgoing transitions of a certain state are mutually exclusive
(no conflict is possible); or that it is not possible to have an
infinite transition firing run in the state machines. In these
cases the manual implementation of checking these rules
would require significant effort. However, these rules can
be transformed into a SAT (Boolean satisfiability) problem.
For example, to check whether a state does not have any
conflicting outgoing transitions, the guards and priorities of
these transitions have to be collected, then it has to be checked
whether there exists a pair of transitions on the same priority
level with guards that can be satisfied at the same time.

We have used the Microsoft Z3 SAT solver [14] for this
purpose, as it provides state-of-the-art algorithms, good per-
formance and Java integration. The usage of Z3 provides an
efficient and automated way (thus hidden from the user) to
check these more complex rules. Besides checking the satis-
faction, the witness (“model” in SAT terminology) generated
by Z3 can help the user by pointing out the source of the
violation of the well-formedness rules.

PLCspecif was used for the specification of two real exam-
ples since its creation: for a reusable PLC module library of the
UNICOS framework3, and the logic of a safety-critical con-
troller used at CERN [15]. In both cases the well-formedness
checking was able to identify mistakes made during specifi-
cation, for example conflicting definitions, unused variables,
ambiguous priority settings and conflicting guard expressions.

V. INVARIANT CHECKING

The static analysis of well-formedness rules helps to ensure
that the specification follows the rules of PLCspecif which
are not enforced by the syntax itself. This is required for any
specification.

However, in certain cases additional requirements have to be
checked too. The formalisms provided for the core logic def-
inition in PLCspecif (state machines, input-output connection
diagrams, PLC timers) focus mainly on the functionality of the
defined module. The specification of the behaviour may hide
safety or invariant properties that are required to be satisfied by
the specified module. For example, it might not be obvious to
see the satisfaction of requirements such as “Outputs a and b
shall not be true at the same time.” or “Output c shall always
be within the range d..e.” based on the state machine-based
core logic definitions and the output definitions.

Previous work on the model checking of PLC programs
[16] demonstrated that checking various, typically invariant
or safety properties on PLC programs using model checkers

3http://cern.ch/unicos/

is feasible and may uncover well-hidden faults in the imple-
mentations. One of the difficulties of this approach is the for-
malisation of models and the properties to be checked for the
model checkers. To reduce this obstacle, we have developed
PLCverif [17], a tool that automatically generates artefacts
for model checkers using inputs that are known to the PLC
developers. The models are generated from the source code of
the PLC programs, via an intermediate model (IM). The IM
formalism allows the model checker-independent reduction of
the formal models and facilitates to use multiple widely-known
model checkers (e.g. nuXmv, UPPAAL, ITS). The property
for model checking is defined using requirement patterns
which are easy-to-fill fixed sentences in English with given
placeholders, e.g. “If α is true (at the end of the PLC cycle),
then β is true (at the end of the same cycle)”, where α and β
are placeholders of Boolean expressions, composed of input
and output signals, constants, comparison and logic operators.
The result of the verification in PLCverif is a human-readable
verification report. It demonstrates the violation of properties
(if any) by diagnostic traces from the model.

The defined PLC modules should often satisfy certain safety
and invariant properties. Explicitly declaring and verifying
these properties may greatly improve the quality of the PLC
software modules. Therefore we have included specific support
in PLCspecif to capture these invariant properties. In each
module the specifier may define properties which have to
be always satisfied by the given (sub)module, more precisely
after the execution of the (sub)module the defined invariant
properties have to be satisfied. As discussed above, the sat-
isfaction of these requirements may be checked using model
checkers, similarly to the approach followed in PLCverif. This
is discussed in the rest of the section.

a) Representing the Requirement for Model Checking:
For model checking, the only need is to be able to represent
the invariant properties as temporal logic formulae. The usage
of requirement patterns to hide the complexity of describing
properties with temporal logic seems to be a convenient way,
but in the future additional property specification methods can
also be incorporated, provided that they can be represented as
computation tree logic (CTL) or linear temporal logic (LTL)
formulae. For example, the above-presented requirement pat-
tern can be represented in CTL as “AG((EoC ∧ α) → β)”,
where EoC is true at the end of the PLC cycle only.

b) Representing the Specification for Model Checking:
We recall that the formal semantics of PLCspecif is given as a
construction of an equivalent timed automaton. The choice of
this semantics description was partially to facilitate the formal
verification of the PLCspecif specifications. The intermediate
model used in PLCverif is also an automata-based formalism
with matching semantics. The timed automata elements (e.g.
edges) can be systematically translated to the corresponding
IM elements (e.g. transitions). The only exception is the clock
of the timed automata, which do not have corresponding
element in IM. The representation of time-related behaviour
in the IM is further discussed in [18].

The semantics of the corresponding elements are defined
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Fig. 1. Workflow of invariant checking

identically. Therefore by using the semantics description of
PLCspecif it is feasible to develop a systematic, element-by-
element mapping from a PLCspecif specification to a PLCverif
IM. Then the IM can be transformed by PLCverif into the
format required by the applied model checker tool. This
method also benefits from the model reduction methods that
are already included in PLCverif.

The complete invariant checking workflow based on
PLCverif is depicted in Figure 1. The behaviour description
of the specification is transformed into the IM formalism, then
automatically reduced. The invariant properties are represented
in CTL or LTL. The CTL/LTL formulae are not only used
to check the satisfaction of the invariant property, but they
also influence the reductions. PLCverif executes the selected
external model checker tool, then the result is presented to the
user.

The invariant checking was used in the re-specification
of the previously mentioned reusable PLC module library
of UNICOS. It was possible to define and verify invariant
properties such as “If the manual mode is inhibited, the
module should not switch to manual mode”, directly on the
intermediate model generated from the specification, before
generating the corresponding source code.

VI. SUMMARY

This paper discussed the static well-formedness analysis and
invariant property checking features that are incorporated in
the PLCspecif specification approach. The well-formedness
checking methods help to ensure that the formal specification
is consistent and well-formed; that it respects properties that
are required for any formal specification. By using invariant
checking it can also be checked whether the designed spec-
ification matches the intentions of the specifier. If the user
declares safety or invariant properties explicitly in a PLCspecif
specification, their satisfaction can be checked by reusing
the model checking approach included in the PLCverif tool.
This may reveal problems which would be hidden despite
the use of formal specification. By checking these general
and specific properties of the specification, the quality of the
specification can be improved, which has a positive effect

on the correctness of the implementation through the code
generation and conformance checking methods.
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2MTA-BME Lendület Research Group on Cyber-Physical Systems, Hungary
3McGill University of Montreal, Department of Electrical and Computer Engineering, Canada

Email: {debreceni,varro}@mit.bme.hu

Abstract—Model-based collaborative development of embed-
ded, complex and safety critical systems has increased in the
last few years. Several subcontractors, vendors and development
teams integrate their models and components to develop complex
systems. Thus, the protection of confidentiality and integrity of
design artifacts is required.

In practice, each collaborator obtains a filtered local copy of
the source model (called view model) containing only those model
elements which they are allowed to read. Write access control
policies are checked upon submitting model changes back to the
source model. In this context, it is a crucial task to properly
identify that which element in the view model is associated to
which element in the source model.

In this paper, we overview the approaches to identify cor-
respondences between objects in the filtered views and source
models. We collect pros and cons against each approach. Finally,
we illustrate the approaches on a case-study extracted from the
MONDO EU project.

I. INTRODUCTION

Model-based systems engineering has become an increas-
ingly popular approach [1] followed by many system inte-
grators like airframers or car manufacturers to simultaneously
enhance quality and productivity. An emerging industrial prac-
tice of system integrators is to outsource the development
of various components to subcontractors in an architecture-
driven supply chain. Collaboration between distributed teams
of different stakeholders (system integrators, software engi-
neers of component providers/suppliers, hardware engineers,
specialists, certification authorities, etc.) is intensified via the
use of models.

In an offline collaboration scenario, collaborators check
out an artifact from a version control system (VCS) and
commit local changes to the repository in an asynchronous
long transaction. Several collaborative modeling frameworks
exist (CDO [2], EMFStore [3]), but security management is
unfortunately still in a preliminary phase. Traditional VCSs
(Git [4], Subversion [5]) try to address secure access control
by splitting the system model into multiple fragments, but
it results in inflexible model fragmentation which becomes
a scalability and usability bottleneck (e.g. over 1000 model
fragments for automotive models).

This paper is partially supported by the EU Commission with project
MONDO (FP7-ICT-2013-10), no. 611125. and the MTA-BME Lendület 2015
Research Group on Cyber-Physical Systems.

In our previous works [6], we introduced a novel approach
to define fine-grained access control policies for models using
graph queries. A bidirectional graph transformation so called
lens is responsible for access control management. The for-
ward transformation derives consistent view models by elimi-
nating undesirable elements from the source model according
to the access control rules that restrict the visibility of the
objects, references and attributes. In contrast, the backward
transformation propagate the changes executed on the view
models back to the source model. It also enforces the write
permission defined in the policies by rejecting all the changes
if any of them violates an access control rule.

At commit time, the executed operations and their orders
are not available in the most cases, only the deltas are sent to
the VCS. It is an urgent task to correctly identify the modified
elements of the model to recognize whether an access control
rule is violated. Thus object correspondences need to be built
between the element of the source and the modified views.

In this paper, first we motivate the need of identification of
object correspondences using a case study from MONDO EU
FP7 project. Then we overview the possible approaches and
discuss their advantages and disadvantages that can be applied
onto our existing lens-based approach.

II. PRELIMINARIES

A. Instance Models and Modeling Languages

A metamodel describes the abstract syntax of a modeling
language. It can be represented by a type graph. Nodes of
the type graph are called classes. A class may have attributes
that define some kind of properties of the specific class.
Associations define references between classes. Attributes and
references altogether are called features.

The instance model (or, formally, an instance graph) de-
scribes concrete systems defined in a modeling language and
it is a well-formed instance of the metamodel. Nodes and
edges are called objects and links, respectively. Objects and
links are the instances of modeling language level classes and
associations, respectively. Attributes in the metamodel appear
as slots in the instance model.
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B. Enforce Access Control Policies by Graph Transformation

In the literature of bidirectional transformations [7], a lens
(or view-update) is defined as an asymmetric bidirectional
transformations relationship where a source knowledge base
completely determines a derived (view) knowledge base, while
the latter may not contain all information contained in the
former, but can still be updated directly.

The kind of the relationship we find between a source
model (containing all facts) and a view model (containing a
filtered view) fits the definition of a lens. After executing the
transformation rules, model objects of the two models reside at
different memory addresses, so the transformation must set up
a one-to-one mapping called object correspondence, that can
be used to translate model facts when propagating changes.

We assume that the forward transformation of the lens builds
correspondences between objects of source and view models.
But these correspondence relation cannot be guaranteed when
the derived view model is reloaded as a new model because
the new objects will not share the same memory addresses.

Rebuilding correspondence mapping between the source
model and the modified view model is cumbersome, where
the view may hide most of the sensitive information. Instead,
correspondences are easier to build between the unmodified
and modified view model as it is depicted in Fig. 1, then the
originally achieved mapping can be used.

Fig. 1. Request to build correspondence between view models

C. Model Comparison

Building correspondences between two version of the same
model is common problem in model versioning called model
comparison. Model comparison process is responsible for
identifying differences of two model and translate them into
elementary model operations such as create, update and delete.
A common issue in this context is to recognize whether an
object is moved to another place or an existing object is
deleted and a completely new one is created in the model
with the same attribute values. Thus it is required to build
correspondences between the two model to properly identify
the differences.

III. MOTIVATING EXAMPLE

Several concepts will be illustrated using a simplified ver-
sion of a modeling language (metamodel) for system inte-
grators of offshore wind turbine controllers, which is one of
the case studies [8] of the MONDO EU FP7 project. The
metamodel, depicted by Fig. 2, describes how the system

is modeled as modules providing and consuming signals.
Modules are organized in a containment hierarchy of com-
posite modules, ultimately containing control unit modules
responsible for a given type of physical device (such as
pumps, heaters or fans). Composite modules may be shipped
by external vendors and may express protected intellectual
property (IP).

Fig. 2. Simplified wind turbine metamodel

A sample instance model containing a hierarchy of 2
Composite modules and a Control units, providing a Signal

altogether, is shown on the top left side of Fig. 3 called source
model. Boxes represent objects (with attribute values as entries
within the box), while arrows represent containment edges and
cross-references.

Fig. 3. Example instance model

Access Control. Specialists are engineers responsible for
maintaining the model of control unit modules and have
specific access to the models, described in the following:

R1. Intellectual properties have to be hidden from specialists.
R2. Objects cannot be created or deleted in the system model.
R3. Vendor attribute of visible composites must be obfuscated.
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R4. Control units and their attributes can be modified.

According to the aforementioned access control rules, view
models depicted in the top middle of Fig. 3 are derived
for specialists where the protected IP objects are not visible
and the vendor attributes are obfuscated. Only the control
unit (marked with bold border) is allowed to be modified by
specialists.

Scenario. At a given point, a specialist changes the type of
the control unit from FanCtrl to HeaterCtrl represented on
the top right side of Fig. 3 and propagate the modifications
from view model back to the source model. It is need to be
decided whether the change was allowed or not. Two cases
can arise: (i) the VCS realizes that only the type attribute
was modified; or (ii) the VCS interprets the change as the
deletion of the original control unit and an addition of a
new control unit. The former case will be accepted (valid
updated source model on Fig. 3) while the latter one need
to be rejected ((invalid updated source model on Fig. 3)) as
it removes the control unit and its signal with the related
references (marked with dashed borders and edges). Thus, the
VCS has to identify which object has changed to be able to
make a proper decision.

IV. OVERVIEW OF THE APPROACHES

In this section, we categorize the possible approaches to
based on comparison techniques collected in [9]. For each
approach we discuss its advantages and disadvantages and
provide their application onto our running example.

A. Static Identifiers
Several modeling environments automatically provide

unique identifiers for each object. The requirements against
the identifiers are the following:

SI1. Identifiers need to assign to all objects.
SI2. Recycling of identifiers are not allowed.
SI3. Identifiers cannot be changed after serialization.
SI4. After deserialization, the identifiers need to remain.

For instance, the Industry Foundation Classes [10] (IFC)
standard, intended to describe building and construction in-
dustry data, assigns unique number at element creation time.
At the beginning it assigns 0 for the first object and then it
increases the previous assigned identifier with 1. In case of the
Eclipse Modeling Framework [11] (EMF), unique identifiers
are assigned at serialization time if the serialization format
supports this features (e.g. XMI format supports, but Binary
not). In practical, a universally unique identifier (UUID) is
generated for each object that still does not have any.

Advantages. Static identifiers require no user specific config-
uration. Always provides a perfect match for correspondences.

Disadvantages. Modeling environments or serialization for-
mat need to be changed. Moreover, it is possible, that the
modeling tools do not support these formats.

Example. For our running example, static identifiers can
be achieved using a proper serialization format that provide
unique identifiers.

B. Custom Identifiers

In practice, domain language developers usually prepare
their languages to support identifiers by adding a common
ancestor for all classes that provides an identifier attribute.
During the development phase, engineers need to manually
set the identifiers for each object where the uniqueness cannot
be guaranteed. Moreover, access control rules must make that
attribute visible (at least in an obfuscated form) in views.

Advantages. There is no need to change modeling environ-
ment or model serialization.

Disadvantages. Existing languages need to be modified
which may lead to inconsistencies. Uniqueness is questionable.

Example. Fig. 4 shows a possible extension of the afore-
mentioned metamodel with a NamedElement interface. All the
classes inherit the id attributes.

Fig. 4. Identifier introduced in a common ancestor

C. Signature-based Matching

Signature-based matching does not rely on unique identi-
fiers, instead it calculates signatures of the objects. A signature
is a user-defined function described as a model query. This
approach is introduced in [12], whereas Hegedus et al. [13]
described a similar approach so called soft traceability links
between models. All the references and attributes involved in
the calculation of a signature need to be visible (at least in
and obfuscated form).

Advantages. There is no need to change modeling environ-
ment or serialization format, thus the modeling tools will still
support the models.

Disadvantages. Users need to specify how to calculate the
signature, which might lead to several false positive results.

Example. For our running example, a simple signature
query defined in ViatraQuery language [14] is represented in
Listing 1, which makes two control units identically equal if
their container modules, the value of their cycle attributes
and their provided signal objects are identically equals.
This query successfully identifies changes introduced in the
running example. However, it cannot recognize the deletion
and addition of two different control units at the same position.

1 pattern sign(ctrl,cycle,sig,container) {
2 Control.eContainer(ctrl,container);
3 Control.cycle(ctrl,cycle);
4 Control.provides(ctrl,sig);
5 }

Listing 1. Example Signature Query

D. Similarity-based Matching

Similarity-based matching tries to measure the similarity
between objects based on the similarity value. In contrast,
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identifiers and signatures directly decide whether a corre-
spondence exists between two objects. Similarity is calculated
by the values of each features. For each feature, users need
to specify a weight that define how important is it in the
identification. Using these weights, meta-model independent
algorithms derive the correspondences between the objects.

For instance, EMF Compare [15] is comparison tools to
compare EMF models, and use similarity based-matching. Its
calculation includes analyzing the name, content, type, and
relations of the elements, but it also filters out element data
that comes from default values etc.

Advantages. The identification is based on general heuristics
and algorithms, where the users do not need to provide
complex description on how to identify an object.

Disadvantages. Users need to specify weight for the features
to fine-tune the similarity algorithms.

Example. A possible list of weights is defined in Listing 2,
where the references of the aforementioned metamodel have
more influence on the similarity than the attributes. In this
case, our example modifications will be successfully recog-
nized. However, Listing 3 describes a context, where the
attributes are more important than the others. Thus, if we
change the value of an attribute, it will be recognized as a
deletion of an object and the creation of a new one.

1 wieghts
2 * container: 2
3 * provides: 2
4 * type: 0
5 * cycle: 0
6 * vendor: 0
7 * consumes: 0
8 * submodules: 0
9 * protectedIP: 1

Listing 2.
Weights with environment pressure

1 wieghts
2 * container: 0
3 * provides: 0
4 * type: 5
5 * cycle: 2
6 * vendor: 2
7 * consumes: 0
8 * submodules: 0
9 * protectedIP: 1

Listing 3.
Weights with attribute pressure

E. Language-specific Algorithms

Language-specific algorithms are designed to a given mod-
eling language. Thus these approaches can take the semantics
of the languages into account to provide more accurate iden-
tification of objects. For instance, a UML-specific algorithm
can use the fact that two classes with the same name mean
a match and it does not matter where they were moved
in the model. UmlDiff [16] tool uses similar approach for
differencing UML models. To ease the development of such
a matching algorithms, the Epsilon Comparison Language
(ECL) [17] can automate the trivial parts of the process, where
developers only need to concentrate on the logical part.

Advantages. Semantics of the language are used and there
is no need to any modification in the model or modeling tools.

Disadvantages. Users need to specify a complete matching
algorithm for a given language which can be challenging.

Example. A simple matching rule defined with ECL is
presented in Listing 4. It matches a s control unit with Fig.t
control unit (declared in match-with part) if their container
and the provided signals are equal (declared in compare part).

1 rule MatchControls
2 match s : Control
3 with t : Control {

4 compare {
5 return s.container = t.container
6 and s.provides = t.provides
7 }
8 }

Listing 4. Example Rule in Epsilon Comparison Language

V. CONCLUSION AND FUTURE WORK

In this paper, we aimed to overview the approaches to
identify correspondences between an original model and its
filtered and modified version. We categorized these approaches
into 5 groups - using static identifiers or custom identifiers,
calculating signature-based matches, aggregating values of
features using similarity-based matching and providing lan-
guage specific algorithms. We introduced their application on
a case study extracted from MONDO EU project and discussed
their pros and cons.

As future work, we plan to integrate these approaches into
our query-based access control approach [6] and evaluate them
from the aspects of usability and scalability.
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Abstract—Formal analysis of real time systems is important as
they are widely used in safety critical domains. Such systems com-
bine discrete behaviours represented by control states and timed
behaviours represented by clock variables. The counterexample-
guided abstraction refinement (CEGAR) algorithm utilizes the
fundamental technique of abstraction to system verification. We
propose a CEGAR-based algorithm for reachability analysis of
timed systems. The algorithm is specialized to handle the time
related behaviours efficiently by introducing a refinement tech-
nique tailored specially to clock variables. The performance of the
presented algorithm is demonstrated by runtime measurements
on models commonly used for benchmarking such algorithms.

I. INTRODUCTION

Safety critical systems, where failures can result in serious
damage, are becoming more and more ubiquitous. Conse-
quently, the importance of using mathematically precise veri-
fication techniques during their development is increasing.

Formal verification techniques are able to find design prob-
lems from early phases of the development, however, the
complexity of safety-critical systems often prevents their suc-
cessful application. The behaviour of a system is described by
the set of states that are reachable during execution (the state
space) and formal verification techniques like model checking
examine correctness by exploring it explicitly or implicitly.
However, the state space can be large or infinite, even for small
instances. Thus, selecting appropriate modeling formalisms
and efficient verification algorithms is very important. One of
the most common formalisms for describing timed systems is
the formalism of timed automata that extends finite automata
with clock variables to represent the elapse of time.

When applying formal verification, reachability becomes
an important aspect – that is, examining whether a given
erroneous state is reachable from an initial state. The com-
plexity of the problem is exponential, thus it can rarely be
solved for large models. A possible solution to overcome this
issue is to use abstraction, which simplifies the problem to be
solved by focusing on the relevant information. However, the
main difficulty when applying abstraction-based techniques is
finding the appropriate precision: if an abstraction is too coarse
it may not provide enough information to decide reachability,
whereas if it is too fine it may cause complexity problems.

There are several existing approaches in the literature for
CEGAR-based verification of timed automata, including [1]
where the abstraction is applied on the locations of the
automaton, [2] where the abstraction of a timed automaton is

an untimed automaton and [3]–[5] where abstraction is applied
on the clock variables of the automaton.

Our goal is to develop an efficient model checking algorithm
applying the CEGAR-approach to timed systems. The above-
mentioned algorithms modified the timed automaton itself
to gain a finer state space: our algorithm combines existing
approaches with new techniques to create a refinement strategy
that increases efficiency by refining the state space directly.

II. BACKGROUND

A. Timed Automata

Clock variables (clocks, for short) are a special type of
variables, whose value is constantly and steadily increasing.
Naturally, their values can be modified, but the only allowed
operation on clock variables is to reset them – i.e., to set their
value to 0. It’s an instantaneous operation, after which the
value of the clock will continue to increase.

A valuation v : C → R assigns a non-negative real value to
each clock variable c ∈ C, where C denotes the set of clock
variables. In other words a valuation defines the values of the
clocks at a given moment of time.

A clock constraint is a conjunctive formula of atomic con-
straints of the form x ∼ n or x−y ∼ n (difference constraint),
where x, y ∈ C are clock variables, ∼ ∈ {≤, <,=, >,≥} and
n ∈ N. In other words a clock constraint defines upper and
lower bounds on the values of clocks and the differences of
clocks. Note, that bounds are always integer numbers. The set
of clock constraints are denoted by B(C).

A timed automaton extends a finite automaton with clock
variables. It can be defined as a tuple A = 〈L, l0, E, I〉 where
• L is the set of locations (i.e. control states),
• l0 ∈ L is the initial location,
• E ⊆ L× B(C)× 2C × L is the set of edges and
• I : L→ B(C) assigns invariants to locations [6].
The automaton’s edges are defined by the source location,

the guard (represented by a clock constraint), the set of clocks
to reset, and the target location.

A state of A is a pair 〈l, v〉 where l ∈ L is a location and
v is the current valuation satisfying I(l). In the initial state
〈l0, v0〉 v0 assigns 0 to each clock variable.

Two kinds of operations are defined that modify the state
of the automaton. The state 〈l, v〉 has a discrete transition to
〈l′, v′〉 if there is an edge e(l, g, r, l′) ∈ E in the automaton
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such that v satisfies g, v′ assigns 0 to any c ∈ r and assigns
v(c) to any c 6∈ r, and v′ satisfies I(l′).

The state 〈l, v〉 has a time transition (or delay, for short) to
〈l, v′〉 if v′ assigns v(c) + d for some non-negative d to each
c ∈ C and v′ satisfies I(l).

B. Reachability Analysis

In case of timed automata the reachability problem can be
defined as follows.

Input: An automaton 〈L, l0, E, I〉, and a location lerr ∈ L.
Output: An execution trace σ = l0

t0−→ l1
t1−→ · · · tn−→ lerr

from l0 to lerr or No, if lerr is unreachable.
One of the most efficient algorithms for deciding reacha-

bility is the one used by Uppaal1, a model checker for timed
automata. The core of the algorithm is published in [6]. Before
presenting the approach, some basic definitions are provided.

A zone z is a set of non-negative clock valuations satisfying
a clock constraint. A zone graph is a finite graph consisting of
〈l, z〉 pairs as nodes, where l ∈ L refers to some location of a
timed automaton and z is a zone. Edges represent transitions.

A node 〈l, z〉 of a zone graph represents all states 〈l, v〉
where v ∈ z. Since edges of the zone graph denote transitions,
a zone graph can be considered as an (exact) abstraction of the
state space. The main idea of the algorithm is to explore the
zone graph of the automaton, and if a node 〈lerr, z〉 exists in
the graph for some z 6= ∅, lerr is reachable, and the execution
trace can be provided by some pathfinding algorithm.

The construction of the graph starts with the initial node
〈l0, z0〉, where l0 is the initial location and z0 contains the
valuations reachable in the initial location by time transitions.
Next, for each outgoing edge e of the initial location (in the
automaton) a new node 〈l, z〉 is created (in the zone graph)
with an edge 〈l0, z0〉 → 〈l, z〉, where 〈l, z〉 contains the states
to which the states in 〈l0, z0〉 have a discrete transition through
e. Afterwards z is replaced by z↑ where 〈l, z↑〉 represents the
set of all states reachable from a zone 〈l, z〉 by time transitions.
The procedure is repeated on every node of the zone graph. If
the states defined by a new node 〈l, z〉 are all contained in an
already existing node 〈l, z′〉 (z ⊆ z′), 〈l, z〉 can be removed,
and the incoming edge can be redirected to 〈l, z′〉.

Unfortunately, it is possible that the described graph be-
comes infinite. In order to prevent this, [6] introduces an op-
eration called normalization to apply on z↑ before inclusion is
checked. Let k(c) denote the greatest value to which clock c is
compared in the automaton. This operation overapproximates
the zone treating the interval (k(c),∞) as one, abstract value
for each c ∈ C, since for any valuation v such that v(c) > k(c)
constraints of the form c > n are satisfied, and constraints of
the form c = n or c < n are unsatisfied.

Using normalization the zone graph is finite, and if there are
no difference constraints in the automaton, reachability will be
decided correctly, however, in case of difference constraints
the algorithm may terminate with a false positive result.

1http://www.uppaal.org/

The operation split [6] is introduced to assure correctness.
Instead of normalizing the complete zone, it is first split along
the difference constraints, then each subzone is normalized,
and finally the initially satisfied constraints are reapplied to
each normalized subzone. The result is a set of zones (not
just one zone like before), which means multiple new nodes
have to be created in the zone graph (with edges from the
original node). Applying split results in a zone graph, that is
a correct and finite representation of the state space [6].

Implementation is also provided in [6]. The zones are
stored in an n × n matrix form (the so-called Difference
Bound Matrix, DBM), where n = |C| + 1, and each row
and column represents a clock, except for the first ones that
represent the constant 0. An entry D[i, j] = (m,≺), where
m ∈ Z ∪ {∞},≺∈ {<,≤} of the DBM D represents the
constraint ci − cj ≺ m, where c0 = 0. (It is proven, that
all atomic clock constraints can be transformed to this form.)
Each entry of a DBM represents the strongest bound that can
be derived from the constraints defining the zone.

Pseudocodes are also provided for operations, such as add()
(adds an atomic constraint to the zone), reset() (resets the given
clock), up() (calculates z↑), norm() and split() to calculate
successor states automatically, as well as some additional
operations, such as free() (removes all constraints on a clock).

C. Activity

The (exact) activity abstraction is proposed in [7] to reduce
the number of clock variables without affecting the state space.
A clock c is considered active at some location l (denoted by
c ∈ Act(l)) if its value at l may influence the future operation
of the system. It might be because c appears in the I(l), or
in the guard g of some outgoing edge (l, g, r, l′), or because
c ∈ Act(l′) for some l′ reachable from l without resetting c.

If Act(l) < |C| holds for each l ∈ L, the number of clock
variables can be reduced by reconstructing the automaton, by
removing all c 6∈ Act(l) and renaming c ∈ Act(l) for each
l ∈ L such that after renaming less clocks remain. This is
possible, even if all c ∈ C is active in at least one location,
since clocks can be renamed differently in distinct locations.

Before presenting how activity is calculated some new
notations are introduced. Let clk : B(C) → 2C assign to
each clock constraint the set of clocks appearing in it. Define
clk : L → 2C such that c ∈ clk(l) iff c ∈ clk(I(l)) or there
exist an edge (l, g, r, l′) such that c ∈ clk(g).

Activity is calculated by an iterative algorithm starting from
Act0(l) = clk(l) for each l ∈ L. In the ith iteration Acti(l)
is derived by extending Acti−1(l) by Acti−1(l′) \ r for each
edge (l, g, r, l′). The algorithm terminates when it reaches a
fix point, i.e. when Acti(l) = Acti−1(l) for each l ∈ L.

D. CEGAR

In order to increase the efficiency of model checking, (ap-
proximate) abstraction can be used [8]: a less detailed system
model is constructed with a state space overapproximating that
of the original one, model checking is applied to this simple
model, and if the erroneous state is unreachable in the abstract
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model, the system is correct. Otherwise the model checker
produces an abstract counterexample that is examined on the
original system, and if it is feasible, the system is incorrect. If
it is invalid, the abstraction is too coarse to decide reachability.

Counterexample-guided abstraction refinement (CEGAR)
[9] extends this approach into an iterative algorithm, by
refining the abstract state space in order to eliminate the invalid
counterexample. Model checking is applied on the refined state
space (that is still an abstraction of the original one) and the
so-called CEGAR-loop starts over.

III. ACTIVITY-BASED ABSTRACTION ALGORITHM

The main idea of our new algorithm is to explore the
state space without considering clock variables and refining
it (calculating zones) trace by trace, based on the discovered
counterexamples. Figure 1 depicts the basic operation of the
algorithm. Note, that the phases of this algorithm correspond
to the phases of CEGAR.

To increase efficiency not all clock variables are included –
the relevant clocks for each node in the path (the precision)
are chosen by an algorithm we have developed based on the
one described in Section II-C. To avoid confusion, zones will
appear with their precision denoted, e.g. zC denotes a zone z
of precision C ⊆ C.

A. Data structure

In our algorithm the formalism that represents the abstract
state space can be defined as a tuple 〈Ne, Nu, E↑, E↓〉 where
• Ne ⊆ L× B(C) is the set of explored nodes,
• Nu ⊆ L× B(C) is the set of unexplored nodes,
• E↑ ⊆ (Ne × N), where N = Ne ∪ Nu is the set of

upward edges and
• E↓ ⊆ (Ne ×N) is the set of downward edges.

The sets Ne and Nu as well as the sets E↑ and E↓ are disjoint.
T ↓ = (N,E↓) is a tree.

Nodes are built from a location and a zone and (downward)
edges represent transitions like in the zone graph but in this
case nodes are distinguished by the trace through which they
are reachable. This means the graph can contain multiple
nodes with the same zone and the same location, if the
represented states can be reached through different traces.

The root of T is the initial node. Downward edges have
similar roles to edges of the zone graph, while upward edges
are used to avoid exploring the same states multiple times. An
upward edge from a node n to a previously explored node
n′ means that the states represented by n are a subset of
the states represented by n′, thus it is unnecessary to keep

searching for a counterexample from n, because if there exists
one, another one will exist from n′. Searching for new traces
is only continued on nodes without an outgoing upward edge.
This way, the graph can be kept finite.

Initially, the graph contains only one, unexplored node
n0 = 〈l0, z∅〉, and as the state space is explored, unexplored
nodes become explored nodes, new unexplored nodes and
edges appear, until a counterexample is found, or there are
no remaining unexplored nodes. During the refinement phase
zones are calculated, new nodes and edges appear and com-
plete subtrees disappear. State space exploration will then be
continued from the unexplored nodes, and so on.

B. State space exploration

State space exploration is performed in the following way.
In each iteration a node n = 〈l, zC〉 ∈ Nu is chosen. First, it
is checked if the states n represents are included in some other
node n′ = 〈l, z′C′〉 where C = C ′. In this case an upward edge
n → n′ is introduced and n becomes explored. Otherwise, n
has yet to be explored. For each outgoing edge e(l, g, r, l′)
of l in the automaton a new node 〈l′, z∅〉 ∈ Nu is introduced
with an edge pointing to it from n, which becomes explored. If
any of the new nodes contains lerr, the state space exploration
phase terminates and the proposed counterexample σ = n0

t0−→
n1

t1−→ · · · tn−→ nerr = 〈lerr, z∅〉 is the trace reaching nerr in
T ↓. Otherwise, another n ∈ Nu is chosen, and so on.

If the state space is explored and lerr does not appear in it,
the erroneous states are unreachable, and the system is correct.

C. Trace activity

After finding a possible counterexample the next task is to
calculate the necessary precisions. The presented algorithm is
a modified version of the one described in Section II-C.

Based on activity we introduce a new abstraction Actσ(n),
called trace activity which assigns precisions to nodes on the
trace (instead of locations of the automaton), that only include
the clocks whose value affects the reachable states of the trace.

Trace activity is calculated iterating backwards on the trace.
In the final node nerr the valuations are not relevant, as the
only question is whether it is reachable – Actσ(nerr) = ∅.
For ni 6= nerr, Actσ(ni) can be calculated from Actσ(ni+1)
and the edge ei(li, gi, ri, li+1) used by transition ti. Since all
c ∈ ri are reset, their previous values will have no effect
on the system’s future behaviour – they can be excluded. It is
necessary to know if ti is enabled, so clk(gi) must be active, as
well as clk(I(li)) since I(li) have to be satisfied. This gives us
the formula Actσ(ni) = (Actσ(ni+1)\ri)∪clk(gi)∪clk(I(li)).

D. Refinement

The task of the refinement phase is to assign correct zones
of the given precision for each node in the trace and to decide
if the counterexample is feasible. It is important to mention
that the zones on the trace may already be refined to some
precision C ′ that is independent from the new precision C. In
this case the zone has to be refined to the precision C ∪ C ′.
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Refinement starts from the initial zone z0 that can be refined
to zC0 =

∧
ci,cj∈C0

ci = cj , where C0 is the required precision.

After that zCi of node ni on the trace can be calculated from
zCi−1 of node ni−1 with the operations mentioned in Section
II-B, with some modifications to handle the precision change.

First, the guard has to be checked. If there are no states in
zCi−1 that satisfy gi−1, the counterexample is invalid, and the
abstract state space has to be refined: since ti−1 is not enabled,
the corresponding edge, and the belonging subtree has to be
removed from the graph, and the algorithm can continue by
searching for another counterexample.

Next, the clocks in ri−1 are reset. This can be performed
using operation reset(). Change of precision is also applied at
this point. Assume that the precision of the source zone is Ci
and the target zone has to be refined to precision Ci+1.

Variables Cold = Ci \ Ci+1 have to be excluded before
executing the transition. Consider the DBM implementation
of zones. Excluding the unnecessary clocks from the zone can
be performed by free(c) for each c ∈ Cold, but according to
the pseudocode in [6] the operation only affects the row and
the column belonging to c. Thus, for space saving purposes,
the row and column of c can simply be deleted from the DBM.

Variables Cnew = Ci+1 \ Ci have to be introduced. Trace
activity guarantees that clocks are only introduced when they
are reset, thus, it can be performed by adding a new row and
column to the DBM, that belong to c and calling reset(c).

The next step is to apply the invariant. If this results in an
empty zone, the transition is not enabled – the subtree has
to be deleted, and the algorithm continues by searching for
another counterexample. Otherwise, up(), split(), and norm()
has to be applied to calculate the precise zone (or zones).

The node ni can be refined by replacing the current zone
with the calculated one, however, the incoming upward edges
have to be considered first. An edge n→ ni ∈ E↑ means ni
represents all states that n represents – this may not be true
after the refinement. Thus, the upcoming edges are removed
and their sources are marked unexplored.

It is important to consider that sometimes the split() oper-
ation results in more than one zones. Similarly to the case of
the zone graph, this can be handled by replicating the node.
Refinement has to be continued from each new node, thus
the refinement of a trace may introduce new subtrees. The
tree structure allows this, however, it is important to mark
the new nodes unexplored, since only the outgoing edges
representing the transition on the trace are created, the other
possible outgoing edges have yet to be explored.

IV. EVALUATION

We evaluated the performance of the presented algorithm
with measurements. The inputs are scalable automata chosen
from Uppaal’s benchmark data2 that is widely used for com-
paring the efficiency of such algorithms. Network automata
with discrete variables were unfolded to timed automata before
the measurements. The results are depicted in Table I.

2https://www.it.uu.se/research/group/darts/uppaal/benchmarks/

TABLE I
MEASUREMENT RESULTS (MS)

CSMA2 CSMA3 CSMA4 Fisch2 Fisch3
264 1 113.5 9 808 292 5 650

Token8 Token32 Token128 Token512 Token2048
838 2 173 4 966 12 580 100 892

The models are denoted by CSMAn, Fischn, and Tokenn
for the CSMA/CD, Fischer and Token ring/FDDI protocols
of n participants, respectively. The Token ring protocol is
a special input, since the examined safety property can be
proven solely based on the structure of the automaton, thus the
analysis of the initial abstraction is able to prove the property.
This proves how useful abstraction is, but the measurements
on this automaton can only demonstrate the efficiency of
the pathfinding algorithm, which turned out to be O(n2).
Memory problems occurred at the Fischer protocol of four
processes and the CSMA/CD protocol of five stations. For
smaller instances the algorithm always terminated with the
expected result.

V. CONCLUSIONS

This paper provided a CEGAR-based algorithm for reach-
ability analysis of timed automata, that applies abstraction on
the zone graph, and calculates the required precision for the
refinement using trace activity. The efficiency of the algorithm
was demonstrated by measurements. Results suggest that the
pathfinding algorithm is efficient, but the memory usage has
yet to improve.
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Abstract—Many of today’s safety-critical systems are reactive,
embedded systems. Their internal behavior is usually represented
by state-based models. Furthermore, as the tasks carried out
by such systems are getting more and more complex, there is a
strong need for compositional modeling languages. Such modeling
formalisms start from the component-level and use composition
to build the system-level model as a collection of simple modules.
There are a number of solutions supporting the model-based
development of safety-critical embedded systems. One of the
popular open-source tools is Yakindu, a statechart editor with
a rich language and code generation capabilities. However,
Yakindu so far lacks support for compositional modeling. This
paper proposes a formal compositional language tailored to the
semantics of Yakindu statecharts. We propose precise semantics
for the composition to facilitate formal analysis and precise code
generation. Based on the formal basis laid out here, we plan
to build a complete tool-chain for the design and verification of
component-based reactive systems.

I. INTRODUCTION

Statechart [1] is a widely used formalism to design complex
and hierarchical reactive systems. Among the many statechart
tools, our work is based on the open-source Yakindu1, which
supports the development of complex hierarchical statecharts
with a graphical editor, validation and simulation features.
Yakindu also supports source code-generation from statecharts
to various languages (Java, C, C++).

The requirements embedded systems have to meet are
getting more and more complex. Therefore, the models cre-
ated for such systems tend to become unmanageably large,
which encumbers extensibility and maintenance. Instead, the
resulting models could be created by composing smaller
units. These units interact with each other using the specified
connections, thus implementing the original behavior. There
are several tools that aim to support this methodology.

SysML [2], [3] tools have a large set of modeling elements
which enables their users to express their thoughts and ideas as
freely and concisely as possible. On the other hand, they rarely
define precise semantics, which encumbers code generation
and analysis. BIP [4]–[6] is a compositional tool with well-
defined semantics that supports the formal verification of
modeled systems. Source code generation is also possible with

1https://itemis.com/en/yakindu/statechart-tools/

this tool. Scade2 [7], [8] is a tool that unifies the advantages of
design and analysis tools. It supports the generation of source
code as well as the formal verification of the modeled system.
It is a commercial tool and does not support extensibility.
Matlab Stateflow [9] is an environment for modeling and
simulating decision logic using statecharts and flow charts.
It is a leading tool for composing state-based models in
the domain of safety-critical embedded systems. It supports
the encapsulation of state-based logics which can be reused
throughout different models and diagrams.

Unfortunately, Yakindu does not support composition fea-
tures. The main goal of our work is to create a tool that
enables the users to compose individual statechart components
into a single composite system by constructing connections
through ports. The ultimate goal of this work is to enable
code generation and formal verification of composite models
with model transformations based on the proposed semantics.

We will call this type of composition an event-based au-
tomata network, as opposed to dataflow networks, which can
be considered message-based automata networks in this sense.
In event-based automata networks, data is only of secondary
importance – the occurrence of the event is in focus. In
message-based settings, data is more significant, thus message
queues are desirable to buffer the simultaneous messages.

This paper is structured as follows. Section II presents
the semantics of Yakindu statecharts serving as the basis of
the compositional language. The syntax and semantics of the
compositional language along with an example are introduced
in Section III. Finally, Section IV provides concluding remarks
and ideas for future work.

II. ABSTRACTING YAKINDU STATECHARTS

Yakindu adopts a statechart formalism which is the ex-
tension of the well-known state machine formalism. State-
charts support the definition of auxiliary variables as well
as concurrency and state refinement. This section introduces
a syntactical abstraction of Yakindu, i.e. the actual model
elements are ignored. We deal only with the input and output
events in addition to the actual state configuration, but not
the semantics. This way we can generalize the composition

2http://www.esterel-technologies.com/products/scade-suite/
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Fig. 1. Metamodel of the compositional language.

of abstract models with minimal restrictions to the usable for-
malisms. In this approach, a Yakindu statechart is considered
a 5-tuple: S = 〈I,O, S, s0, T 〉 where:

• I is a finite set of input events (from the environment)
• O is a finite set of output events (for the environment)
• S = {s1, s2, · · · , sn} is a finite set of states, including a

state configuration and values of variables
• s0 ∈ S is the initial state
• T ⊆ (2I×S)×(S×2O) is a finite set of transitions, that

represent changes of state in response to a set of input
events and generate a set of output events

Yakindu statecharts adopt a turn-based semantics. The fol-
lowing paragraphs introduce the interpretation of turns as well
as how the raising of events is associated to them.

Events represent signal receptions. There are two types of
events: simple or void events and parameterized or typed
events. The latter enables the modeling of parameterized sig-
nals, which can describe additional details. Note that multiple
input events can be raised in a single turn according to the
abstract formalism defined above. In Yakindu the raising of
events is interpreted as setting a boolean flag to true. Yakindu
therefore does not support message queues. Owing to this
semantics raising the same simple event in a particular turn
once or several times has the same effect. On the other hand,
parameterized events are defined by their parameter as well,
so a new event raising with a different parameter overwrites
the former one. Although this behavior is an essential part
of the semantics of Yakindu, it is not relevant either in the
abstract formalism presented above or the semantics of the
composition language defined in Section III-B.

All turns consist of two distinct sections, a raising section
and a running section. In the raising section input events of
the statechart are raised as presented in the previous paragraph.

This is followed by the running section where a new stable
state of the statechart is defined. It starts with the examination
of the transitions going out of the particular state configuration.
The goal is to specify the firing transition. At this point a
race condition might exist if multiple outgoing transitions
are enabled, e.g. more of them are triggered by raised input
events. Yakindu intends to solve ambiguity by introducing the
concept of transition priority: users can specify which of the
outgoing transitions of a state should be fired in case of a race
condition by defining a total ordering of the transitions. The
firing transition specifies the next stable state of the statechart,
including the state configuration, values of variables and events
for the environment.

III. LANGUAGE FOR COMPOSITION

This section defines the syntax of the compositional lan-
guage and introduces the semantics the composite system
conforms to. This semantics is heavily influenced by the
statechart semantics defined by Yakindu and strives to address
some of its problems, e.g. gives the ability to parallel regions
to communicate with each other.

A. Syntax

Figure 1 depicts the metamodel of the compositional lan-
guage. The root element in the metamodel is the System.
A System contains Components which refer to Yakindu
statecharts as well as Instances of such Components. Each
Component has an Interface that contains Ports. Through
Ports, signals of statecharts can be transmitted or received
according to their directions.

Channels can be used for defining the emergent behavior
of the composite system. A Channel has one or more Inputs
and one or more Outputs. An Input of a Channel connects
to an output Port of an Instance and vice versa. Whenever a
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Channel receives a signal through any of its Inputs, the signal
is sent to each Output, i.e. to the corresponding input Ports of
Instances. The language does not support connecting Ports of
the same direction and a validation rule is defined that marks
incorrect connections.

The language supports the definition of an interface through
which the composite system interacts with its environment.
This is the SystemInterface that contains SystemPorts. Sys-
temPorts are aliases of Ports of Instances. If a signal arrives to
a SystemInPort, it will be forwarded to the Port of the referred
Instance instantly. SystemOutPorts work similarly, but with
output Ports of Instances.

For ease of understanding, an example is presented that
defines a composition of statecharts using the specified com-
positional language. The system consists of two Components,
CoffeMachineComponent and LightComponent referring to a
coffee machine (CoffeMachine) statechart and a light switch
(LightSwitch) statechart, respectively. CoffeMachine has sig-
nal declarations for turning it on and off, for ordering a
cappuchino and for putting its light on and off. A LightSwitch
models a lamp that can be turned on and off.

/ / System i n t e r f a c e d e f i n i t i o n
i n t e r f a c e {

i n {
on : machine . on
o f f : machine . o f f
c a p p u c h i n o : machine . c a p p u c h i n o

}
}

/ / Component i n t e r f a c e d e f i n i t i o n s
CoffeeMachine CoffeMachineComponent {

i n t e r f a c e {
on : IN on
o f f : IN o f f
c a p p u c h i n o : IN c a p p u c h i n o
l i g h t O n : OUT f l a s h L i g h t
l i g h t O f f : OUT t u r n O f f L i g h t

}
}

L i g h t S w i t c h LightComponent {
i n t e r f a c e {

on : IN onBut ton
o f f : IN o f f B u t t o n

}
}

/ / Component i n s t a n t i a t i o n s
CoffeMachineComponent machine
LightComponent l i g h t

/ / Channel d e f i n i t i o n s
c h a n n e l s {

[ machine . l i g h t O n ] −> [ l i g h t . on ]
[ machine . l i g h t O f f ] −> [ l i g h t . o f f ]

}
Note that a composite system description constists of the

following parts:
• System interface definition: All input Ports of machine

are published to the interface of the system enabling the

cappuchinooffon

lightOfflightOn

machine : CoffeMachineComponent

cappuchinooffon

light : LightComponent

offon

Fig. 2. A composite system of a CoffeMachine and a LightSwitch statechart.

users to turn machine on and off or order a cappuchino.
• Component interface definitions: CoffeMachineCompo-

nent refers to on, off and cappuchino through input Ports
(denoted by the IN keyword) and flashLight, turnOffLight
through output Ports (denoted by the OUT keyword).
Both signal declarations of LightSwitch are referred to
by input Ports.

• Component instantiations: Both Components are instan-
tiated: machine and light.

• Channel definitions: The output Ports of machine are
connected to the input Ports of light, making it possible
for machine to turn on light at choice.

Figure 2 depicts the composite system described by the
previous code section. Note that the individual components
of the system are encapsulated. Interactions can be specified
only through the defined interface.

B. Semantics

During the design of the semantics one of our goal was to
define a language that enables the reuse of the source code
generator of Yakindu. Therefore the semantics of supported
Yakindu statecharts elements had to be considered, most
importantly event raising.

This section introduces the semantics of the composi-
tional language. The compositional language enables to cre-
ate a composite system, that is formally a 4-tuple: C =
〈SC ,CA, IN ,OUT 〉 where:

• SC = {〈S1, s
0
1, T1, I1, O1〉, · · · , 〈Sn, s

0
n, Tn, In, On〉} is

a finite set of state machines.
• I =

⊔n
j=1 Ij , i.e. the union of all in events of state

machine components
• O =

⊔n
j=1Oj , i.e. the union of all out events of state

machine components
• CA ⊆ 2O × 2I , i.e. channel associations relate a finite

set of outputs to a finite set of inputs
• IN ⊆ I , i.e. the input interface is a subset of the union

of the in events of state machine components
• OUT ⊆ O, i.e. the output interface is a subset of the

union of the out events of state machine components
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A sequence of steps % = (τ1, τ2, · · · ) is called a complete run
of C if the following conditions hold.
• τj = (sj , ij , s

′
j , oj) is a single step that consists of a state

vector representing each state of each component before
the step, a finite set of inputs, a state vector representing
each state of each component after the step and a finite set
of outputs generated by each state machine components,
where for all 1 ≤ k ≤ n at least one of the following
conditions holds:

– (ij ∩ Ik, sj [k], s′j [k], oj [k]) ∈ Tk, i.e. if a transition
is defined in a state machine component that is trig-
gered by the input set, then the transition fires taking
the state machine to its target state and producing the
corresponding outputs;

– (sj [k] = s′j [k] ∧ oj [k] = ∅ ∧ @s′, o′ : (ij ∩
Ik, sj [k], s′, o′) ∈ Tj), i.e. a component is allowed
to do nothing if and only if it has no transition that
is triggered by input ij in state sj [k];

• s1 = (s01, s
0
2, · · · , s0n, ), i.e. at the beginning of the run,

all state machine components are in their initial states;
• s′j = sj+1, i.e. the state vector at the end of a step and

at the beginning of the next step are equal;
• tgd(

⋃n
k=1 oj [k]) ⊆ ij+1 ⊆ tgd(

⋃n
k=1 oj [k]) ∪ IN where

tgd(Ω) =
⋃

ω∈2Ω ω ◦ CA, i.e. the inputs of a step is at
least the inputs triggered through a channel by outputs of
the previous step and maybe some additional events of
the input interface;

• % is either infinite or the following condition holds:
– @(o, i) ∈ CA : o∩ on 6= ∅, i.e. the execution of steps

can terminate only if the last step does not produce
any outputs that will be inputs in the next step.

A partial run of a composite system can be any prefix of
a complete run (any other sequence is not considered to be a
behavior of the composite system).

It is important to note that message queues (buffering) are
not included, the semantics guarantees only that event raising
and event receptions are in a causal relationship. Therefore,
if a component does not buffer events (such as Yakindu),
parameterized events may overwrite each other.

The operational semantics presented above provides a way
to reduce the semantics of the composite system to the
semantics of the components. To formally analyze the system,
denotational semantics has to be provided, e.g. by model
transformations converting the composite system model into a
formal model, in accordance with the operational semantics.

IV. CONCLUSIONS AND FUTURE WORK

Yakindu is a popular open-source tool for the design of
statechart models with support for code generation. It has a
rich language to model a single hierarchical statechart, but
it lacks the ability to compose statecharts into a component-
based model. For the design of complex, embedded reactive
systems, compositionality is essential to handle the design
complexity. Moreover, a precise formal semantics is necessary
to facilitate code generation and formal analysis.

The defined compositional language enables to instantiate
Yakindu statecharts, specify ports for these instances and join
these instances through port connections. The semantics of the
language is well-defined and suits the statechart semantics of
Yakindu soundly.

Subject to future work, we plan to extend the composi-
tional language to allow hierarchical compositions, i.e. the
composition of composite systems. Additionally, we intend
to design a whole framework around the language that 1)
enables the generation of source code which connects the
Yakindu statecharts according to the defined semantics and
2) provides automated model transformation to formal models
of composite systems on which exhaustive analysis can be
performed by model-checkers.

The automatic model transformers will utilize a graph-
pattern-based approach to generate the traceability information
that will facilitate the back-annotation of the results of formal
analysis to the engineering domain. This way, we hope to
support formal verification without requiring the designers to
get familiar with the formal languages involved.
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Abstract—Software is a continuously evolving product: modifi-
cations appear frequently to follow the changing requirements or
to correct errors. However, these modifications might introduce
additional errors. Regression testing is a method to verify
the modified system, whether the development introduces new
problems into the system or not. Regression testing involves
the execution of numerous tests, usually written manually by
the developers. However, construction and maintenance of the
test suite requires huge effort. Many techniques exist to reduce
the testing efforts. In this paper we introduce a model-based
approach to reduce the number of regression tests by using
abstraction techniques and focusing on the changing properties
of the unit under test.

I. INTRODUCTION

The development of complex, distributed and safety-critical
systems yield a huge challenge to system engineers. Ensuring
the correct behavior is especially difficult in evolving environ-
ments, where the frequent changes in demands lead to frequent
redesign of the systems. This rapid evolution raises many
problems: the new version of the system has to be verified
in order to detect if it still fulfills the specification, i.e. the
developments do not introduce additional problems or unde-
sired modifications in the existing functionality. Regression
testing is selective retesting of a system or component to verify
that modifications have not caused unintended effects and
that the system or component still complies with its specified
requirements. [5] It uncovers newly introduced software bugs,
or regressions. Regression testing can determine whether a
change in one part of the software affects other parts or
functionalities.

Supporting regression testing is an important though diffi-
cult task. Creating a model for the desired behavior of the
system could significantly help regression testing and would
enable the application of model-based testing approaches.
However developers usually do not have time and effort to
create the specification model during the development and it
is costly to construct the model afterwards from the source
code and configuration files.

In this paper we introduce a model-based approach to
support the regression testing of software components. We
developed a methodology to automatically synthesize behavior
models by using automata learning algorithms. However, tra-
ditional automata learning algorithms proved to be insufficient
for this task, as they are unable to handle the sheer complexity

of existing software components. Therefore some kind of
abstraction framework is required to simplify the observable
behavior of the unit under learning: these improvements can
support the construction of a behavior model of even complex
software components, which the state-of-the-art learning algo-
rithm fails to learn. In our approach we use a feature model
based abstraction on the interface of the software component.
Based on the learned models we automatically generate a
set of test sequences. Additionally, comparing the behavior
models of the different versions of the software components
is able to highlight unwanted changes. We also implemented
the proposed approach in a prototype framework to prove its
feasibility.

The structure of the paper: first of all, in Section II we
introduce the required preliminaries and an example to guide
the reader through the paper, later, Section III recommends a
general approach for regression testing. Section IV introduces
language support for defining the relevant behavior of the
analysed software component. Section V shows preliminary
measurements. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Example

A chess clock software used at the System Modeling Course
[2] at BME serves as a motivating example. This chess clock
has two main functionalities, let call them menu and game
function. The game function enables the switch of the active
player and descending its remaining time. In the menu the
players can configure the settings of the game. The input
interface of this chess clock contains four buttons (Start, Mode,
White and Black) and the output interface consists of three
displays (Main, White time, Black time).

B. Feature Model

Feature models [6] are widely used in the literature to
provide a compact representation for software product lines.
A feature model contains features in a tree structure, which
represents the dependencies between the features.

The possible relations between a feature and its child- or
subfeatures are categorized as:

• Mandatory: in this case the child feature is required.
• Optional: in this case the child feature is optional.
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• Or: at least one of the subfeatures must be active, i.e.
contained in the input or output, if the parent is contained
in the message.

• Alternative (Xor): exactly one subfeature must be se-
lected.

Beside that, cross-tree constraints can be represented by addi-
tional edges.

A feature model configuration is a concrete set of features
from a feature model which satisfies the constraints expressed
by the relations of the feature model: a valid configuration
does not violate any parent-child dependency or any cross-
tree constraint.

C. Automata Learning

Automata learning is a method for producing the automaton-
based behavior model of a unit by observing the interactions,
i.e. inputs and outputs with its environment. There are two
main types of automata learning, active and passive learning.
An active automata learning algorithm was chosen in our work,
as it can produce more accurate behavior models.

In active automata learning [1], [9], models of a Unit Under
Learning (UUL) are created through active interaction, i.e.
driving the UUL and by observing the output behavior. For
this procedure the algorithm needs to be able to interact with
the target unit in several ways, such as:

• reset the UUL,
• execute action on the UUL, i.e. drive it with an input,
• observe the outputs of the UUL.
Given the possible input and output alphabets of the soft-

ware component the algorithm learns by constructing queries
composed of input symbols from the alphabet, then these
queries are asked from the UUL which responds by processing
the inputs and providing the outputs.

III. REGRESSION TESTING APPROACH

In this section our regression testing approach and its basic
steps are introduced. The proposed approach is depicted on
Fig. 1. The method uses a user defined version of the software
component as a reference: from this software component
version the algorithm synthesize a behaviour model which can
be used for test generation. Various test coverage criteria can
be supported and many algorithms and tools are available to
perform the test generation. This generated set of tests are then
used for the later versions of the software component to check
its conformance with the reference version.

Behavior	Model Regression	Tests

n. version n+1. version

Test Generation

Development

Fig. 1. Regression testing

Challenges. However, the envisioned approach faces some
challenges. Automata learning algorithms construct the behav-
ior model of the software component which is a complex
task in itself. In addition, as a software usually expresses
data dependent behavior, learning the automata model often
becomes infeasible. Another important issue is that learning
the automata model of the former version of the software
component and generating test from it yields many test cases
which should not hold in the newer version and will lead to
many false positive tests. Our approach supports the learning
algorithm with a specification language and abstraction tech-
nique to:

• enable the automata learning of software components
with even complex, data dependent behaviour, and to

• focus the regression testing into the relevant parts of the
software component, where the test engineer expect no
change.

The overview of this process is depicted on Fig. 2. In the
first step the framework learns the relevant behavior of the unit,
defined by the user using feature models and abstraction. The
result of this process is an automaton describing the behavior
of the unit. Regression test cases can be easily generated using
this automaton: a model-based test generation algorithm or
tool can be chosen arbitrarily at this phase, the only question
is the expected coverage criterion the tester needs.

Automata
Learning

Test Generation
Regression

Testing

Behavior Model Test Cases

Abstraction Modified Unit

Fig. 2. Overview

In the following we introduce the main steps of the approach
– construction of the behavior model and regression testing the
modified component – in more details.

A. Constructing the Behavior Model

The first step of the process is the learning of the behavior
model. In our work, we have integrated an active automata
learning algorithm of LearnLib [8], which produces the be-
havior model as a Mealy machine [7] – a finite-state machine.

We used abstraction during the learning, as it hides the
irrelevant parts of the behaviour and gives the user the means
to focus the testing into the functions which are the scope
of the regression testing. The user of our approach is able to
formulate abstraction rules on the inputs and outputs, i.e. the
alphabet of the learning process.

Figure 3. illustrates the role of abstraction during the
learning process in the communication between the learning
algorithm and the UUL. The queries generated by the learning
algorithm are sequences of input symbols of the abstract
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Automata Learning 
Algorithm
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Learning

Abstract input Concrete input
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Behavior Model

Fig. 3. Automata learning through abstraction

alphabet. These symbols are not directly executable inputs for
the UUL, but they represent equivalence classes defined by the
abstraction rules. Each abstract input needs to be concretized
(choose a concrete executable action). The unit under learning
will produce an answer for that particular action. According
to the abstraction rules, the concrete response provided by
the UUL is mapped to an abstract symbol consumed by the
learning algorithm.

B. Regression Testing

Testing consists of the following steps: at first tests are
generated from the previously learned behavior model. In the
prototype a depth-first-search based test generation method
was implemented which provided full state and transition
coverage. Various test generation algorithms can be chosen to
ensure the desired coverage. These tests can than be executed
on the next version of the software component.

The automata learning algorithm constructs an automaton
which is an abstract model in the sense that inputs and outputs
can not directly drive the software component under test. In
order to gain executable test, the abstraction and concretization
steps used during the learning are saved so the prototype
implementation can use it to produce executable tests.

The verification consists of two main steps:
• At first, the generated tests are executed to examine the

new version of the software component.
• If the testing was successful, the framework compares the

behavior model of the new version to the former one.
In the first step of verification we run the previously saved

test cases on the newer version of the unit. If the result of any
tests is an error, manual investigation is needed to decide the
reason for the failing test. The reasons for a failing test can
be the following:

• A real problem is found. The developers have to fix it.
• False positive occurs because of the inaccurate or not

properly defined abstraction.
In order to further increase the efficiency of the analysis, the

framework learns the new version of the software component
to compare it to the former behavior model by using automaton
minimization and equivalence checking.

Message

Button

Operation Player

White BlackStart Mode

Waiting

Or

Xor

Implies

Fig. 4. Feature model

If any of these mentioned verification steps results in failure,
we can assume that the modified unit does not conform to the
desired behavior model.

IV. LANGUAGE SUPPORT FOR REGRESSION TESTING

The presented approach requires the definition of the in-
terfaces of the UUL, i.e. the possible inputs and outputs. In
addition, the user has to define the relevant functionalities for
the regression testing, i.e. the abstraction used in the learning
process. In the framework, the interfaces and the abstractions
are defined with the help of a feature model [6] language.

A. Specifying Communication Interfaces by Feature Models

In our setting, the feature model describes the set of possible
input or output messages. Our feature model representation
supports two types of features:

• Integer features: have a range of possible values from the
integer domain. They can not have child elements.

• Boolean features: have Boolean values.
And it allows one kind of cross-tree constraint:
• Implication: if feature A requires feature B, the selection

of A in an input or output implies the selection of B.
An example feature model is depicted by a feature diagram

in Fig. 4. It defines the input interface of the chess clock, i.e.
the set of all possible input messages. The root is the Message
feature, which contains a Waiting time period, or a Button
(specified by Or dependency). This represents that the players
can wait or push a button to produce a kind of button input.
The Waiting feature is an integer feature. The Button feature
and its children are of Boolean types. The Button feature can
either be an Operation or a Player button press (specified by
Xor dependency).

An example input of the chess clock is the following:
(1) pushing the white button, then (2) waiting 1s. This is
a possible valid configuration for the previously mentioned
feature model.

B. Abstraction and concretization

We have chosen feature model based specification because it
supports the formulation of the abstraction and concretization.
In our work we implemented the following rules:

• Merge: Representing multiple features as an abstract one.
• Remove: The value of the feature will not be observed.
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Error in 
Menu 1

Error in 
Menu 2

Error in 
Game 1

Error in 
Game 2 Change

1) Manual 10/18 2/18 1/18 0/18 8/18
2) Without abstraction - - - - -

3)

Game-focused abstr. 1 0/6 0/6 1/6 0/6 0/6
Game-focused abstr. 2 0/51 0/51 9/51 0/51 0/51
Menu-focused abstr. 1 4/6 1/6 0/6 0/6 2/6
Menu-focused abstr. 2 4/6 1/6 0/6 0/6 2/6
Menu-focused abstr. 3 6/6 1/6 0/6 0/6 6/6

TABLE I
COMPARISON OF MANUAL AND GENERATED TEST SUITES

Using the feature model of Fig. 4 we illustrate the effects of
the abstractions: merging the White and Black buttons will
lead to a simple feature model where the merged features
will be represented by the Player button. Removing the Start
button will result that its value is not observed by the learning
algorithms.

V. EVALUATION

In order to evaluate the effectiveness of the proposed
framework executed initial measurements on our prototype
implementation.

Research questions. The goal of the measurements is to
compare the effectiveness of the following sets of tests:

1) Manual test suite
2) Learning and test generation without abstraction
3) Generated test suite using a dedicated abstraction

We are interested in the following questions for each test suite:
RQ1 Is the test suite able to detect randomly injected errors?
RQ2 Is the test suite maintainable? How many modifications

are required upon a change of the software?
Measurement method. For the measurements we used

the previously presented chess clock statechart developed in
YAKINDU [10]. This complex statechart has 12 states and 45
transitions and 9 variables, which results in several billion
states when represented as a Mealy machine. In order to
evaluate effectiveness of the previously mentioned methods
we systematically injected 4 random atomic errors (in different
regions of the state machine) to the state machine – motivated
by [4] – and an intended change. The manual test suite covered
all the transitions of the statechart. For the focused test suite
we used 5 dedicated abstractions, e.g. removing the difference
between the white and the black player.

Measurement result.: Table I summarizes the test results.
Each row represents a testing method (denoted by 1)–3) in
the research question). The columns represent various modifi-
cations in the software component: the first four are different
kind of errors and the last one is an intended change. The cells
represent the number of failed test cases in the form of failed
tests / all tests. ’-’ represents timeout as we were not able to
generate test cases without abstraction, because learning the
unit timed out.

Analysis of the results: RQ1 The manually created tests
were successfully executed and were able to detect several
errors. However, when no abstraction was used, the technique

was unable to learn the chess clock unit, thus it can not be
directly used to generate test cases. But finally, when using
suitable abstractions, the method was able to detect those kind
of errors with less test cases. An error can remain hidden from
both the manual and the generated test suites. In this case we
can assume that we used a too coarse abstraction.
RQ2 Changes in the specification (in the functions of a
program) invalidate many of the manual test cases, which
have to be (partially) rewritten. However a suitable abstraction
will reduce the number of false positive test cases so the test
engineering efforts can be decreased.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a model-based regression testing
approach utilizing an automata learning algorithm to produce
behavior model of a software component. A feature model
based language is provided to support the definition of the
relevant aspects of the interfaces and serve as the basis of the
abstraction. User defined abstractions can drive the learning
to focus on those parts of the software component that can
be used as a specification model for the testing of the later
versions. Our initial experiments showed that the direction is
promising and hopefully it can reduce the regression testing
efforts needed for testing software components.

In the future we plan to use an automatic abstraction
refinement technique – based on the well-known CEGAR [3]
– to automatically calculate abstractions.
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Abstract— Matrix Inversion Tomosynthesis (MITS) is a 

linear MIMO system, which deblurs Shift And Add (SAA) 

reconstructed tomosynthesis slices by applying deconvolution in 

spectral domain. When implementing MITS, some difficulties, 

important from both theoretical and practical viewpoints should 

be considered. In this paper new combined methods are proposed 

to tackle one of them, the truncation artifact caused by spectral 

leakage in thoracic imaging using DTS. The effect of the 

proposed methods is illustrated by coronal human chest slices, 

validated and compared quantitatively. 

Keywords—MITS; tomosynthesis; deconvolution; spectral 

leakage; truncation artifact; MIMO system; inverse problem 

I. INTRODUCTION 

Digital tomosynthesis is a relatively new imaging modality 
that computes reconstructed slice images from a set of low-
dose X-ray projections acquired over a limited angle range [1]. 
The basic arrangement of a linear chest tomosynthesis is shown 
in Fig. 1. 

 

Fig. 1. Schematic arrangement of linear chest tomosynthesis 

In a linear tomosynthesis arrangement the X-ray beam-source 

and a flat panel detector move continuously in parallel along 

the y axis in opposite directions. During this motion, at about 

40-60 different positions, projection images are acquired. 

According to Fig. 1. these images are obtained in the x-y 

plane, where x axis denotes the row-, and y axis the column 

directions. From these projections coronal slice images of the 

3D examined volume (e.g. the lung) are reconstructed (one of 

them is marked by the dashed line in the figure) using 

reconstruction algorithms. Most of these algorithms are 

modifications of the algorithms used in CT image 

reconstruction (e.g. BP, FBP, ART, ML-EM, [2]), with the 

exception of the matrix inversion tomosynthesis (MITS) [3], 

an algorithm developed directly for tomosynthesis, which 

deblurs the reconstructed slices calculated by the Shift and 

Add (SAA) algorithm [3], [4]. 

The input projection images that are acquired by the 

detector can be modelled as the sum of the shifted projections 

of the coronal slices of the examined volume: 

  

      ,l k l k

j j

k

I R H    (1) 

Here 
 l
jI  denotes the j -th column of the l -th input projection 

image, 
 k

jR  denotes the j -th column of the central projection 

of the k -th reconstructed coronal slice,   denotes the convolu-

tion and,  ,lk
H  denotes the weight function between the k -th 

coronal slice and the l -th input projection image. The goal of 

the reconstruction method is to estimate the R  functions from 

the input projections.  ,lk
H is a shifted Dirac-delta function 

that can be derived from the acquisition geometry [4]. (1) can 
be also examined in Fourier domain: 

      ˆ ˆ ˆ
j j   i H r   (2) 

 ˆ
j i  denotes the column vector containing the spectral 

components of the j -th columns of the input projections, 

 ˆ
j r  gives a column vector constructed similarly from the 

j -th columns of the slices of the examined volume: 

           1 2ˆ P

T
N

j j j jFT I FT I FT I    
 

i   (3) 

FT   is the operator of 1D continuous Fourier transform at 

  frequency, and PN  denotes the number of input projection 

images. The matrix that is denoted by  ˆ H  is defined by: 

  
 

  ,

,
ˆ l k

l k
FT H H   (4) 

Although SAA is simple and easy to implement, its results, 
the reconstructed slice images are rather poor. The SAA recon-
structed slices can be represented as convolution of the actual 
in-plane structures and a blurring function relating how struct-
ures located in one plane are reconstructed in another. So it can 
be modelled by a MIMO shift invariant linear system: 

      ˆ ˆˆ
j j   s G i   (5) 

where  ˆ G  denotes the matrix of the SAA reconstruction, 

 ˆ
j s gives a column vector containing the spectral com-
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ponents of the j -th columns of the SAA reconstructed slices 

similarly to (3). The exact value of  ˆ G is defined by: 

  
 

 
 l,k k,l

ˆ ˆ G H   (6) 

where a  stands for the operator of complex conjugating. SAA 

slices can also be modelled as the sum of the shifted 

projections of the examined volume’s ideally thin slices: 

      ˆˆ ˆ
j j   s F r   (7) 

while      ˆ ˆ ˆ  


 F H H  denotes the blurring matrix at  .  

Based on this equation, the MITS estimates the slice images 

by a deconvolution which is implemented in Fourier domain: 

      
1ˆˆ ˆ

j j  


 r F s   (8) 

Contrary to the classical image deconvolution problems, in 

this case a MIMO system is inverted, which requires 

consistency of the input projections. 

The whole algorithm has three significant difficulties: (*) 

using discrete Fourier transform (DFT) for (2)-(8), spectral 

leakage may happen; (**)  F  is ill-conditioned (mainly at 

low frequencies) as it is shown in [5], and (***) the examined 

3D volume can’t be modelled by finite number, ideally thin, 

zero-thick slices [4].  

This paper focuses on the first problem. A composite 

method is proposed which can effectively handle the spectral 

leakage problem of the MITS reconstruction (here and here-

after in MITS we mean the cascade of SAA reconstruction (5) 

and the deblurring step (8)). In the next section the artifacts 

caused by spectral leakage and the proposed method to reduce 

these are described. The validation of the proposed method 

and a comparison to [5] is presented in the last section.  

 

II. ARTIFACTS CAUSED BY SPECTRAL LEAKAGE 

Discrete Fourier Transform (DFT) implicitly assumes that the 

sampled, finite length signal is only a period of a periodic 

signal. The side effect of the DFT calculated spectrum caused 

by the violation of this assumption is the so-called spectral 

leakage. In MITS reconstruction this causes y-directional 

intensity oscillation pattern over the whole image (called 

boundary artifact). In Fig. 3. a human thoracic coronal plane is 

shown (one of the corresponding input projections is in Fig. 

2.), which is reconstructed by MITS without handling the 

spectral leakage problem. In the figure the area circumscribed 

by an ellipsoid shows low frequency artifacts, while the arrow 

points to an area where high frequency artifacts (horizontal 

lines) are generated, both are due to spectral leakage. The 

effect of spectral leakage can be reduced if the image is 

modified in such a way that there is a smooth continuation 

between the lower and the upper parts of the images (the 

image can be considered as one period of a periodic signal 

without any abrupt change at the borders of a period). 

Additionally due to the periodic assumption of the DFT in (8), 

the SAA reconstructed slices have to be extrapolated 

periodically in vertical direction (along y axis). Otherwise, due 

to the so called wrap-around effect, the reconstruction of 

anatomical structures located near to the top of a slice depends 

on lower placed regions of the SAA slices (e.g. the re-

construction of the apex of the lung depends on the SAA re-

construction of the diaphragm). The minimal height of the 

extrapolated area can be determined analytically from the 

inverse Fourier transform of the blurring matrix ( F̂  in (7)).  

Based on our previous publications ([6] and [4]), in the 

case of MITS it is reasonable to reconstruct significantly more 

 RN  slices than the number of input projections  PN , but 

this means that the deblurring equation (7) is overdetermined. 

This implies that more SAA slices are reconstructed than the 

number of input projections. If we extrapolate the SAA slices 

one by one, than probably there will not exist PN  realistic 

projection images that satisfy equation (5).  

As our proposed extrapolating method can only extrapolate 

the slice or the projection images one by one (an alternative 

method that takes into account all of the projections/ SAA 

slices is under investigation) the input projection images are 

extrapolated. In this case (5) in discrete Fourier domain 

produces adequately extrapolated SAA slices. 

 

Fig. 2. Example of an input projection image.  

 

Fig. 3. MITS reconstructed thoracic plane without compenstaion of the 

spectral leakage artifact. 
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A. Windowing and Post filtering 

In digital signal processing, the spectral leakage effect is 

usually reduced by windowing the signal before calculating its 

spectrum. However, windowing as an amplitude reduction 

effect is significant in the top and the bottom of the 

reconstructed slices if the input projections are windowed. 

This effect can’t be effectively handled after the deconvolu-

tion step (8), as if we apply windowing, the whole recon-

struction becomes a shift variant linear system. To compensate 

this phenomenon, the reconstructed slices are post-filtered by 

dividing the reconstructed slice images with the intensities of 

the reconstructed slices calculated from the above input 

simulated projection images: 

 
     ,
i

W j k w j   (9) 

where  w   is the windowing function, and 
 i

W  is the i -th 

generated windowing input image. In order to avoid dividing 

by a small number in the post-filtering step Hamming window 

function (with 0.54  ) was chosen. It is important to note 

that post-filtering based compensation is only a heuristic step, 

it can not compensate perfectly the artifact caused by 

windowing. The effect of the whole compensation is 

illustrated in Fig. 4. due to the numerical instability caused by 

the post-filtering step, the uppermost and the lowermost rows 

of the reconstructed slices are usually noisy (marked by the 

ellipsoids in Fig. 4.). This effect can significantly weak the 

diagnostic value of the reconstruction, therefore some further 

steps are required to reduce this artifact. 

 
Fig. 4. Result of the windowing and post filtering compensation for the 
same slice as illustrated by Fig. 3. 

B. Smooth extrapolation 

The basics of this method are described in [7]. The main idea 

is based on that the vertical intensity oscillation pattern (which 

is an effect of the spectral leakage) on the reconstructed slices 

is caused by the discontinuities between the first and the last 

rows of the input projections. These discontinuities can be 

minimized by applying a maximally smooth interpolation 

between the upper and lower ends of the projection images: 

 
 

 

 

i

i

i

 
  
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Γ
E

I
  (10)  

Here  i
E  denotes the i -th extrapolated projection,  i

I  denotes 

the i-th input projection,  i
Γ  denotes the image part 

calculated by the extrapolation in the case of the i-th 

projection.  i
Γ  is calculated in order to get a maximally 

smooth extrapolated image (  i
E ), where the metric of 

smoothness is defined by: 

 
  

2
i

F

Δ E   (11) 

where Δ  denotes the discrete, two-dimensional, vertically 

circular Laplacian of Gaussian operator, and 
F
  denotes the 

Frobenius norm. The problem can be formalized as a quadratic 

programing (QP) problem, which can be effectively solved in 

this special case. 

C. Mixture of the two algorithms 

According to the validation of the whole process (it is des- 

cribed in details in the next section) the spectral distortion 

caused by the extrapolation is larger than the spectral distor-

tion caused by windowing the projections, however the in-

tensity reduction at the upper and lower bounds of the images 

does not occur. Therefore we blend the two reconstructions 

calculated from the two sets of preprocessed projections (one 

of them is modified by the windowing and post-filtering 

method, while the other is modified by smooth extrapolation) 

with spatial varying weights. Near the boundary of the 

reconstructed slices the reconstruction calculated after the 

smooth extrapolation dominates while the windowing based 

solution dominates in the central parts. The result of this 

blending is illustrated by Fig. 5. The difference between the 

results of the mixing and the smooth extrapolation based 

methods is moderated in real slice images. Based on the 

numerical validation the mixing based correction outperforms 

the smooth extrapolation based method. 

III. VALIDATION AND CONCLUSIONS 

The noise sensitivity of the MITS reconstruction depends on 

the spatial frequency of the input projections [4]. Therefore 

such a validation is used that examines the spectrum of the 

distortion of the reconstructed slices. As the applied 

extrapolation can’t be modelled by shift invariant linear 

approach, the distortion can’t be examined by analytic meth-

ods (e.g. measuring the MTF). However, to estimate the dis-

tortion is possible by comparing the original slices and the 

MITS calculated slices reconstructed from the projections of 

the same artificial volume.  

In contrast to the CT, the DTS projections are obtained only 

from a limited angle range. This implies that the thickness of 

the reconstructed slices is bigger and depends on the spatial 

frequency of the images [5]. In the low frequency domain the 

reconstructed slices are significantly larger than in 

the higher frequency domain. This means that the low frequ-

ency components of the reconstruction depend on a thicker 

part of the examined volume (e.g. the DC component depends 

on the whole volume). In order to separate this effect from the 
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Fig. 5. Result of mixed reconstruction. 

 

degradation caused by the spectral leakage, reconstructions are 

calculated from projections of artificial volumes containing 

only a few (in our case 4), ideally thin nonempty coronal 

slices of a chest reconstruction, placed as far from each other 

as possible (there was approx. 60 mm-s between adjacent 

slices). 15 such volumes were used. Formally, in the 

validation the error of reconstruction of the nonempty slices 

was computed as: 

  

     
  

, ,
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i k i k
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
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where  ,i k

jR  denotes the j -th column of the k -th nonempty 

slice of the i -th reconstruction,  ,i k

jP  denotes the j -th column 

of the corresponding projected slices,  denotes averaging 

over , ,i j k .  ,i k
  denotes the un-normalized MTF between the 

in-plane signal positioned at the i -th volume’s k -th 

nonempty slice and its reconstruction. The ideal MTF of the 

MITS reconstruction can be calculated as it is described in [8]. 

In order to minimize the DFT caused spectral distortion 

windowing is applied before calculating the Fourier transform. 

It is important to note that this windowing makes this kind of 

validation biased towards to the windowing based 

extrapolation method since it underweights the border parts of 

the slices, where the windowing based extrapolation method 

mainly creates artifacts. 

In the validation of the reduction of the spectral leakage 4 

different methods were compared: (1) windowing and post 

filtering, (2) smooth extrapolation, (3) mixture of these two 

techniques, and (4) a method described in [3] (“base meth-

od”). The error curves are plotted in Fig. 6. Based on the re-

sult, we can see that both the windowing and post filtering and 

the smooth extrapolation methods outperform the base 

method. From the two methods the error of the windowing 

based extrapolation is less in wide part of frequency domain 

but in image domain the intensity artifact described before 

degrades the diagnostic value of the reconstructions. It is also 

concluded that the error of applying the mixture correction  
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Fig. 6. Result of the validation. All of the three methodes introduced by this 
paper outperform the base method. 

 

method is not significantly larger than the error of the windo-

wing based method under the bandwidth of the projected 

slices (1.1 cylces/mm). This bandwidth is approximately the 

average bandwidth of the chest tomosynthesis slice images.  

Based on our experiments and the results of the validation, 

the mixture of the two compensation methods effectively re-

duces the artifacts caused by the spectral leakage without deg-

rading the slices at their borders. Also we believe that extrapo-

lation methods can significantly be improved by taking into 

account all of the projections during extrapolation (now pro-

jections are extrapolated one by one). These methods can 

handle cases, when there exists part of the volume which is 

projected into only a subset of the projections (illustrated by 

the shaded area of Fig. 1.), so they better fit to the whole 

MIMO system of the reconstruction. Such a method is under 

investigation. 
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Abstract—Formal verification techniques can check the cor-
rectness of systems in a mathematically precise way. However,
their computational complexity often prevents their successful
application. The counterexample-guided abstraction refinement
(CEGAR) algorithm aims to overcome this problem by automati-
cally building abstractions for the system to reduce its complexity.
Previously, we developed a generic CEGAR framework, which
incorporates many configurations of the algorithm. In this paper
we focus on an exploratory analysis of our framework. We
identify parameters of the systems and algorithm configurations,
overview some possible analysis methods and present preliminary
results. We show that different variants are more efficient for
certain tasks and we also describe how the properties of the
system and parameters of the algorithm affect the success of
verification.

I. INTRODUCTION

As safety critical systems are becoming more and more
prevalent, assuring their correct operation is gaining increasing
importance. Formal verification techniques (such as model
checking [1]) can check whether the model (a formal represen-
tation) of a system meets certain requirements by traversing its
possible states and transitions. However, a typical drawback of
using formal methods is their high computational complexity.
Abstraction is a general technique to reduce complexity by
hiding irrelevant details. However, finding the proper preci-
sion of abstraction is a difficult task. Counterexample-guided
abstraction refinement (CEGAR) is an automatic verification
algorithm that starts with a coarse initial abstraction and refines
it iteratively until a sufficient precision is obtained [2].

In our previous work [3] we examined different variants of
the CEGAR algorithm and concluded that each of them has its
advantages and shortcomings. The foundations of a modular,
configurable CEGAR framework were also developed that can
incorporate the different CEGAR configurations (variants) in
a common environment. The framework relies on first order
logic (FOL): models are described with FOL formulas and the
algorithms use SAT/SMT solvers [4] as the underlying engine.

The framework is under development, but it already realizes
several configurations and permits the verification of some
input models. We performed an experiment by evaluating these
configurations on the models of some hardware and PLC
systems. In this paper we present an exploratory analysis of
the results: we identify parameters and metrics of the models
and configurations as input and output variables. We give an
overview on possible analysis methods and present preliminary

comparisons, revealing that different configurations are more
suitable for certain models. We show relationships between the
properties of the input model, the parameters of the algorithm
(e.g., abstraction method, refinement strategy) and the success
and efficiency of verification.

II. EXPERIMENT PLANNING

In our experiment several configurations of the CEGAR
algorithm were executed on various input models and the
results were analyzed [5].

A. Variables

Variables of the experiment are grouped into three main
categories: parameters of the model (input), parameters of
the configuration (input), metrics of the algorithm (output).
Variables along with their type and description are listed in
Table I. Some other parameters of the input models were also
identified, but these are domain specific and not applicable
to all inputs (e.g., number of gates in a hardware circuit).
Therefore, these parameters were omitted in this experiment.

There are some additional constraints on the variables.
UNSC refinement cannot be used in PRED domain, but besides
that, all combinations of the algorithm parameters are valid,
yielding a total number of 20 configurations. It is also possible
that the algorithm did not terminate within a specified time.
In this case all output variables are NA (not available) values.
Furthermore, the length of the counterexample is NA if the
model is safe.

B. Objects

As the framework is under development, its current perfor-
mance and limited input format only permits the verification
of smaller input models from certain domains. Nevertheless,
some smaller standard benchmark instances were used from
the Hardware Model Checking Competition [11]. These mod-
els encode hardware circuits with inputs, outputs, logical gates
and latches. Some industrial PLC software modules from a
particle accelerator were also verified. A total number of 18
models were used, consisting of 12 hardware and 6 PLCs.

C. Measurement Procedure

The framework is implemented in Java and it was deployed
as an executable jar file. Measurements were ran on a 64 bit
Windows 7 virtual machine with 2 cores (2.50 GHz), 16 GB
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TABLE I
VARIABLES OF THE EXPERIMENT.

Category Name Type Description

Input
(model)

Type Factor Type of the model. Possible values: hw (hardware), plc (PLC, i.e., Programmable Logic Controller).
Model String Unique name of the model.
Vars Integer Number of FOL variables in the model.
Size Integer Total size of the FOL formulas in the model.

Input
(config.)

Domain Factor Domain of the abstraction. Possible values: PRED (predicate [6]), EXPL (explicit value [7]).
Refinement Factor Abstraction refinement strategy. Possible values: CRAIGI (Craig interpolation [8]), SEQI (sequence interpola-

tion [9]), UNSC (unsat core [10]).
InitPrec Factor Initial precision of the abstraction. Possible values: EMPTY (empty), PROP (property-based).
Search Factor Search strategy in the abstract state space. Possible values: BFS, DFS (breadth- and depth-first search).

Output
(metrics)

Safe Boolean Result of the algorithm, indicates whether the model meets the requirement according to the algorithm.
TimeMs Integer Execution time of the algorithm (in milliseconds).
Iterations Integer Number of refinement iterations until the sufficiently precise abstraction was reached.
ARGsize Integer Number of nodes in the Abstract Reachability Graph (ARG), i.e., the number of explored abstract states.
ARGdepth Integer Depth of the ARG.
CEXlen Integer Length of the counterexample, i.e., a path leading to a state of the model that does not meet the requirement.

RAM and JRE 8. No other virtual machines were running
on the host during the measurements. Z3 [12] was used as the
underlying SAT/SMT solver. The measurement procedure was
fully automated. The configurations and models were listed in
csv files and a script was written that loops through each
configuration and model pair and runs the framework with the
appropriate parameters (based on the configuration and the
model). The script waits until the verification finishes or a
certain time limit is reached, outputs the result (or timeout) to
a csv file and repeats the procedure a given number of times.

In our current setting, 20 configurations were executed on
18 input models and each execution was repeated 5 times,
yielding a total number of 18 · 20 · 5 = 1800 measurements.
The time limit for each measurement was 8 minutes. With this
limit, 1120 executions terminated (successful verifications).

D. Research Questions

In our current work we focus on a preliminary, exploratory
analysis of the measurement results. The following research
questions are investigated.

RQ1 What are the overall, high level properties of the data
set, e.g., distribution of execution time, percentage of
safe models?

RQ2 How do individual parameters of the configuration
affect certain output variables, e.g., PRED or EXPL
domain yields faster execution time?

RQ3 Which input parameters influence certain output vari-
ables the most, e.g., is the Domain or the Refinement
more influential on the execution time?

E. Analysis Methods

RQ1 can be answered with basic descriptive statistics and
summarizing plots (e.g., box plots, heat maps), yielding a
good overview on the characteristics of the data. RQ2 can
be examined with the aid of interactive, visual tools. Parallel
coordinates, scatter plots and correlation diagrams are suitable
for this purpose, where relationships between the different

dimensions can be quickly revealed. RQ3 can be analyzed
with decision trees, principle component analysis and other
methods that can extract the most relevant information from a
set of data. This analysis can also provide an aid to pick the
most appropriate configuration for a given task.

F. Threats to Validity

External validity can be guaranteed by selecting represen-
tative input models. As mentioned in Section II-B, smaller
hardware and software instances were used. As the perfor-
mance and the input formats of the framework will increase,
it will be possible to verify more, larger instances and other
kinds of models (e.g., tasks from the Software Verification
Competition [13]), which improves the external validity of
the analysis. Other tools were not evaluated, because this
experiment focused only on our framework. Internal validity
is increased by running the measurements repeatedly on a
dedicated machine. Furthermore, the framework has also been
undergone unit and integration testing.

III. ANALYSIS

This section presents the analyses and results to our research
questions. The results of measurements were collected to a
single csv file, which was analyzed using the R software
environment version 3.3.2 [14].

Let D denote the whole data set, Dsucc ⊆ D the successful
executions (no timeout) and Dcex ⊆ Dsucc the successful
executions where the model is not safe (i.e., a counterexample
is present). The relation of the data sets along with their size
is depicted in Figure 1.

D Dsucc Dcex

610510680

|D| = 1800
|Dsucc| = 1120
|Dcex| = 610

Fig. 1. Overview of the data sets with the number of measurements.
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A. RQ1: High Level Overview

First we checked that (1) either all executions of a con-
figuration on a model gives the same safety result and (2)
all configurations agree on the results for each model. The
lack of the previous properties would obviously mean that the
algorithms are not sound, but for our data set they hold.

The histograms and box plots in Figure 2 give a high level
overview of the distribution and range of output variables. It
can be seen that for most of the variables, the IQR is small
and there are many outliers.
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Fig. 2. Overview of individual output variables.

Figure 3 gives an overview on execution time. Each cell
of the grid represents the average time of the 5 repeated
executions of a configuration on a model. Configurations are
abbreviated with the first letters of their parameters, e.g.,
PSED means PRED domain, SEQI refinement, EMPTY initial
precision and DFS search. The maximal relative standard
deviation (RSD) of the repeated executions is 10.5%, which is
a low value. This is not surprising because our algorithms are
deterministic, with the possible exception of some heuristics in
external solvers. This low RSD value suggests internal validity
and allows us to represent repeated measurements with their
average. White cells mean that all executions timed out and
colored cells correspond to a logarithmic scale in milliseconds.
It can be seen that each model was verified by at least one
configuration. It is interesting that plc3 was only verified by a
single configuration, but in a rather short time. Also, there is
no single configuration that can verify each model, but some
of them can verify almost all models. Some of the models
(e.g., hw9) are easy for all configurations, but some of them
(e.g., plc1) expose 2–3 orders of magnitude difference between
the configurations.

B. RQ2: Effect of Individual Parameters

Effect of individual parameters on certain output variables
were also compared. The most interesting observation was the
effect of the domain on the execution time. This analysis was
done by forming pairs from the measurements, similarly to the
join operation known from databases. We calculated D×D and
kept rows where every input variable is the same, except the
domain, which is different. This means that each row contains
an execution for PRED and EXPL domains with the rest of
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Fig. 3. Average execution time (milliseconds, logarithmic scale).

the configuration (and the model) being the same. Only those
rows were kept where at least one domain was successful.
Each point in Figure 4 represents a row, where the x and
y coordinates correspond to the execution time of PRED and
EXPL respectively. Furthermore, points have different colors
based on Type. Points at the right and top edges correspond to
timeouts. An important property of this kind of plot is that
points above the identity line mean that PRED was faster,
while points below mean the opposite. It can be observed
that verification of PLC models is more efficient in the EXPL
domain. Hardware models however, show some diversity, both
domains have good results.
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Fig. 4. Comparison of execution time for the different domains.

An other interesting result was the comparison of the
number of iterations for CRAIGI and SEQI refinements. Only
those rows were kept where both refinements were successful.
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It can be seen in Figure 5 that SEQI yields less iterations in
almost all cases. It can also be observed, that the difference
between the two refinement strategies is small for hardware
models, but it can be much larger for certain PLC models.
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Fig. 5. Comparison of iterations for the different refinements.

C. RQ3: Influence of Input Parameters on Output Variables
The influence of input parameters on certain output variables

were also examined. Amongst the observations, the most
interesting was the influence of Type and the parameters of
the configuration on the success of verification (i.e., a non-
timeout). Figure 6 shows the decision tree. It can be seen that
the most influential parameters are Domain, Type and Refinement.
In the terminal nodes SUCC and TO represent success and
timeout respectively. It can be observed that for example
choosing PRED domain for PLCs will most likely not succeed.
On the other hand, it is likely to succeed for hardware models.
It can also be seen that EXPL domain with CRAIGI refinement
is likely to succeed regardless of the type of the model. This
fact is also confirmed by the small number of white cells in
the bottom four rows of Figure 3.

IV. CONCLUSIONS

In our paper we evaluated various configurations of our
CEGAR framework on different models, including hardware
and PLCs. We identified properties of models and parameters
of the algorithm that can serve as input and output variables.
We presented some possible analysis methods with the corre-
sponding results, including descriptive statistics, different plots
and decision trees. Although the results being preliminary,
we showed that different configurations are more suitable for
certain tasks and we also revealed connections between the
type of the model, the parameters of the algorithm and the
success of verification. Based on these results we will be able
to improve the framework and perform measurements with a
larger number of input models and configurations, yielding a
larger data set. We hope that further analysis on this data set
will allow us to automatically determine the most appropriate
configuration of the algorithm for a given verification task.
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Abstract—This paper studies a way to extend the Fourier
analyzer suggested by G. Péceli, with the aim of improving the
detectability of a known periodic signal component in its input
signal. Possibilities for modeling a signal structure assuming the
amplitude and phase relationships between its components to be
known are presented.

I. INTRODUCTION

Signal parameters may be measured and various transforms
can be calculated by using recursive estimation methods based
on conceptual signal models. These methods are well suited
for real-time applications due to their recursive nature.

The conceptual signal model used in these methods is a
hypothetical dynamical system, and the signal being measured
is assumed to be its output. The state vector of the conceptual
signal model, corresponding to the parameter vector of the
measured signal, will then be estimated by the structure. If
the conceptual signal model is deterministic, the measurement
system is referred to as observer.

Hostetter introduced a recursive observer calculating the dis-
crete Fourier transform of the input signal [1]. Péceli extended
this method and suggested an observer structure consisting of
signal channels containing a discrete integrator, allowing the
calculation of arbitrary linear transforms of the input signal
[2]. When used as a spectral observer, this structure is referred
to as Fourier Analyzer (FA).

The Fourier coefficients calculated by the Fourier analyzer
may be used to detect the presence of a signal component
with an arbitrary spectrum within the signal being measured.
In this paper, we assume a known amplitude and phase
relationship between the components of the signal structure
we aim to detect, and we investigate possibilities for building
a corresponding model into the Fourier analyzer.

II. THE FOURIER ANALYZER

This section presents the fundamentals of the Fourier ana-
lyzer introduced by Péceli [2].

A. The Conceptual Signal Model

The conceptual signal model used in Péceli’s signal observer
[2] is shown in Figure 1.

Tamás Dabóczi acknowledges the support of ARTEMIS JU and the
Hungarian National Research, Development and Innovation Fund in the frame
of the R5-COP project.

When the observer structure is used as a spectral observer,
the state variables of the conceptual signal model correspond
to the complex Fourier components of the signal. Therefore,
the conceptual signal model itself can be viewed as a complex
multisine generator performing an inverse discrete Fourier
transform (DFT) on the Fourier components of the signal.
Each state variable represents a harmonic resonator of the
corresponding frequency, thus these are often referred to as
resonator channels.

In this paper, we will use the linear time-variant (LTV)
version of the resonator-based observer as starting point. In
this case, the conceptual signal model is a system described
by time-variant equations, with state variables that do not vary
in time: xn is constant and cn varies in time in (1)–(5) below.
It is worth mentioning here that a linear time-invariant (LTI)
realization has also been put forth [2].

The system equations describing the LTV conceptual signal
model of the Fourier analyzer are as follows:

xn+1 = xn, (1)

xn = [xi,n]
T ∈ CN×1, i = −K, . . . , K, (2)

yn = cTnxn, (3)

cn = [ci,n]
T ∈ CN×1, i = −K, . . . , K, (4)

ci,n = ej2πif0n = zni , zi = ej2πif0 , (5)

where yn is the signal we intend to observe. The state vector
xn contains the N = 2K + 1 complex Fourier components,
including DC, corresponding to the K harmonics of the signal.

With a real-valued input signal, the Fourier coefficients form
complex conjugate pairs: xi,n = x∗−i,n.

The relative frequency of the fundamental harmonic with
respect to the sampling frequency is f0 = f1/fs, where f1
is the frequency of the fundamental harmonic and fs is the
sampling frequency.

The number of harmonics K is such that the following
inequality holds: K · f1 < fs/2 ≤ (K + 1) · f1. In case of
equality, i = −K, . . . ,K + 1 and N = 2K + 2 above.

B. The Resonator-Based Observer

An appropriately designed observer can estimate the state
variables of the conceptual signal model, and thereby the
complex Fourier coefficients of the input signal. Figure 2
shows the block diagram of the observer matching the LTV
conceptual signal model presented in Section II-A.
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Fig. 1. Block diagram of the conceptual signal model, linear time-variant
model. The integrators hold their intial preset values, corresponding to the
complex Fourier coefficients of the signal. The output signal then arises as
the linear combination of the integrator outputs with the time-varying ci,n
coefficients.
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Fig. 2. Block diagram of the resonator-based observer, linear time-variant
model. Notice the similarity between the structure of the observer and that
of the conceptual signal model, shown in Figure 1. The observer, however, is
extended by the time-varying gi,n coupling coefficients at the inputs of the
integrators, and the common feedback.

The system equations of the observer are the following:

x̂n+1 = x̂n + gen = x̂n + g (yn − ŷn) , (6)

x̂n = [x̂i,n]
T ∈ CN×1, i = −K, . . . , K, (7)

ŷn = cTn x̂n, (8)

gn = [gi,n]
T ∈ CN×1, i = −K, . . . , K, (9)

gi,n =
α

N
c∗i,n, (10)

where x̂n is the estimated state vector, ŷn is the estimate of
the signal value and en is the error of the estimation.

The coupling vector gn is the product of the observer gain
α/N , a tunable parameter setting the dynamical behavior of
the observer, and the coupling vector cn. The latter is a vector
of complex roots of unity, setting the frequency response of
the individual observer channels through their poles. If the
coupling vectors are set according to (5) and (10), with α = 1
and f1 = fs/N , a dead-beat observer is obtained. In this case,
the transients of the observer settle in at most N steps and it
produces the recursive DFT of the input signal afterwards [3].

C. On Dead-Beat Settling

The dead-beat property of the observer means the state
variables of the observer converge to those of the conceptual
signal model, and the error of estimation en becomes 0
in N (or fewer) steps. As mentioned in Section II-B, the
Fourier analyzer possesses this property when the observer
gain and the frequency of the fundamental harmonic are set
appropriately. More generally speaking, the dead-beat nature
of the observer relies on the set of the coupling vectors cTi
and gi constituting a biorthogonal system [2].

This corresponds to CT = G−1 with

CT =




cT1
cT2
...
cTn


 , G =


 g1 g2 . . . gn


 . (11)

The vectors cTi and gi represent the values of the coupling
coefficients corresponding to all channels at time instant i. In
contrast, the column vectors of CT and the row vectors of G
contain the evolution of the coupling coefficients correspond-
ing to a particular channel over an entire time period.

III. MODELING THE SIGNAL STRUCTURE

Let SM denote the set of positive harmonic indexes con-
tained in the signal structure we intend to model: SM =
{is1,is2, . . . , ism}. Let wi represent the complex amplitude
of the signal structure component with index i: wi = Ai ·ejϕi .
The time function of the signal structure we are modeling can
then be expressed as:

ySM,n =
∑

i∈SM
2 · Re {wi · ci,n} , (12)

since the ci,n coefficients form complex conjugate pairs.
We need to select the dominant harmonic of the signal

structure. The harmonic with the highest signal-to-noise ratio
is a good candidate. Let its index be is1.

In the following, we describe the procedures we consid-
ered focusing on the harmonics with positive indexes, i.e.
frequencies 0 ≤ fr ≤ fs/2. Since we are assuming a real-
valued input signal, all suggested modifications need to be
extended to the negative counterparts of the state variables and
coupling coefficients concerned, being in a complex conjugate
relationship with the corresponding positive ones.

A. The Intuitive Way of Modeling

As a first attempt, we can simply bind all other harmonics
of the signal structure to the dominant harmonic. That is, after
the state update of the observer as in (6), we adjust the state
variables belonging to the signal structure model as follows:

x̂i,n+1 = x̂is1,n+1 ·
wi
wis1

, i ∈ SM, i 6= is1. (13)

This method, however, excludes all bound signal structure
harmonics from the common feedback loop in Figure 2.

As a result, we obtain an observer that no longer provides
dead-beat settling. However, reasonable tracking performance
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can be expected if we first let the original observer structure
converge before activating the signal structure model described
by (13). By design, the behavior of the signal structure model
is entirely governed by the dominant harmonic.

An output waveform can be seen in Figure 3a.

B. Modifying the Basis Structure

As an attempt to improve the model, we modified the
coupling vector corresponding to the dominant harmonic in
such a way that it generates the whole signal structure on its
own. In order to do this, we modified the appropriate column
vector1 of the coupling matrix CT defined in (11):

colis1,new CT =
∑

i∈SM
wi · coliCT . (14)

The corresponding g coupling vectors can then be obtained
as G =

(
CT
)−1

. It can be shown that the resulting values of
the modified vectors can be expressed as

rowis1,new G =
1

wis1
· rowis1 G, (15)

rowi,new G = − wi
wis1

· rowis1 G+ rowiG, i ∈ SM, i 6= is1.

This yields a convergent observer with dead-beat properties
by design (see Section II-C). However, as seen from (15),
the behavior of the state variable carrying the signal structure
model is determined by the dominant harmonic only.

An example output waveform is shown in Figure 3b.
Note. If we disable the non-dominant harmonics of the

signal structure model by setting

coli,new CT = 0, i ∈ SM, i 6= is1, (16)

we get a behavior matching that of the “intuitive way” de-
scribed in Section III-A.

C. All Harmonics Contributing to the Signal Structure Model

By modifying the CT matrix according to (14), the output
of the channel carrying the modified dominant harmonic will
contain all signal structure model harmonics with the ampli-
tude and phase relations prescribed by the wi coefficients.

We also found it desirable that all signal structure harmonics
contribute to the input of this channel proportionally to their
respective weights wi. We achieved this by setting

rowis1,new G =
1

|SM |
∑

i∈SM

1

wi
· rowiG. (17)

By scaling with the reciprocal of the cardinality (number of
elements) of the set SM , we maintain

rowis1,new G · colis1,new CT = 1. (18)

However, apart from the dominant harmonic, all signal struc-
ture harmonics are now coupled into two signal channels.

1The ith column and row of M are referred to by coli M and rowi M,
respectively. The suffix new always indicates the new value to be assigned
to the vector in question.

As a result, all harmonics of interest contribute to the
signal structure model. However, dead-beat settling is not
preserved and convergence becomes slower. By disabling the
non-dominant signal structure harmonics according to (16),
convergence can be accelerated. Since the basis vectors no
longer span CN×N , dead-beat behavior is not restored never-
theless. Figure 3c shows an output waveform.

D. A New Basis for the Subspace of the Signal Structure

We then aimed to restore the advantageous properties of the
observer while keeping a single signal channel representing
the entire signal structure, with all corresponding harmonics
coupled onto its input. Thus we transformed the basis vectors
of the subspace of CN×N spanned by the basis vectors
contained in the signal structure model:

{
coliC

T | i ∈ SM
}

.
We started by modifying the column corresponding to the

dominant harmonic in the coupling matrix CT according to
(14). At this point, our goal was to transform the remaining
basis vectors of the signal structure model into an orthogonal
set, including the previously modified basis vector.

For the transformation, we first considered the Gram-
Schmidt process [4]. Although easy to implement, the method
has numerical problems, so we ended up resorting to QR
decomposition by Householder reflections [5]. The leftmost
columns of the resulting unitary matrix are then a set of
orthonormal basis vectors spanning the subspace of CN×N
corresponding to the signal structure model, with the first one
being parallel (proportional) to the vector carrying the signal
structure model we calculated earlier using (14).

Once more, the corresponding g coupling vectors can then
be obtained as G =

(
CT
)−1

.
This yields an observer with attractive properties by design:
• The observer is convergent with dead-beat settling.
• All harmonics involved are proportionally represented in

the channel carrying the signal structure model.
It still needs to be determined how the values of the other

channels resulting from the QR decomposition relate to the
discrepancy between the model and the actual signal.

An output waveform is shown in Figure 3d.

IV. CONCLUSIONS

We suggested several ways to model a signal structure
within a Fourier analyzer. More detailed analysis will be
required to ascertain whether these methods offer any actual
advantage in signal detection applications.
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(a) The “intuitive way”. The observer converges in this case, but dead-beat settling is not ensured.
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(b) The dead-beat observer obtained through the first attempt at modifying the basis vectors.
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(c) The signal structure model is incorporated into both the corresponding g and cT vectors. The result is slower convergence.
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(d) The dead-beat observer obtained by tayloring the basis vectors using QR decomposition.

DC 3Hz 6Hz 12Hz

Fig. 3. Output error and signal channel values obtained with different signal structure model realizations. The parameters of the signal structure model
match those of the test signal: y (t) = cos (2π · fdt) + 3 · cos (2π · 2fdt+ 1)+ 0.7 · cos (2π · 4fdt+ 2). The test signal is contaminated with white noise,
SNR = 10dB. For illustrative purposes, the dominant harmonic was not selected following the guideline in Section III: fd = 3Hz. In certain cases, this
results in reduced performance of the signal structure model.
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Abstract—Efficient management of versioned (temporal) data
is an important problem for a variety of business applications
that require traceability of changes, auditing, or history analysis.
However, practical concerns regarding scalability and sustain-
ability that arise when running a versioned system for extended
periods of time often remain unadressed. In this paper, we present
our approach for solving these issues in our implementation
prototype1. We state the requirements, provide an overview over
the algorithm and a comparison with related work alongside
a discussion of individual advantages, disadvantages and chal-
lenges.

I. INTRODUCTION

Working with versioned data, sometimes also referred to as
temporal data, is an old problem. Early work dates back to
1986 when Richard Snodgrass presented his article Temporal
Databases [1]. Since then, several authors have proposed
various approaches [2][3][4] to efficiently solve the problem.
In 2011, temporal features were introduced officially in the
SQL Standard [5] which emphasizes the demand for such
technology in practice. In 2016, we published a paper [6]
that presents a novel approach to versioning using a matrix–
based formalization, which will be summarized in Section II.
This approach improved on the state of the art by offering
equivalent “point-in-time” query performance on all versions,
a compact format that maximizes sharing of unchanged data
among versions and formalized operation semantics. Even
though all of the mentioned publications offer solutions for
the management of temporal data, there is one key aspect
that has not yet been covered yet, which is the problem
of building a system for temporal data management that
can not only provide acceptable performance in short-term
laboratory conditions, but can actually run for several years
in a deployment, and is capable of dealing with the large
volume of data accumulated over time via versioning. This
issue is essential and even more prevalent than in non-
versioned systems, because a deletion that would usually
reduce the data volume actually results in a new version being
created, increasing the number of managed elements instead.
A similar line of argumentation holds for modifications. This
sustainability problem is the main focus of this paper. We
propose a new management technique for temporal data that
expands upon our previous work and discuss its implications
to implementation complexity and performance.

1This work was partially funded by the research project “txtureSA” (FWF-
Project P 29022).

The remainder of this paper is structured as follows. In
Section II we provide an overview of our past work and related
concepts. Section III introduces the problem of sustainable
management for versioning data and presents the individual
requirements in detail. In Section IV we outline our proposed
solution and elaborate on its implications. After comparing
our approach with related work in Section V, we provide an
outlook to our future work in Section VI and conclude the
paper with a summary in Section VII.

II. TECHNICAL BACKGROUND

In his paper Efficient indexing for constraint and temporal
databases [2] from 1997, Sidhar Ramaswamy stated that the
data versioning problem “is a generalization of two dimen-
sional search which is known to be hard to solve”. In our
experience, the complexity of the problem further increases
with the expressivity of the chosen data model. For that
reason, we decided to choose a simple basic format and then
transform more sophisticated structures into that format. The
basic format of choice here is a Key–Value Store that is
enhanced with temporal information. This is the foundation for
our ChronoDB2 project [6]. This Temporal Key–Value Store
operates on triples

Entry :=< t,k,v >

. . . where t is a Unix–style 64bit timestamp, k is an arbitrary
string that acts as the key, and v is the value associated with
the key, which is a byte array of arbitrary length greater zero.
In contrast to other formalizations (e.g. [2]) our approach
does not involve validity ranges in terms of lower and upper
timestamp bounds. Instead, in our case the validity range is
implicit – any given entry is valid until a new entry with the
same key is inserted that has a higher timestamp, “overriding”
the previous entry. This can be visualized as a matrix, as shown
in Figure 1.

This figure shows the process of retrieving the value for key
d at timestamp 5. The algorithm first tries to find the entry
at the exact location, and then back-tracks and checks older
timestamps. The first value encountered during this search is
returned. This works because an entry that did not change
from one timestamp to the next is assumed to have remained
unchanged. Since entries, once written into the database, are

2Available on GitHub: https://github.com/MartinHaeusler/chronos/tree/
master/org.chronos.chronodb
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Fig. 1. Performing a get operation on a Temporal Data Matrix.

assumed to be immutable, copying their data is not necessary,
thus maximizing sharing of unchanged data between versions.
Furthermore, the fact that upper bounds of validity ranges are
implicit in this structure, data that was once written to disk
never needs to be modified again, allowing the implementation
to be a true append only store. A modification or insertion
both result in the execution of a put operation that inserts new
entries. To ensure consistency of the history, new entries may
only be added after the last entry on the time dimension, i.e.
modification of the past is prohibited.

TABLE I
ASCENDING TEMPORAL KEY ORDERING BY EXAMPLE

Order Temporal Key User Key Timestamp
0 a@0123 a 123
1 a@0124 a 124
2 a@1000 a 1000
3 aa@0100 aa 100
4 b@0001 b 1
5 ba@0001 ba 1

On the implementation side, our prototype ChronoDB relies
on a B+-Tree structure [7] for its primary index, which is a
regular B-Tree where the leaf nodes in addition form a linked
list for fast neighbor search. In this index, the key (which we
refer to as temporal key) is a string consisting of the original
user key, a separator, and the timestamp of insertion (left-
padded with zeros to give equal length to all timestamps). The
tree is ordered by lexicographic ordering on the key, resulting
in the order displayed in Table I. This ordering is critical
for the implementation, because executing a temporal get
operation as depicted in Figure 1 is now equivalent to finding
the temporal key where the user key is identical to the given
one, and the timestamp is either equal to or the next-lower
contained timestamp compared to the request timestamp. The
B+-Tree structure allows to perform this query efficiently with
time complexity O(logn).

III. PROBLEM DESCRIPTION & REQUIREMENTS

In practice, a versioned data store may be deployed in a
server backend, which implies usage 24 hours a day, po-
tentially for several years. Even under the assumption that
most accesses will be read-only, the amount of data stored
in the database will inevitably increase over time, because
every modification and even delete operation will result in an
increase in data volume as new versions need to be managed.
Even though our current implementation, which stores all data
in a single B+ tree, scales well to 100.000 entries and beyond,
it will inevitably reach its limits when being operated for
several years. In order to support this use case, the following
criteria must be met:
• R1: Support for an extended number of versions

As many versions will accumulate over years, the scala-
bility limits of a single B-Tree structure will eventually be
exceeded, causing greatly increased query times at best
and system crashes at worst. The system must not be
constrained by such limitations and offer support for a
virtually unlimited number of versions.

• R2: Support for efficient file-based backup
In server backend scenarios, the contents of a database are
often backed up by automated tools at regular intervals. In
order to reduce the load of such tools, the database must
be segmented into files such that most files remain the
same when new data is being added, allowing effective
detection of unchanged files via checksums.

• R3: Support for efficient access to old versions
Queries that request older versions of data should not be
inherently slower than queries operating on recent ver-
sions. In particular, a linear correlation between the age
of a requested version and resulting query performance
must be avoided.

Together, those requirements describe the environment in
which our database will need to operate. In the next section, we
will outline our solution and how it meets those requirements.

IV. PROPOSED SOLUTION

The primary requirement, as outlined in Section III, is the
ability to support a virtually unlimited number of versions
[R1]. Also, we must not store all data in a single file, and old
files should ideally remain untouched when inserting new data
[R2]. For these reasons, we must not constrain our solution to
a single B-Tree. The fact that past revisions are immutable in
our approach coincides with requirment [R2], so we decided
to split the data along the time axis, resulting in a series of
B-Trees. Each tree is contained in one file, which we refer to
as a chunk file. An accompanying meta file specifies the time
range which is covered by the chunk file. The usual policy of
ChronoDB is to maximize sharing of unchanged data as much
as possible. Here, we deliberately introduce data duplication
in order to ensure that the initial version in each chunk is
complete. This allows us to answer get queries within the
boundaries of a single chunk, without having to navigate to the
previous one. As each access to another chunk has CPU and
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Fig. 2. The temporal rollover process by example

I/O overhead, we cannot afford to access more than one chunk
to answer a basic query. Without duplication, accessing a key
that has not changed for a long time could potentially lead to
a linear serach through the chunk chain, violating requirement
[R3].

The algorithm for the “rollover” procedure outlined in
Figure 2 works as follows.

Algorithm 1: Temporal Rollover
Data: The data chunk containing the “head” revision
Result: An archive chunk and a new “head” chunk

1 time←getLastTimestamp(headChunk);
2 head←getHeadRevisionFromChunk(headChunk);
3 setValidTo(headChunk, time);
4 newHeadChunk←createEmptyChunk(time + 1);
5 insertEntriesIntoChunk(head, newHeadChunk);
6 updateTimeRangeLookup();

In Line 1 of Algorithm 1, we fetch the latest timestamp
where a commit has occurred in our current head revision
chunk. Next, we calculate the full head version of the data in
Line 2. With the preparation steps complete, we set the end
of the validity time range to the last commit timestamp in
Line 3. This only affects the metadata, not the chunk itself.
We now create a new, empty chunk in Line 4, and set the start
of its validity range to the split timestamp plus one (as chunk
validity ranges must not overlap). The upper bound of the new
validity range is infinity. In Line 5 we copy the head version
of the data into the new chunk. Finally, we update our internal
lookup table in Line 6. This entire procedure only modifies the
last chunk and does not touch older chunks, as indicated by
the grayed-out boxes in Figure 2.

The lookup table that is being updated in Algorithm 1 is
a basic tree map which is created at startup by reading the
metadata files. For each encountered chunk, it contains an
entry that maps its validity period to its chunk file. The periods
are sorted in ascending order by their lower bounds, which
is sufficient because overlaps in the validity ranges are not
permitted. For example, after the rollover depicted in Figure 2,
the time range lookup would contain the entries shown in
Table II.

TABLE II
TIME RANGE LOOKUP

Time Range Chunk Number
[0 . . .300] 0
[301 . . .1000] 1
[1001 . . .∞] 2

We employ a tree map specifically in our implementation
for Table II, because the purpose of this lookup is to quickly
identify the correct chunk to address for an incoming re-
quest. Incoming requests have a timestamp attached, and this
timestamp may occur exactly at a split, or anywhere between
split timestamps. As this process is triggered very often in
practice and the time range lookup map may grow quite large
over time, we are considering to implement a cache based
on the least-recently-used principle that contains the concrete
resolved timestamp-to-chunk mappings in order to cover the
common case where one particular timestamp is requested
more than once in quick succession.

With this algorithm, we can support all three of our pre-
viously identified requirements (see Section III). We achieve
support for a virtually unlimited number of versions [R1]
because new chunks always only contain the head revision
of the previous ones, and we are always free to roll over
once more should the history within the chunk become too
large. We furthermore do not perform writes on old chunk files
anymore, because our history is immutable [R2]. Regardless,
thanks to our time range lookup, we have close to O(logn)
access complexity to any chunk [R3], where n is the number
of chunks, with the additional possibility of caching frequently
used timestamp-to-chunk mappings.

This algorithm is a trade-off between disk space and scal-
ability. We introduce data duplication on disk in order to
provide support for large histories. The key question that
remains is when this process happens. We need a metric that
indicates the amount of data in the current chunk that belongs
to the history (as opposed to the head revision) and thus can be
archived if necessary by performing a rollover. We introduce
the Head–History–Ratio (HHR) as the primary metric for this
task, which we defined as follows:

HHR(e,h) =

{
e, if e = h

h
e−h , otherwise

. . . where e is the total number of entries in the chunk,
and h is the size of the subset of entries that belong to
the head revision (excluding entries that represent deletions).
By dividing the number of entries in the head revision by
the number of entries that belong to the history, we get a
proportional notion of how much history is contained in the
chunk that works for datasets of any size. It expresses how
many entries we will “archive” when a rollover is executed.
When new commits add new elements to the head revision,
this value increases. When a commit updates existing elements
in the head revision or deletes them, this value decreases.
We can employ a threshold as a lower bound on this value
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to determine when a rollover is necessary. For example, we
may choose to perform a rollover when a chunk has an HHR
value of 0.2 or less. This threshold will work independently
of the absolute size of the head revision. The only case where
the HHR threshold is never reached is when exclusively new
(i.e. never seen before) keys are added, steadily increasing the
size of the head revision. However, in this case we would not
gain anything by performing a rollover, as we would have to
duplicate all of those entries into the new chunk to produce a
complete initial version, therefore the HHR metric is properly
capturing this case by never reaching the threshold, thus never
indicating the need for a rollover.

V. DISCUSSION & RELATED WORK

Even though data versioning has been recognized as an
important problem in academic literature for many years,
the sustainability of the versioning process itself is rarely
discussed in related work. For example, in the SQL-based
ImmortalDB system [4], every time an entry overrides another
one, a pointer is created from the current to the previous
version, forming a history chain. The resulting system offers
good performance on the head revision and recent versions,
but the access times increase linearly as the request timestamp
is moved further back in time, because the history chains need
to be traversed linearly.

Felber et al. propose a similar solution [3] for key-value
stores. Here, each key refers to a list of value versions. Again,
the search for older entries is linear. This approach furthermore
suffers from the loss of coherence information - the second
entry in the list for key a may have existed at the same time
as the tenth entry for key b, but this information is lost.

The solution proposed by Ramaswamy [2] does not suf-
fer from any of these drawbacks and is conceptually much
closer to our solution. Ramaswamy proposes to have validity
intervals for key-value pairs and perform the search over these
intervals. In the paper, the drawback of having to update the
upper bounds of the validity ranges is clearly explained, which
is the main difference to our versioning approach. However,
Ramaswamy does not propose a concrete implementation, and
therefore does not touch upon the issue of sustainability.

Our solution offers an access time to any version of any
key in O(logc + loge) accesses, where c is the number of
chunks and e is the number of entries in the target chunk.
If we assume a cache with O(1) access time for the most
frequently used request timestamps, the complexity is reduced
to O(loge). We would like to emphasize that e is the number
of entries in a single chunk, and therefore only represents a
fraction of the overall history. Even without such a cache,
with a reasonable choice for the HHR threshold, the number
of chunks will always be significantly smaller than the total
number of entries, and the resulting time range lookup table is
small enough to be held in-memory, which further decreases
the access times. In order to achieve these advantages, our
approach relies on data duplication on disk, which increases
the footprint of the database. In our case this duplication does
not introduce synchronization issues, because only existing
versions are duplicated, which are immutable in our system.

The challenging part is the implementation itself, because
the rollover process has to be implemented in a way that is
safe against crashes and immediate program termination. For
example, when a rollover is taking place and the program is
terminated by an external signal, then at restart the database
needs to be able to infer the correct steps for reaching a
consistent state again. This recovery process in turn needs to
be safe against crashes and needs to be repeatable an arbitrary
number of times without ever leading to a non-recoverable
state.

VI. OUTLOOK & FUTURE WORK

Using the versioning concepts presented in this paper, we
are implementing a versioned graph database compatible with
the Apache TinkerPop API3 which will soon be officially
announced. Our final goal is to make use of this versioned
graph database in order to implement a modern, efficient and
feature–rich repository for EMF4 models.

VII. SUMMARY & CONCLUSION

In this paper, we presented our approach for a sustainable
data versioning process. Based on our previous work [6] we
employed a key-value format in order to keep the complexity
of the versioning problem to a minimum. We presented a
summary of our existing technology, and provided an overview
of our efforts to transition the prototype into a software tool
that can run for several years in a server backend and deal with
the resulting large amounts of data. The method is based upon
a rollover process, which takes the current (immutable) head
revision and copies it into a new, empty data structure, where
it will continue to evolve as new changes are applied. We also
introduced a metric called Head–History–Ratio (HHR) which
provides an estimate when a rollover should be executed based
on the contents of the database. Finally, we compared our
approach to existing related work and provided a discussion
on the individual advantages, disadvantages and challenges.
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Abstract—Code-based generation of unit tests is an active
topic of research today. One of the techniques is dynamic
symbolic execution (DSE) that combines concrete executions with
symbolic ones. The mature state of research in DSE allowed
the technique to be transferred for industrial use. However, the
complexity of software used in industrial practice have shown
that DSE has to be improved in numerous areas. This includes
handling dependencies to the environment of the unit under
test. In this paper, we present a user-oriented approach that
enables users to provide input constraints and effects for isolated
environment dependencies in a parameterized sandbox. This
sandbox collaborates with DSE, thus the isolated dependencies
do not produce unrealistic or false behaviors.

I. INTRODUCTION

Today, the demand for high quality software is greatly
increasing. There are several techniques to improve quality,
one of them is unit testing. A unit is a small portion of
software, which can be a function, a class or even a set of
classes. Most software projects use unit testing throughout the
development lifecycle. Due to this fact, significant amount of
time and effort is invested into unit testing.

Numerous ideas and techniques have already addressed to
reduce this time and effort. Symbolic execution [1] is one
of these techniques, as it is able to generate tests based on
source code by using symbolic variables instead of concrete
ones. During the symbolic execution process, each statement is
interpreted and constraints are formed from the symbolic vari-
ables. When the execution has finished, these constraints can
be solved using special solvers to obtain concrete input values.
These inputs are used to execute the path on which the satisfied
constraints were collected (path condition – PC). An advanced
variant of this technique is dynamic symbolic execution (DSE)
that combines concrete executions with symbolic ones in order
to improve coverage [2], [3], [4]. The development of DSE
has been progressing in the recent years in such a way that its
industrial adoption became feasible. However, the technique
faces several issues when it is used on large-scale programs
with diverse behaviors [5], [6].

One of the most hindering issues is the isolation of de-
pendencies. Without any isolation, – due to the concrete
executions – the DSE test generation process would access
the dependencies of the unit under test, which could cause
undesirable events during test generation like accessing the

file system, databases, or reaching parts of the software that
are outside of the testing scope. To alleviate this, isolation
(mocking) frameworks are commonly used in unit testing to
handle the dependencies. Most of these frameworks however
are not designed to be used with DSE-based test generation as
the built-in low-level techniques in both may conflict with each
other. To overcome this, we introduced a technique (based on
a previous idea [7]) that is able to automatically handle the
dependencies on the source code level by using transforma-
tions [8], [9]. These transformations replace invocations to the
dependencies with calls to a parameterized sandbox generated
with respect to the signatures of the methods being invoked.
Then, the parameterized sandbox is used by DSE to provide
return values and effects to objects resulting in the increase of
coverage in the unit under test.

As the parameterized sandbox is filled with values by
dynamic symbolic execution, the behavior depends on the
underlying algorithm only. In most cases, DSE uses values
that are relevant only to the code of the unit under test.
This may cause important behaviors to be omitted for various
reasons like 1) when the solver of the DSE is not able
to obtain concrete values, or 2) when a combined behavior
of two dependencies yields new behavior in the unit under
test, or even 3) when the dependencies have some form of
specification, which restricts the possible values. Also, the
unrestricted behavior of the sandbox may result in false and
unwanted behaviors for the unit under test.

In this paper, we address this issue by presenting an ap-
proach that builds on partial behaviors defined by developers
to enhance the generated sandbox resulting in covering more
relevant scenarios in the unit under test. The rest of the paper
is organized as follows. Section II gives a detailed overview
of the problem regarding the generated sandbox, along with
presenting related concepts. Section III presents the approach
with a detailed description of its process. In Section IV, a
complex example is presented to provide better understanding
of the approach. Section V summarizes our contribution.

II. OVERVIEW

Our approach for supporting DSE-based test generation with
automated isolation consists of two main steps [9]: 1) trans-
forming the unit under test and 2) generating a parameterized
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(a) DSE without isolation. (b) DSE with parameterized sandbox.

Fig. 1. The essence of the automatically generated parameterized sandbox approach.

sandbox. In step one, the abstract syntax tree of the unit is
transformed using various rules, including the replacement
invocations to dependencies with calls to the sandbox. Then,
in step two, the sandbox is generated for the transformed
invocations. The methods defined inside the parameterized
sandbox receive the same input values as the original depen-
dency would. Also, the generated methods may have effects
on the passed objects, and may also return values given by
DSE through the parameters of the sandbox. See Figure 1
and [9] for more details of the approach. The unit under
test denoted with UUT uses n dependencies (Dk) through
functions fk. These dependencies also exist in the sandbox
in a parameterized form, where the return values and effects
are provided by the DSE.

An issue with the parameterized sandbox – that may hinder
DSE from generating relevant cases – is that its behavior is
uncontrolled, thus completely relies on the values generated
by DSE. However, these values, in most of the cases are only
relevant for covering more statements: their behaviors are not
depending e.g., on 1) the state of the unit under test, 2) the
state of other called dependencies, 3) their own state.

In order to overcome this issue, our approach employs
inputs defined by the users of DSE, i.e. developers or testers.
For the precise definition of input types we employed existing
concepts (defined below) from related works on compositional
symbolic execution [10].

Partition-effects pair [11]: A partition-effects pair (i, e)
has 1) an input constraint i that is an expression over constants
and symbolic variables, 2) an effects constraint e, which
denotes expressions of symbolic variables bounded to values.
A set of partition-effects pairs is used to describe the behavior
of a method. A constraint i defines a partition of the input
space and an effect e denotes the effects when the given
argument values are found in the partition i.

Symbolic summary [12]: A symbolic summary of
method m is a set of partition-effects pairs msum =
{(i1, e1), (i2, e2), ..., (ik, ek)}, where i1, i2, ..., ik are disjoint.

An important aspect of compositional symbolic execution is
to execute each unit separately and create method summaries
to other units that use the currently analyzed one. The concepts
introduced before can be employed for both static and dynamic

compositional symbolic executions, although that requires the
ability to execute the dependencies.

However in terms of DSE, this may not be possible for var-
ious reasons (e.g., no code/binary is available, DSE fails with
traversal, dependencies are environments like file systems or
databases). The previously presented automatically generated
sandbox may be able to handle these cases, yet the behavior
of the sandbox must be given somehow as no compositional
execution is performed. Our approach is to involve developers
and testers to provide those behaviors for the sandbox.

III. APPROACH

The basic idea of our approach is to obtain behaviors for the
generated sandbox incrementally from developers and testers
(the users of DSE-based test generation). These behaviors
are defined in an easily readable format then transformed to
symbolic method summaries with a preliminary logical check.
When the check passes, source code is generated, which can
be used by DSE as summaries for the corresponding execution
paths.

Several other related works have already addressed the
problematic area of isolation in symbolic execution-based test
generation (e.g., [13], [14], [15]). These approaches also rely
on user input at some point, however these employ various
forms of user inputs differently than ours. Also, our approach
uses incremental refinement by allowing the definition of
partial behaviors as well.

This section uses an example to provide better
understanding of our approach. The method
M(object o, bool b):int used is a dependency
of the unit under test. The real behavior of the method is out
of scope for this example. Note that object o is passed by
reference, thus its state can be affected in M.

Incremental refinement. Our approach uses incremental
refinement of behavior (see Figure 2). At first, only the
automated isolation transformation and sandbox generation
are performed (0th iteration). After this step, the behavior
of the sandbox depends only on DSE. The generated effects,
input and output values for each dependency are presented
to the user. Based on these, the user can decide to alter the
behavior of each called dependency (1st iteration). The change
of behavior is defined in a table structure (presented in Table I
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Fig. 2. The approach for user-defined sandbox behavior.

TABLE I
TABLE STRUCTURE FOR PROVIDING BEHAVIOR WITH TWO EXAMPLES.

Input (I) Effects (E) Return

o b o

not null true new object() >10
null true - -1

for the example dependency method M). This table describes
the constraints for each parameter, effect and for the return
value as well. Also note that during the incremental usage, the
user would see the values provided by DSE in each column.

In Table I, method M has two behaviors defined by the
user overriding the arbitrary default. The first defines when
parameter o is not null and parameter b is set to true, then
o is assigned to a new object, and the method returns more
than 10. The second states that when o is null and b is true,
then the method returns constant -1. Note that in this example,
the user provided only an under-approximation of the behavior
as not all of the input partitions were covered (omitted where
parameter b is false). For unspecified cases, our approach
employs an otherwise feature, where both the effects and
return value are set by the DSE.

Before the next execution, the automated isolation technique
transforms the behavior (provided by the user) to source code
into the sandbox. However, a validity check is performed
before the code generation as the input partitions must be
disjoint. In order to check this, our approach transforms the
user-defined behaviors to symbolic summaries first, and then
generates code from the summaries. The transformation from
the table-structured user-defined behavior to the symbolic
summaries can be defined as follows.

Transforming behaviors to symbolic summaries. A user-
defined behavior b for method m consists of an input constraint
i ∈ Im, an effect constraint e ∈ Em and a return value
rm. Also, the behavior of method m can be described using
multiple bk ∈ Bm. First, it is checked that if

∧
ibk for every

k is unsatisfiable, i.e. checking if the input partitions defined
by the user are disjoint, thus there are no conflicts between
them. If the check passes, then from all bk ∈ Bm the

∨

k

(ibk , ebk ∧ rbk)

symbolic summary is created.
Consider the example in Table I. The symbolic summary

to be created here – based on the previous description – can
be formulated as follows: (o 6= null ∧ b == true, o ==
new object() ∧ return > 10) ∨ (o == null ∧ b ==
true, return == −1).

The code generation for the sandbox is performed along
predefined rules. These are designed to produce code that
appends the symbolic summary to the path conditions of
DSE. The input partition constraints are transformed to if
statements and conditions, while the effects (as assignment
statements) and return constraints are appended to the body
of the sandbox method. Consider the example in Table I,
the generated code for the sandbox method of method
M(object o, bool b):int would be as follows.

Listing 1. Sandbox code for method m(object o, bool b):int.
public int FakeM(object o, bool b) {

if(o != null && b == true) {
o = new object();
return DSE.ChooseFromRange<int>(11, int.Max);

}
if(o == null && b == true) {

return -1;
}
return DSE.Choose<int>();

}

After the code generation has finished, the user is ready to
re-execute the DSE test generation process to obtain new tests
(this time with the user-defined sandbox behavior). In the next
step of the refinement, the user gets the values generated by
DSE again. The user can refine the behavior again (Figure 2
– nth iteration) by filling, appending or modifying the table
previously introduced (Table I). This process can be repeated
until the user finds the behaviors acceptable.

IV. COMPLEX EXAMPLE

The following example introduces an advanced scenario,
where the user-defined behavior of the parameterized sandbox
helps reducing the number of tests that trigger false behavior.
The example is based on a backend service of an e-commerce
site.

The current example focuses on a module of the service,
which is responsible for handling advertisements. More pre-
cisely, the method under test (Listing 2) receives a product
identifier and gets the advertisements (Ads) for that product.
In its current implementation, the ads are consisting of related
products only. The query of the related products is performed
through database using the data access layer of the backend
(DB). This layer fills in a set of integer identifiers of the
related products. If there are related products, then the query
returns true, while returns false if the set remained empty.
The method under test adds the set of identifiers to the
advertisement object to be returned. The addition causes an
error if the set being passed is empty as it cannot occur in
real use with respect to the specification.

In this example, the DB module is a dependency and has
to be isolated during dynamic symbolic execution-based test
generation in order to avoid unwanted accesses to the database.
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Listing 2. Source code for complex example method.
public Ads GetAdsForProduct(int id) {

if(id == -1) throw new NoProductExists();
Set<int> ids = new Set<int>();
bool success = DB.GetRelatedProducts(id, ids);
if(success) {

Ads ads = new Ads();
ads.AddRelatedProducts(ids);
return ads;

}
return null;

}

The first step of the incremental refinement is transforming
the unit to use the parameterized sandbox. In the 0th iteration,
the sandbox is only controlled by dynamic symbolic execution.
The generated sandbox code would be as found in Listing 3.

Listing 3. Partial source code of the generated sandbox for advanced example.
bool FakeGetRelatedProducts(int id, Set<int> ids) {

ids = DSE.Choose<Set<int>>();
return DSE.Choose<bool>();

}

The issue with this unrestricted sandbox behavior is that
there is no connection between the effects and the return
value of the method. This causes a false behavior: the sandbox
method can return true even when the set of identifiers re-
mains empty causing the method under test to unintentionally
crash. To tackle this issue, users can define the partial behavior
as found in Table II.

TABLE II
TABLE STRUCTURE FOR PROVIDING BEHAVIOR WITH TWO EXAMPLES.

Input (I) Effects (E) Return

id ids id

- not null not empty true
- null - false

Listing 4. Partial source code of the generated sandbox for advanced example
bool FakeGetRelatedProducts(int id, Set<int> ids) {

if(ids != null) {
for(int i = 0; i <= 10; i++) {

ids.Add(DSE.Choose<int>(i));
}
return true;

} else if(ids == null) {
return false;

}
}

The generated code for these restrictions modifies the pa-
rameterized sandbox as found in Listing 4. The code contains a
loop with 10 iterations (predefined with sandbox loop settings)
to fill in the set with identifiers and return true if the set was
not null. Otherwise, the code returns false. There is no need
for other branches as the input space is partitioned into two
parts by the user-defined behaviors. Using this parameterized
sandbox, the DSE will not generate test cases, where the
set is empty, and the method returns true, thus avoids the
problematic false behavior that would cause a known error.
Note that this example can be continued with subsequent
iterations of the incremental process to refine the behavior
of the sandbox.

V. CONCLUSIONS

In this paper, we presented a user-oriented approach that
extends our previous work [9]. Our results showed that an
automatically generated parameterized isolation sandbox may
improve DSE-based test generation. However, we were also
able to identify that a fully parameterized sandbox – relying
on values from DSE only – may 1) omit important behaviors
or 2) cause false behavior to occur. To tackle this issue,
we presented the idea of incremental user-defined behaviors
in the parameterized sandbox. The users of DSE-based test
generation are able to incrementally refine their behaviors
defined for each dependency method in the isolated sandbox.
In each refinement iteration, a corresponding code snippet is
generated from the user-defined behaviors based on existing
ideas from compositional symbolic execution. These generated
code parts are used by DSE during test generation, thus are
able to influence and steer the DSE process. This may reduce
the false behaviors in the unit under test triggered by the
parameterized sandbox.
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Abstract—Symbolic execution is well-known for its capability
to produce high-coverage test suites for software source code. So
far, most tools are created to support a specific language. This
paper elaborates on performing language independent symbolic
execution and three ways to achieve it. We describe the use
of one approach to perform dynamic symbolic execution using
translation of a proprietary language and show the results of the
tool execution on a real-life codebase.

I. INTRODUCTION AND BACKGROUND

Software testing is a popular technique amongst software
developers. The recent advance of computing power increased
the usability of dynamic symbolic execution (DSE) [1] to a
point where it is now even included in commercial tools [2].
DSE implementations are mostly designed to support one
specific language (e.g. Java, C), or their underlying low-level
language (e.g. x86 byte code). While the advantages of having
such tools are indisputable, software developers working with
proprietary or less popular languages often cannot benefit. Our
research focuses on proposing a solution for languages that do
not have dedicated (D)SE tools. The drive for our explorations
comes from a practical application at CERN, which uses a
proprietary scripting language to control and monitor large
installations.

A. Motivation

The European Organization for Nuclear Research (CERN)
uses a proprietary software called Simatic WinCC Open Ar-
chitecture (WinCC OA) to control its particle accelerators
and installations (e.g. the electrical power grid). To support
the design of such systems the BE-ICS group maintains and
develops the Joint COntrols Project (JCOP), as set of guide-
lines and software components to streamline developments.
JCOP is based upon the WinCC OA SCADA platform which
is scriptable via Control (CTRL), a proprietary programming
language inspired by ANSI C.

Until very recently CTRL code did not have a dedicated
unit test framework. The development of such a testing library
filled this need, but after over a decade of development the
CTRL code base of JCOP sizes some 500,000 lines of code
(LOC). This code has to be manually (re-)tested during the
frequent changes of operating system versions, patching or for
framework releases. Over the decades-long lifetime of CERN’s
installations, this testing is repeatedly (often annually) required

and involves a major overhead. To overcome this issue, the use
of automatic test case generation (ATCG) was decided.

B. Symbolic Execution

Symbolic execution (SE) is a whitebox ATCG methodology
that analyses source code’s behaviour. The approach works
by constructing the code’s execution tree. The program’s
input parameters are replaced with symbolic variables, their
interactions recorded as operations thereon. The conjunction
of all symbolic constraints of an execution tree branch,
provides a path constraint. Finding a solution for it, e.g.
using a satisfiability modulo theories (SMT) solver, provides
inputs that will lead the program to follow this branch. SE
experiences shortcomings when it comes to uninstrumentable
libraries, impossible/infeasible constraints (modulo, hashes) or
too complex constraints. To overcome these limitations, dy-
namic symbolic execution has been introduced. DSE switches
to concrete value execution in cases where SE reaches its
limits. We refer the reader to [1] for an overview of SE and
DSE.

This paper is organised as follows: Sect. II introduces
language independent SE. Sect. III describes an implemen-
tation to bring SE to CTRL. Sect. IV presents results of the
implemented solution. Sect. V explores related work and Sect.
VI concludes.

II. LANGUAGE INDEPENDENT SYMBOLIC EXECUTION

Most SE and DSE tools operate on low-level (LL) rep-
resentations (LLVM, x86, .NET IL) of popular high-level
languages (Java, C, C#). The reason is that LL representations
are simpler, leading to fewer operations types that have to
be treated by the symbolic execution engine. This means that
only source code which compiles into these LL representations
is supported. Other languages miss out on the functionality.
Another disadvantage of using a specific low-level repre-
sentation are implicit assumptions on data types. Only data
types supported by the operating language are supported. This
voids the possibility to use own or modified data types and
languages.

For this reason we propose the use of language indepen-
dent symbolic execution. Apart from the development of a
dedicated (D)SE engine for a programming language, there
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exist three possibilities for language independent symbolic
execution.

First, a SE tool that operates on a generic abstract syntax
tree (AST). SE already performs operations on symbolic
variables, which are either subtypes of or proxies for real data
types. Hence, a tool operating on a model of the source code,
i.e. an AST, could perform truly language independent SE.
This approach comes with two difficulties: a) specifying an
AST generic enough for all targeted languages and their par-
ticular features and differences, b) deterministically translating
a language parser’s representation into the generic AST.

The second approach is a symbolic execution engine based
on callback functions. The source code under test is parsed
using a modified version of its native parser. The parser
triggers actions in the symbolic execution tool when it comes
across the variable interactions. The advantage of this approach
is that existing parsers for the source language can be adapted
to issue the required calls, leading to an easily implemented SE
framework. The caveat is a large number of messages being
issued by the parser, potentially leading to low performance.

Lastly, a translation into the operating language of an
existing tool. This solution, while similar to the first, is distinct
in that usually the target language and the tool cannot be
modified. The target language has to offer similar concepts
as the source, otherwise only a subset of the sources can be
supported without major overhead. It is also necessary to re-
implement any standard-library or built-in functionality that
the source language relies on. A difficulty arises when the
target language has different semantics or data types, requiring
trade-offs and leading to unsupported features.

A. Semantics

The semantics of a language play an important role. In
all three approaches, it is necessary to precisely capture the
meaning of each statement. Failure to do so would lead to
divergences and hence wrongly produced constraints and input
data. As an example one can look at differences of zero- and
one-based list/array indices. This minor change in the language
semantics can lead to severe errors such as out of bounds-
errors, changed loop behaviour, and similar.

It is also important that the source language’s data types
are supported by the symbolic execution tool. Some existing
(D)SE tools such as Microsoft Pex [3] support the use of
own data types (classes). However, these class data types are
treated differently from native types (they are nullable)
and sometimes replaced by stubs. Additionally, existing tools
do not allow for the modification of their native data types,
leading to unsupported features. An example would be that
some languages (e.g. JavaScript) support native implicit cast-
ing between int and string values. This behaviour cannot
be reproduced in C# and is hence not supported by Pex.

A solution would be to define all necessary sorts (data types)
for the underlying SMT solvers (e.g. Z3, CVC4). Current tools
adjust the SMT solver configuration based on their operation
language. An SE framework that supports the specification
and use of user-defined sorts can provide a solution to these

problems. Alternatively, it is possible to abandon SMT solvers
and explore other ways of solving constraints. Term rewriting
systems are well known for their capability to express seman-
tics and offer constraint solving capabilities. This solution,
while offering less performance, provides more flexibility and
support for native data types.

Using term rewriting systems, it would also be possible to
perform SE/DSE on generic models, opening the door to many
different kinds of analyses.

III. IMPLEMENTATION

Since no tool exists that natively supports CTRL code,
CERN is faced with the choice between three solutions:
1) develop an ATCG tool specifically for CTRL; 2) develop a
language independent ATCG tool; 3) translate the CTRL code
into the operating language of an existing ATCG tool.

Given CERN’s practical need, the last option was chosen.
A short evaluation led to Microsoft Research’s Pex tool [3],
a program that performs test case generation through DSE. In
order to use Pex for CTRL code, we developed a tool called
Iterative TEst Case system (ITEC). ITEC translates CTRL
to C#, in order to execute Pex and obtain input values for
automatically generated CTRL test cases. This tool helped
to build up regression tests that can then be reused on the
evolving system to ensure its quality. ITEC works on the
assumption that the current system reached a stable state after
13 years of continuous development and use.

A. Architecture

CERN’s focus mainly lies in the test case creation for CTRL
code. Hence, in a first step, the re-use of existing software
is preferred over the creation a generic ATCG framework.
ITEC relies heavily on an existing CTRL parser, which has
been implemented in Xtext [4] during a previous project at
CERN. ITEC’s workflow is separated into six consecutive
steps: 1) code under test (CUT) selection1 2) semi-purification
3) C# translation 4) test input generation 5) test case creation
6) test case execution.

ck] (start) – (one);
In the initial task, the CUT selection, the user or the tool

automatically (in bulk execution mode) chooses which code
is to be tested. ITEC analyses the sources for dependencies
(global variables, database values, subroutines) which are to
be replaced, if necessary.

Listing 1. SP doubles: Before
get15OrMore ( x ) {

a = dependency ( x )
re turn a > 15 ? a : 15

}
dependency ( x ) {

r = randomValue ( ) + 5
re turn r ∗ x

}

Listing 2. SP doubles: After
get15OrMore ( x , b ) {

a = dependency ( x , b )
re turn a > 15 ? a : 15

}
dependency ( x , b ) {

observe(x)
re turn b

}

1we use to code under test instead of system under test, as we focus on
individual functions or code segments rather than systems
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Fig. 1. Test case generation from Pex output

Following the CUT identification, a process called semi-
purification (SP) [5] is applied. Semi-purification replaces a
CUT’s dependencies with additional input parameters. SP is
required as CTRL, similar to most other procedural languages,
does not support mocking. The result of SP is a modified
version of the CUT, where the function is only dependent on
its input parameters. The benefit is that it is possible to use any
form of ATCG (random testing, combinatorial approaches),
independent of them being white- or black-box techniques.
Replacement of subroutines with semi-purification doubles (an
adapted form of test stubs [6]) allows for the specification of
additional observation points. The observations can later be
used for the definition of assertions in test cases. Listing 1
shows a short program that returns a random value ≥ 15.
During the SP process the dependency is replaced with a
SP double of same name. The resulting code is displayed in
Listing 2. The additional parameter b was added to replace the
return value in the SP double and simulate the CUT behaviour.
Additionally an observation point was inserted2.

ITEC uses Microsoft’s Pex tool to generate test input. As
Pex operates on the .NET Intermediate Language, the semi-
purified CTRL code has to be translated to a .NET language.
C# was chosen since it is syntactically similar to CTRL.

After the translation, the CUT is added to other artefacts
and compiled into a .dll file. The required resources are:

• PUT: Parameterized unit tests (PUTs) are entry points
for Pex’ exploration. They also specify observation points
and expectations towards parameter values.

• Pex factories: Factories are manually created, annotated
methods that serve as blueprints for data types. They help
Pex generate input values. ITEC uses factories to teach
Pex how to generate certain CTRL data types.

• Data types: Many CTRL data types are not natively
present in C# , e.g. time, anytype or CTRL’s dynamic
list-types. They were re-implemented in C#.

• Built-in functions: CTRL’s standard library provides
functions for various actions (e.g. string operations).
They had to be re-implemented to ensure the source
code’s compatibility.

• Other: Some additional libraries were developed to sup-
port the generation. One example is a Serializer for
generated values.

Following the compilation, Pex is triggered on the resulting
executable.

CTRL test cases are created from the results of Pex’s
exploration. Each set of values generated by Pex represents

2The observation is not required here, but added to show the functionality

a test case for the semi-purified CUT. These values can be
classified into three different categories:

1) Parameter values: The parameter values for the original
CUT are used as arguments for the test’s function call to
the CUT.

2) SP parameter values: Additional parameters introduced
by the SP process are used to specify test doubles for the
test case execution. The values for semi-purified global
variables are assigned before the call to the CUT.

3) Observations: Observations are transformed into asser-
tion points. Additionally to return and reference pa-
rameter values there is the possibility to assert database
writes and similar commands.

Figure 1 visualises the split of this information and shows how
the values are used in the test cases.

The last step is the test case execution. To run the tests it
is necessary to wrap them inside a construct of functions that
will permit the observation of success or failure. Note that in
our case, success means that the observations during the CTRL
execution match the observations made by Pex. Additionally,
test doubles are generated from their specifications and the
code is modified to call the stubs instead of the original
dependencies.

B. Challenges & Lessons Learned

There are several challenges we faced during the creation
of ITEC. One challenge is the translation of CTRL code
to C#. Small changes in semantics have big impacts on the
generated values. For example, list indices in C# are zero-
based, while in CTRL they start at one. This means, that
these lists had to be re-implemented, adding to constraint
complexity, as Pex is optimised to native types. Additionally,
C# is incapable of dealing with index or casting-expressions
as reference parameters. These statements had to be extracted
and placed before the function call, the resulting values written
back after. There are numerous similar differences, leading
to re-implementation of data types and functionality, while
increasing the complexity of path constraints.

The validation of the translation is an important challenge.
In [7] we give one proposal to solve this problem. The full
list of challenges has been described in more detail in [8].

The lesson learned during implementation of the translator
is that re-implementation of data types can be time-consuming
and difficult. Often an increase in applicability and translation
validity comes with a drop in performance. Finding a solution
to these issues is one of the big challenges of our approach.

Despite the effort of implementing a translator, SP engine
and TC generator, we believe that the implementation of a
DSE tool for CTRL would be more costly.

IV. CURRENT RESULTS

We executed the tool on 1521 functions in the CTRL
framework. For 52.0 % (791) of the functions ITEC was able
to execute Pex. The other 48.0 % failed due to one of the
following reasons:
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Fig. 2. Sankey diagram displaying the test generation and execution for the
JCOP framework

− use of unsupported features, data types and functionality
(32.8%): We explicitly excluded some functionality due to
their complexity. Example: user interface interactions.

− errors due to unresolvable resource links (3.0%): The
CERN-developed CTRL IDE occasionally has problems
linking function invocations to the correct definitions.

− compilation errors of the translated C# (12.2%): The
translator actively does not account for some language
differences as they can be seen as “bad coding practice”.
ITEC serves as a motivation to avoid/alter these parts of
the code base. Other concepts, such as the casting of native
C# data types as explained above, cannot be translated.

For the 791 former functions, ITEC generated between 0
and 104 test cases (mean: 6.37; median: 4; first and third
quartile: 2 and 7). Figure 2 displays the process and numbers.

The execution of these test cases lets us look at the line
coverage data, as produced by WinCC OA’s CTRL interpreter.
The coverage shows a distribution as follows: 76% of the
functions are fully covered, 9.9% have a coverage higher than
75%, for 7.2% of the functions the coverage is above 50%,
the rest has either a coverage under 50% or no recorded data
due to errors during the execution.

One result we observed during our analysis is that the
coverage drops for long functions. While routines with less
than 40 LOC are covered to a large extent (over 75 % line
coverage), more than half of the functions longer than 40
LOC achieve less coverage. This suggests that it is harder to
generate covering test suites for long functions, due to higher
complexity in the path constraints. This theory is supported
by the fact, that in general longer functions produce fewer
test cases and that long routines with smaller test suites have
bad coverage metrics.

We refer the reader to the technical document [8] for a more
detailed breakdown of the test case generation and a thorough
analysis of the test case execution results.

V. RELATED WORK

Test case generation through symbolic execution has been
researched by others before us. Cseppentő et al. compared
different SE tools in a benchmark [9], supporting our choice
of Pex. [10] shows an approach to isolate units from their

dependencies, similar to semi-purification. Bucur et al. [11]
perform SE on interpreted languages by adapting the inter-
preter instead of writing a new engine. Bruni et al. show their
concept of lightweight SE for Python, by using Python’s op-
erator overloading capabilities in [12]. The testing of database
applications via mock objects was presented in [13].

VI. SUMMARY AND FUTURE WORK

This paper shows our considerations for automated test case
generation for CTRL, a proprietary, ANSI C-like language.
We describe different approaches for language independent
symbolic execution, before we explain our particular approach.
Our solution involves the translation from CTRL to C#, which
is supported by Microsoft’s Pex dynamic symbolic execution
tool. We explain the tool’s general workflow and present
lessons learned and results from the tool execution on our
main codebase.

In future, we aim to extend the tool’s applicability by
lowering the number of unsupported features and executing
it on additional parts of CERN’s codebase. We also aim to
enhance our analysis by comparing coverage to code complex-
ity measures. Orthogonal to this effort our efforts will evaluate
other (D)SE tools and approaches such as the ones described
in the first part of this paper.
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Abstract—Constraint programming is a declarative way of
modeling and solving optimization and satisfiability problems
over finite domains. Traditional solvers use search-based strate-
gies enhanced with various optimizations to reduce the search
space. One of such techniques involves multi-valued decision
diagrams (MDD) to maintain a superset of potential solutions,
gradually discarding combinations of values that fail to satisfy
some constraint. Instead of the relaxed MDDs representing a
superset, we propose to use exact MDDs to compute the set
of solutions directly without search, compactly encoding all the
solutions instead of enumerating them. Our solution relies on the
main idea of the saturation algorithm used in model checking
to reduce the required computational cost. Preliminary results
show that this strategy can keep the size of intermediate MDDs
small during the computation.

I. INTRODUCTION

Many problems in computer science such as operations
research, test generation or error propagation analysis can be
reduced to finding at least one (optimal) assignment for a set
of variables that satisfies a set of constraints, a problem called
constraint programming (CP) [9]. CP solvers usually use a
search-based strategy to find an appropriate solution, enhanced
with various heuristics to reduce the search space.

Multi-valued decision diagrams (MDD) are graph-based
representations of functions over tuples of variables with a
finite domain [7]. As such, they can be used to compactly rep-
resent sets of tuples by encoding their membership function.
Set operations computed on MDDs then have a polynomial
time complexity in the size of the diagram instead of the
encoded elements [4].

One of the heuristics proposed for CP solvers use MDDs to
maintain a superset of potential solutions, gradually shrinking
the set by discarding tuples failing to satisfy some constraint
[1]. These approaches limit the size of MDDs to sacrifice
precision for computational cost, which is compensated for by
the search strategy. Using an exact representation of solution
sets seems to be neglected by the community, except in [6]
where special decision diagrams are used to achieve this.

This paper proposes to revisit the idea of exact MDD-
based CP solvers, applying a strategy well-known in the
model checking community: the saturation algorithm [5]. An
efficient implementation of the idea could overcome a common

This work has been partially supported by the CECRIS project, FP7–Marie
Curie (IAPP) number 324334. Special thanks to Prof. András Pataricza and
Imre Kocsis for their motivation and support.

limitation of search-based approaches, i. e., the complexity of
computing every solution. As opposed to traditional search-
based solvers, such a tool could natively compute the MDD
representation of all the solutions instead of enumerating them
one by one.

II. PRELIMINARIES

A. Multi-valued Decision Diagram

Multi-valued decision diagrams (MDD) offer a compact
representation for functions in the form of NK → {0, 1} [7].
MDDs can be regarded as the extension of binary decision
diagrams first introduced in [4]. By interpreting MDDs as
membership functions, they can be used to efficiently store
and manipulate sets of tuples. Definition of MDDs (based on
[8]) and common variants are as follows.

Definition 1 (Multi-valued Decision Diagram) A multi-
valued decision diagram (MDD) encoding the function
f(x1, x2, . . . , xK) (where the domain of each xi is Di ⊂ N )
is a tuple MDD = 〈N, r, level, children, value〉, where:
• N =

⋃K
i=0 Ni is a finite set of nodes, where items of

N0 are terminal nodes, the rest (N>0 = N \ N0) are
nonterminal nodes;

• level : N → {0, 1, . . . ,K} is a function assigning
non-negative level numbers to each node (Ni = {n ∈
N | level(n) = i});

• r ∈ N is the root node of the MDD (level(r) = K);
• children : Ni × Di → N is a function defining edges

between nodes labeled by elements of Di, denoted by
nk[i] (i. e., children(nk, i) = nk[i]);

• (N, children) as a directed graph is acyclic (DAG);
• value : NT → {0, 1} is a function assigning a binary

value to each terminal node (therefore N0 = {0,1},
where 0 is the terminal zero node (value(0) = 0) and
1 is the terminal one node (value(1) = 1).

An MDD is ordered iff for each node n ∈ N and value
i ∈ Dlevel(n) : level(n) > level(n[i]). An ordered MDD is
quasi-reduced (QROMDD) iff the following holds: if n ∈ N
and m ∈ N are on the same level and all their outgoing edges
are the same, then n = m. An ordered MDD is fully reduced
(ROMDD) if it is quasi-reduced and there is no node n ∈ N
such that every children of n are the same node.

The width of an MDD is the maximum number of nodes
belonging to the same level: w(MDD) = max 1≤i≤K(|Ni|).
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Fig. 4: MDD representation of
ALLDIFFERENT(x1, x2, x3).

The height of an MDD is the highest level to which any
node belongs: h(MDD) = maxn∈N (level). Note that only
ROMDDs can have a lower height than K.

The semantics of a quasi-reduced MDD rooted in node
r in terms of the encoded function f is the follow-
ing: f(v1, v2, . . . vK) = value((((r[vK ])[vK−1]) · · · )[v1]).
When interpreted as a set, the set of all tuples en-
coded in an MDD rooted in node r is S(r) =
{v | value((((r[vK ])[vK−1]) · · · )[v1]) = 1}.

In case of ROMDDs, a reduced node is assumed to have
all edges connected to the target of its incoming edge.

Figures 1–3 illustrate an ordered but not reduced, a quasi-
reduced and an ROMDD respectively, both encoding the set of
tuples {(0, 0, 0), (0, 1, 0), (0, 0, 1)} over the domain {0, 1, 2}×
{0, 1}×{0, 1}. For the sake of simplicity, the terminal 0 node
is omitted in figures.

An advantage of decision diagrams is the ability to compute
set operations such as union and intersection with polynomial
time complexity in the number of nodes in the operands [4].

B. Constraint Programming

Constraint programming (CP) is a framework for modeling
and solving continuous or discrete optimization or satisfiability
problems over finite domains [9]. The main advantage of CP
over the similar SAT or ILP problems is that it can handle
arbitrary finite domains and virtually any type of constraints:
they can be any relation over the set of defined variables. The
subset of CP problems addressed in this paper is constraint
satisfaction problems (CSP), where the goal is to find at least
one tuple that satisfies all the defined constraints.

Definition 2 (Constraint satisfaction problem) A
constraint satisfaction problem (CSP) is defined over
a set of variables X = {x1, . . . , xK} with finite
domains D = {D(x1), . . . , D(xK)} and set of
arbitrary relations over the variables (called constraints)
C = {ci | ci ∈ D(xi1) × · · · × D(xik)}, where
S(ci) = {xi1 , . . . , xik} ⊆ X is the support of the
constraint, i. e., the variables over which the relation is
defined. The question is whether there exists a tuple
v ∈ D(x1)× · · · ×D(xK) that satisfies all constraints in C.

Due to the rich modeling opportunities, solvers cannot
exploit any uniform semantics of the constraints. CP solvers
therefore employ a systematic search, supported by propa-
gation strategies that transfer the knowledge inferred in a
constraint to other constraints to reduce the search space
[9]. Constraint propagation is the process of discarding as
many potential solutions as possible before stepping in the
search. One extremity is the explicit enumeration of every
possible tuple, gradually shrinking the set by discarding those
that violate some constraint. In this case, a search in the
traditional sense is not necessary, as after the restrictions,
every tuple is a valid solution to the problem. Since this
approach is generally considered infeasible or not scalable,
the CP literature proposed various relaxations that are still
useful to reduce the search space with an acceptable cost. Note
however, that most of these solutions are therefore limited
when it comes to computing every solution of a problem.

1) Domain-based Constraint Propagation: The traditional
constraint propagation approach for CSP solving is built
around domain stores [9]. Domain stores maintain the current
domain for every variable of the problem, propagating inferred
knowledge by the means of domain consistency [9].

Definition 3 (Domain consistency) A constraint C is do-
main consistent with the current variable domains D if for
every value v ∈ D(xi) of every variable xi ∈ X , there exists
a tuple v with v[i] = v that satisfies C.

A constraint C can be made domain consistent by discarding
values from the domains that cannot be extended to a tuple that
satisfies C. Constraint propagation then consists of making
constraints domain consistent until every constraint is domain
consistent. If any domain becomes empty, the problem is
unsatisfiable. If every domain contains a single value only,
a solution is found and returned. In any other case, the search
strategy binds the value of a variable and repeats the process.

2) MDD-based Constraint Propagation: One weakness of
domain-based constraint propagation approaches is the lack of
interaction between variables, i. e., every subset of the Carte-
sian product of the domains is domain consistent. For example,
in the case of the ALLDIFFERENT constraint, which demands
that all the variables in the tuple should assume different
values, domain consistency fails to express the connection

55



between values of the variables.
To address this, [1] introduced the notion of MDD con-

sistency and enhanced the domain store with an MDD store.
MDDs can efficiently encode the various interactions between
variables (see Figure 4 for the MDD representation of the
ALLDIFFERENT constraint for three variables). One or more
MDDs can then be used to communicate the restrictions
between different constraints.

Definition 4 (MDD consistency) A constraint C is MDD
consistent with an MDD rooted in node r if every edge in
children belongs to at least one path leading from r to the
terminal 1 representing a tuple v ∈ S(r) that satisfies C.

MDD-based constraint propagation approaches usually use
limited-width MDDs to reduce the complexity of MDD oper-
ations at the cost of losing some information. As previously
noted, the spurious solutions introduced by the relaxation
are eliminated with a search strategy that will eventually
concretize solutions to obtain an exact result.

Note that in this form, MDDs are used as a relaxed set
of potential solutions, a superset of the actual solutions.
Domain stores can be regarded as the special case when the
width of the MDD is fixed in one [2]. In this case, every
domain is represented by the edges starting from the node on
the corresponding level and the MDD encodes the Cartesian
product of the domains.

III. SATURATION-BASED CONSTRAINT PROPAGATION

As presented in Section II, the CP community have em-
braced limited-width MDDs as a means to enhance the tradi-
tional domain store for more efficient constraint propagation.
However, the literature rarely mentions the possibility of
using explicit MDD representations (with unlimited width)
and MDD operations to compute the set of solutions directly
without relaxations and searching. As it seems, researchers
of the community consider this approach infeasible or not
scalable, which can explain the lack of corresponding results.

This paper proposes to revisit the idea mentioned as an
extremity in Section II-B, that is, enumerating every potential
solution and discarding those that fail to satisfy some of the
constraints. In this setting, fully reduced MDDs provide an
efficient encoding as only the levels corresponding to variables
in the support of a constraint will contain nodes. The set of
all tuples, for example, is encoded simply by the terminal 1
node, as none of the variables are bound by any constraint.

Discarding invalid solutions is then equivalent to computing
the intersection of the current set of potential solutions with the
set of solutions of the next constraint ci. The set of all actual
solutions is therefore obtained by taking the intersection of all
the MDDs representing every constraint in the problem:

S =
⋂

ci∈C
S(ci) (1)

The usual pitfall in MDD-based set operations is that the
decision diagrams tend to grow very large during computation.
Such computations usually aim to reach a fixed point, thus

the number of encoded tuples constantly rises or falls during
the computation. Denser or sparser sets usually have a more
compact MDD representation than those encoding around half
of all the possible tuples, thus the final size of the decision
diagram is usually in an acceptable range. Intermediate re-
sults, however, can be exponentially larger (multiple orders of
magnitude in practice as shown in Section IV).

The symbolic model checking community uses an efficient
strategy to combat this phenomenon: saturation [5].

A. The Saturation Approach

Originally, saturation has been proposed as an iteration
strategy tailored to work with decision diagrams to perform
least fixed point computation with the transition relation of
state-based behavioral models for state space exploration [5].
In other words, its original purpose is to efficiently compute
the reflexive transitive closure of a relation on a set of initial
values (initial states), minimizing the size of intermediate
decision diagrams during the computation.

The essential idea of saturation is to keep the intermediate
decision diagrams as dense as possible by applying relations
affecting only the lower levels first. Relations are therefore
applied in the order of the highest level that they affect.

In the CSP setting, transition relations are replaced with
constraints and instead of the reflexive transitive closure, the
intersection of all constraints must be computed. Nevertheless,
the idea of ordering the constraints by the “highest” variable
they affect (highest in terms of the decision diagram level
that encodes the variable) is applicable. Moreover, it should
carry the same benefits since the number of currently encoded
tuples is again monotonic during the computation – this time
converging towards the empty set.

To formally describe the proposed solution, we have to as-
sume that a variable ordering is given, i. e., there is a bijective
function l : X → {1, . . . ,K}. This function describes the
relationship between the variables and the encoding MDD
as well: every variable xi is represented by the level l(xi).
W.l.o.g., we will assume that l(xi) = i, unless otherwise noted.

Definition 5 (Level of constraint) The level of a constraint
ci is Top(ci) = max{l(xi) | xi ∈ S(ci)}, i. e., the largest
level number assigned to the variables in the support of the
constraint. Let Ci = {cj | Top(cj) = i} then denote the set
of constraint belonging to level i.

Ordering the constraints by the assigned Top level modifies
Equation 1 as follows:

S =

((((
c11 ∩ . . .︸ ︷︷ ︸
c1j∈C1

)
∩ c21 ∩ . . .︸ ︷︷ ︸

c2j∈C2

)
∩ . . .

)
cK1 ∩ . . .︸ ︷︷ ︸
cKj ∈CK

)
(2)

B. Discussion

The strategy of the proposed saturation approach can be
characterized by two goals:
• In every step, minimize the height of the resulting (fully-

reduced) MDD.
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Fig. 5: MDD size during computation.

• If a new node n is introduced on a new level, minimize
the number of tuples n encodes.

Both of these goals are accomplished with the ordering of
constraints. The following lemmas provide the rationale.

Lemma 1 The width of an ROMDD cannot be higher than
the number of tuples it encodes.

Proof Assume there is an ROMDD with width w encoding
w − 1 tuples. Having a width w means there is at least one
level with w nodes. Every node in any ROMDD has to be on
a path leading from the root node to the terminal 1, so the
MDD must encode at least w tuples, as opposed to w − 1.

Lemma 2 The number of nodes in an ROMDD cannot be
higher than w(MDD) · h(MDD).

From the lemmas we can conclude that the saturation
strategy aims to minimize the size of the resulting MDD in
every step. Note, however, that the number of encoded tuples
is not in a direct relationship with the width of the MDD.
As stated before, the two extremities are the empty set and
the universe, but in between the size can grow exponentially.
The saturation strategy can be therefore considered as a “best
effort” heuristic rather than an optimal algorithm.

IV. RESULTS

The proposed approach has been implemented in Java as a
CSP solver processing problems given in the XCSP3 format
[3]. As a proof of concept, a small experiment has been carried
out where a simple model encoding error propagation in a
railway system has been solved by three different strategies.

The first “strategy” applied the constraints in the order of
declaration in the problem definition (which can be considered
more-or-less random). The second one orders the constraints
by the number of variables supporting the constraint, while
the third one is the proposed saturation approach. Figure 5
shows the size of the solution MDD after the processing of
each constraint for the three strategies on a logarithmic scale.

The experiment demonstrates the potential benefits of using
the saturation approach in an explicit MDD-based CSP solver.
Compared to the “random” strategy, the peak size of the

MDD was almost three orders of magnitude smaller with the
saturation approach, at most 6 times more than the final size.
Ordering the constraints by the number of supporting variables
yields a better result than the random strategy, but it is still
far worse than the saturation approach. The remaining peaks
correspond to the inclusion of complex constraints when a
new variable is processed and the size of the MDD usually
normalizes before processing the next variable.

V. CONCLUSION AND FUTURE WORK

This paper proposed to revisit a seemingly undiscussed topic
of applying exact MDD-based methods to compute the solu-
tion set of finite-domain constraint programming problems.
Although the approach of compiling the MDD representation
of constraints and computing their intersection may seem
“brute-force”, it is worth exploring the solutions employed in
related research areas such as symbolic model checking.

In this spirit, we have applied the strategy of the saturation
algorithm well-known in the model checking community.
Saturation orders the relations by the highest level assigned
to one of their supporting variables, keeping the intermediate
MDD relatively compact compared to other approaches.

We have demonstrated the benefits of the strategy in a
small experiment, which provided promising results. Once a
larger set of benchmark models are available after the first
XCSP3 competition1, we plan to systematically evaluate and
fine-tune our solution to see if it can match the performance
of traditional tools employing the domain- and MDD-store
approaches. Regardless of the performance, it is noteworthy
that the proposed solution can natively compute the set of all
solutions in a compact representation, which poses a great
challenge to traditional tools that can only enumerate the
solutions one by one.
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Abstract—Design space exploration (DSE) aims to explore
different design candidates that satisfies multiple criteria and is
optimal with respect to different quality properties. The strength
of rule-based DSE is that the exploration rules can be tailored to
a specific problem, shaping the design space into a more concise
form than traditional approaches. However, experts may have
several choices to define the exploration rules and choosing the
good one may increase exploration performance significantly. In
this paper, we present several ways to define the exploration rules
of a rule-based DSE problem and investigate the impact of these
rules.

I. INTRODUCTION

As a challenging branch of search based software en-
gineering (SBSE), design space exploration (DSE) aims at
searching through different design candidates to fulfill a set of
constraints and then proposing optimal designs with respect to
certain (multiple) objectives. It frequently supports activities
like configuration design of avionics and automotive systems
or dynamic reconfiguration of systems with high availability
at runtime. Many of such traditional DSE problems can be
solved by using advanced search and optimization algorithms
or constraint satisfaction programming techniques [1], [2].

In model-driven engineering (MDE), rule-based DSE [3],
[4], [5] aims to find instance models of a domain that are
1) reachable from an initial model by applying a sequence
of exploration rules, while 2) constraints simultaneously in-
clude complex structural and numerical restrictions. A so-
lution of such a problem is a sequence of rule applications
which transforms the initial model to a desired model. Multi-
objective rule-based DSE (MODSE) may also include multiple
optimization objectives [4] which help to distinguish between
solutions.

One of the major characteristics of rule-based DSE against
traditional techniques is that the domain expert can define
the atomic steps the exploration process can use to modify a
candidate solution. These exploration steps have a high impact
on the actual design space that an algorithm has to explore and
thus it will affect the overall performance of the exploration.
However, the exploration steps can be defined in multiple ways
even for a relatively small problem and affecting the design
space and thus the performance differently.

This paper is partially supported by the MTA-BME Lendület 2015 Research
Group on Cyber-Physical Systems.

The objective of this paper is to give an insight to newcomer
DSE users through an example how the exploration rules can
impact the performance of the exploration and to help decide
on defining the exploration rules.

The paper is structured as follows: Sec. II briefly presents
a motivating example and introduces the most important
concepts of rule-based DSE, Sec. III provides an insight of
the effects of transformation rules and Sec. V concludes the
paper.

II. RULE-BASED DESIGN SPACE EXPLORATION

Case study: The motivating example of this paper is
the class responsibility assignment problem from the 9th
Transformation Tool Contest (TTC16) [6].

The exploration task is taken from a reengineering challenge
of object-oriented programs: create classes for a set of initially
given methods and attributes (features) where methods can
depend on other methods and attributes, in such a way that
the resulting class model is optimal with respect to a software
metric called CRA-Index (a metric derived from cohesion and
coupling).

Besides the CRA-Index, there are two important constraints
that the resulting class model has to satisfy: 1) there should be
no empty classes in the resulting model and 2) all the features
have to be assigned.

Domain model and instance model: Model-driven system
design (MDSD) aims to lift the abstraction level of a problem
allowing a better overview of it. For this purpose a domain
model is created which describes the possible elements of the
problem, their properties and their relations. For example the
domain model of the CRA problem defines classes, features
(methods and attributes) and relations between them. Domain
models are also called metamodels as a metamodel describes
the possible components of a semantic model, also called an
instance model. In a metamodel types (or classes) describe
objects from the domain which can have attributes, while
references specify the relations between types.

Graph patterns and matches: A common task is to obtain
data from instance models using queries. For this, graph
patterns provide a good formalism which can be seen as a
small, deficient instance model that we search for as part of the
actual instance model. A graph pattern can capture elements,
relations, negative or positive conditions on attributes and
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multiplicity. A graph pattern can have multiple matches on
an instance model similarly as a database query can return
multiple rows.

Graph transformation rules: Modifications to an instance
model are often described as graph transformation rules. A
rule consists of a precondition or a left hand side (LHS ), which
is captured by a graph pattern and a right hand side (RHS ),
which declaratively defines the effects of the operation. A rule
is applied on a model by 1) finding a match of graph pattern
LHS (also called an activation of the rule), then 2) removing
elements from the model which have an image in LHS \RHS ,
then 3) changing the value of attributes which are reassigned
in RHS and finally 4) creating new elements LHS \RHS . A
rule can have multiple activations or non at all as expected.

Rule-based design space exploration problem: The aim
of rule-based DSE is to evolve a system model along trans-
formation rules and constraints to find an appropriate system
design. The state space of design candidates is potentially
infinite but usually it also has a dense solution space.

The input of a rule-based DSE problem consists of
three elements RDSE = (M0, G,R): 1) an initial model
M0, 2) a set G of goals given by graph patterns, which
should be satisfied by the solution model MSi and 3) a
set R of transformation rules (r1, r2, . . . rr) which define
how the initial model M0 can be manipulated to reach a
solution model MSi. As a result it produces several solutions
(MS0,MS1 . . .MSn) satisfying all of the goals and each of
them is described by a sequence of rule applications (or
trajectories) ( ~rS0, ~rS1 . . . ~rSn) on the initial model M0.

Furthermore, there are two optional inputs: global con-
straints GC and objectives O. Global constraints have to
be satisfied on the model along each valid execution path
(i.e., trajectory) and are usually defined by graph patterns.
An objective defines a function over either the model or the
trajectory to derive a fitness value (e.g., cost, response time,
reliability) which can be used to distinguish between solutions
in quality.

Design space: To solve an RDSE problem a search of
the design space has to be conducted in accordance with an
exploration strategy. The design space is a directed graph
where the nodes represent the different states of the model
and edges represent the rule applications (activations). There
is one initial node that represents the state of the initial model
and usually there are multiple goal states that satisfy the
goal constraints. Depending on the RDSE problem, a model
state can be reached in multiple trajectories (e.g., there are
independent rule activations) and the design space can have
cycles in it (e.g., one of the rule applications creates an element
and the other deletes it).

III. EFFECTS OF EXPLORATION RULES

In this section, we show six approaches to define the graph
transformation rules for the CRA problem and discuss the
properties of these approaches. We find this research relevant
as it is a recurring problem in rule-based DSE to create new
elements (classes) and to connect them (assign features to
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c : Class

f : Featurecreate

c : Class

: Class

create

forbid

cm : ClassModel

c : Class

create
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delete
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forbid
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: Feature
forbid

rulemergeClasses

f : Feature

c1 : Class

c2 : Class

create

delete

Fig. 1: Graph transformation rules used to solve the CRA
problem

classes) and it is not trivial if either approach is better or
worse than the other. With this research, we help newcomers
to identify different approaches and to decide between them
with the help of this evaluation.

In Fig. 1, we present the different graph transformation
rules. First, we describe them and then we will refer to them
in the next paragraphs.

Rule 1 createClass: creates a class and inserts it to the
model.

Rule 2 assignFeature: assigns an unassigned feature to an
existing class.

Rule 3 createClassWithFeature: creates a class for a feature
that is not assigned yet.

Rule 4 reassignFeature: reassigns a feature from a class to
an other existing class.

Rule 5 reassignFeatureAndRemoveClass: reassign a feature
and remove the class if it has no features.

Rule 6 mergeClasses: reassign all the features to a target
class and remove the source class.

a) Atomic Modifications with Bounds: The idea of the
first approach is to create classes and assign features separately
(createClass rule and assignFeature rule). Using such atomic
modifications, one can easily see that all the possible solutions
are reachable (it is complete) and probably this is the first
to think of when defining a DSE problem as these are the
simplest rules. However, having a transformation rule that can
create objects (e.g., classes) without upper bound can make
the exploration strategy to create too many of them and in
different order.

To overcome this issue, we incorporate an upper bound for
creating classes to the condition of the createClass rule. In our
example, this bound is the number of features available in the
model as creating more classes is unnecessary.

Unused objects (e.g., empty classes) is an other problem
of this approach and can be handled in two ways (without
modifying the exploration rules). Besides the essential goal
constraints (all features are assigned) additional goal con-
straints (no empty classes) can be added that forbids unused
objects in solutions. However, the exploration may fail to
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remove these unused objects and thus fail to return with a valid
solution. Alternatively, these objects can be easily removed
after the exploration has finished but in this case the found
solutions may vary only in the number of unused objects.

b) Atomic Modifications with Maximum One Bound:
This approach is the very same as the previous one, except
that we incorporate a stronger bound to the createClass rule:
maximum one unused class can be present in the model and
a second one cannot be created.

c) The Generative Approach: A similar approach to the
previous ones is to design the rules in such a way to never
have an unused object (e.g., classes). Using the createClass-
WithFeature rule instead of createClass rule, a newly created
class will instantly have an assigned feature resulting in two
advantages: 1) there is an upper bound for creating classes
(number of features) and 2) the ”no empty class” constraint is
fulfilled automatically.

An interesting property of this approach is that the create-
ClassWithFeature rule has more activations (number of unas-
signed features) as opposed to the first approach (maximum
one activation) and it can affect the performance and the results
of the exploration depending on the algorithm.

d) The Preprocess Approach: Another approach is to
initially create the maximum number of required objects (e.g.,
one class for each feature) in a preprocess phase and then use
rules that connects the elements (assignFeature rule).

While in overall, there will be less transitions in the search
space than the first approach as the classes are already created,
there will be many activations available in the same state on
average as any feature can assigned to any class. Also a post
process is required to remove empty classes.

e) The Initial Solution Approach: The fifth approach is
to create a valid initial model and use transformations that
keeps the model valid throughout the exploration. In our
example, this means to initially create and assign a class for
each feature and use the reassignFeatureAndRemoveClass rule
(InitialSolution).

f) Initial Solution with mergeClasses rule: Alternatively
to the reassignFeatureAndRemoveClass rule, the mergeClasses
rule can be used instead, which allows to merge two classes
that have more than one features assigned (InitialSolution-
MergeClasses).

IV. EVALUATION

We carried out measurements for each approaches by 1)
traversing the full search space with a depth-first search algo-
rithm for initial models containing 3-7 features to understand
the characteristics of the search space and by 2) searching for
optimal solutions with the NSGA-II [4] algorithm for an initial
model containing 18 features (initial model B introduced in
the TTC case). The NSGA-II algorithm was configured with
population size of 20 and with a mutation rate of 0.8.

The measurements were executed on a Intel R© CoreTM

i5-2450M CPU @2.5 GHz desktop computer with 8 GB
memory. The approaches were implemented in the open-
source VIATRA-DSE framework [7].

Fig. 2 shows the first set of measurements with the num-
ber of states, transitions and the transitions-states ratio of
the search space by model size (number of features). The
measurements show that using atomic modifications without
significant bound of creating objects results in a huge state
space compared to other approaches. In the other hand, prepro-
cessing the initial model and using carefully crafted rules (e.g.,
mergeClasses rule) may shrink the state space significantly.

The results of running an NSGA-II algorithm with different
exploration rules shows interesting results. Fig. 3 depicts the
median and the maximum found CRA-Index and the median
time taken by different approaches where each point is an
aggregation of ten separate runs. Points are missing where
there were at least one run that couldn’t return a valid solution,
i.e., there were unassigned features remaining. The horizontal
axis shows the number of allowed fitness evaluations during
exploration (250, 500, 750, 1000, 2000, ..., 7000).

While the InitialSolutionMergeClasses approach has the
smallest state space, after 2000 evaluations it could not in-
crease the CRA-Index significantly and was slower than most
of the approaches. On the contrary, the AtomicModifications-
MaxOne could improve consistently by passage of time and
was the fastest among the others.

It is clear that AtomicModificationsBounded was the least
effective approach of all and Preprocess was the best on
average, however the best solutions are found by the slowest
approach: InitialSolution. The Generative approach has the
best trade-off: it found good solutions in reasonable time.

The InitialSolution approach was probably slow because the
nature of the activations: there are relatively lot of them in
each state and a good portion of them changes (disappears or
appears). The used VIATRA-DSE framework evaluates a solu-
tion by transforming the initial solution and then backtracking
to reuse the model. While the framework stores the activations
(and activation codes) incrementally, it still has a lot of work
maintaining them.

V. CONCLUSION

In this paper, we presented several ways to define the explo-
ration rules of a rule-based DSE problem and investigated the
impact of these rules. Based on the class responsibility assign-
ment case, our observation is that using atomic modifications
(creating single elements and connecting them separately) as
exploration rules without any adjustments can be the worst
choice. Instead, preprocessing the initial model and defining
exploration rules that maintains the correctness of the model
(and with that reducing the state space) may have significant
positive impact on the exploration process. When using a
genetic algorithm the best approach was either to create objects
one at a time, maybe connecting them immediately to other
elements, or creating the required amount of objects ahead of
the exploration.

However, we investigated this observation only with a
simple example and other problems may behave differently
when modifying the exploration rules. Still, experimenting
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Fig. 3: Comparison of approaches using NSGA-II by allowed number of evaluations. Each point is an aggregation of ten runs.

with different approaches is highly recommended for rule-
based DSE problems to find the best system designs.

As for future work, more rule-based DSE problems could
be investigated to derive a set of best practices for defining
exploration rules when faced with a certain type of problem.
Furthermore, based on the goal constraints and precondi-
tions on the initial model, different set of exploration rules
(approaches) could be generated automatically along with
corresponding measurement skeletons.
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Abstract—Spectral estimation plays a significant role in 

engineering practice. Along with the spreading of sensor 

networks, more and more data are transmitted through 

unreliable channels which may lead to lost data. The most 

common method of spectral estimation uses FFT, but this 

requires the whole record without any data loss. This paper 

presents a new FFT-based method for the problem which can be 

used for coherent sampling. Its efficiency and accuracy is 

demonstrated via theoretical analysis, simulation and 

measurement results. 

Keywords—spectral estimation, data loss, FFT 

I. INTRODUCTION 

Data loss is usually caused by communication problems. 
For example, in sensor networks data are often transmitted via 
radio channel, which is known to be faulty if interference or 
noise occurs. Data loss can mean missing samples, invalid 
samples (e.g. ADC overdrive) or synchronization issues. 

In engineering practice, spectral estimation plays an 
important role. If this is the measurement task and some of the 
samples are lost, then data loss becomes a serious problem. 
The spectral estimate of sampled signals can be calculated via 
DFT: 

         
  

  
 

  
   

   
                  (1) 

The DFT can effectively be evaluated by the Fast Fourier 
Transform (FFT). In order to get the value of any point of the 
DFT, the whole record is needed, without data loss. An 
obvious solution is to wait for a complete record, but the 
number of samples which are needed can be the multiple of 
the DFT record size, which is unacceptable in most 
applications, where linear or exponential averaging is applied 
to reduce the measurement noise. 

There are available methods which can be used, e.g. 
Lomb-Sclarge [5][6] or autoregressive analysis [7]. For our 
research, computationally effective and robust methods are 
preferred, two of them will be presented briefly. The first one 
is the extension [1] of the resonator-based observer (RBO) [2]. 
The second one [3] utilizes the FFT because of its particular 
efficiency in spectral estimation. This modifies the FFT blocks 
by zero padding them (here: replacing the samples with zeros) 
from the first lost sample. 

A question arises why we don't replace only the lost 
samples with zeros. Replacing lost samples results in an 

additive noise, which can make difficult or impossible to find 
low magnitude spectral components. The aim of the methods 
is to reduce the power of this noise. 

When data loss arises, time-domain interpolation (e.g., 
linear from nearest neighbors or Lagrange) is one of the first 
ideas to consider. However, interpolation methods cause a 
linear distortion in the spectrum (e.g., linear interpolation 
distorts the original spectrum with a sinc-squared function), in 
spite the additive noise of “replacement with zeros” method. 
Every method which uses surrounding samples gives a kind of 
memory. This makes the spectrum variable (even if it was 
constant) which we want to avoid. 

In the paper a new method is presented which can be used 
effectively if the sampling is coherent. It provides the same 
accuracy as the RBO, but with much less computational 
complexity. 

II. PRELIMINARIES 

A. Mathematical Description of Data Loss 

1) Indicator Function 
Data loss can be modeled with an availability indicator 

function: 

    
 
 
  
                            
                       

  (2) 

Available samples will also be termed as processed 
samples. Using this we can define the data loss rate: 

          (3) 
where      is the probability operator. We can describe a 
signal with lost samples as 

           (4) 

where      is the original signal (without data loss). 

2) Data Loss Models 
There are different data loss models with different 

indicator functions. Random independent data loss is the 
simplest. It can be defined as 

    
  
  
    
                      
                  

         (5) 

In random block-based data loss, a block is formed from 
each   samples. The same applies to the blocks as in the 
random, independent case: 
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(6) 

In Markov-chain based data loss, the indicator function is 
generated as the state of a Markov-chain, see Fig. 1. 

 

Fig. 1. Two-state Markov-chain. State 1:     , state 0:      

B. Spectral Estimation Using the Resonator-Based Observer 

[2] 

The resonator-based observer was designed to follow the 
state variables of the conceptual signal model [2] which 
generates signals according to their Fourier-series. This way, 
the observed state variables can be the Fourier coefficients or 
their rotating versions. 

This structure has been modified to be able to handle data 
loss [1]. The main idea is to modify the conceptual signal 
model to generate signals with lost samples, then design a 
state observer for this system. The conceptual signal model 
can be described as: 

         

         

                                   

(7) 

where     is the diagonal matrix formation operator,    is the 
state vector in the time step  ,    is the output signal and    is 
the relative frequency of the  th component. Fourier-
coefficients can be extracted from the state vector as: 

   
         (8) 

where    is the column vector of the Fourier-coefficients. The 
equation of the observer is the following: 

                                  
         

(9) 

where     is the estimated state vector,   is the feedback 
vector,    is the estimated signal and    is the estimation error. 
Fig. 2. shows the RBO for signals with lost samples. 

 

Fig. 2. Resonator-based observer for signals with lost samples. 

It is worth noting that the estimation error is multiplied by 
the indicator function which can be interpreted in two ways. 

First, if the sample is lost, measurement update isn’t 
performed. Second, at the lost samples the structure acts as its 
estimate was accurate. 

RBO can be used for coherent and incoherent sampling if 
the frequencies of the signal components are known. The 
characteristic polynomial can be set arbitrarily with the 
feedback vector  , which implies, for example, exponential 
averaging can be done without extra computation. The 
structure can be applied in real-time and offers fairly precise 
spectral estimation even at high data loss rate. The main 
drawback is the complexity: RBO is a quadratic algorithm, 
while the complexity of FFT-based algorithms is linearithmic 
(        ). 

C. Spectral Estimation Using FFT with Zero Padding [3] 

The procedure of spectral estimation using FFT with zero 
padding for a record is the following: 

1.    and                  input FFT record and 
indicator function are given.   is the size of FFT. 

2.                         is the position of the 
first lost sample in the block. 

3. If       , the block is discarded. (     
 

 
 is 

recommended.) Else, a new indicator function is 
generated: 

  
   

 
 
  
       
       

  (10) 

4. The signal is multiplied by 
 

 
 and the new indicator 

function is applied: 

   
 

 
    

  (11) 

5. DFT of    is computed, with a window function for   
samples, the result is the spectral estimate of the 
record. 

Fig. 3. shows the procedure graphically. 

 
Fig. 3. Spectral estimation with zero padding FFT method 

Here overlapping FFT-blocks are used. The aim of this is 
to make estimate converge faster. Based on [4], the maximal 
recommended overlap ratio is 75%. 

The final spectral estimate is computed from the FFTs of 
the blocks with an averaging procedure. Averaging can be 
done both with magnitude spectra and complex spectra. 
Magnitude spectra can be averaged both for coherently and 
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incoherently sampled signals, but complex spectra can only be 
averaged in the case of coherent sampling. 

The main benefit of this method is its linearithmic 
complexity, which makes it easy to apply in real-time 
measurements. It can be used effectively for searching 
dominant components even with high data loss rates. If we 
don’t need to know the phase information, this method can be 
used for both coherently and incoherently sampled signals. 

III. PROPOSED METHOD: REPLACEMENT FFT 

A. Description of the Method 

The idea is to use FFT for spectral estimation, and to try to 
achieve the same behavior at lost samples as RBO has. This 
means that at positions with lost samples, the method needs to 
behave as its estimate was accurate. This can be done by 
computing a replacement value for each lost sample via IDFT. 
The procedure is the following: 

1. Wait for the first   samples (FFT block), substitute 
lost samples with zeros and compute the DFT of the 
block, the result is     . 

2. Wait for the next FFT block. 
3. For the positions of lost samples, compute the 

replacement value with IDFT from     . 
4. Compute the DFT of the new block, the result is 

    . 
5. After applying the appropriate phase shift on     , 

compute the new spectral estimate from      and 
     via exponential averaging, and store it in     . 

6. If the measurement is not over, continue from the 
second step. 

Fig. 4. shows the method graphically. 

 

Fig. 4. Spectral estimation with replacement FFT method 

It should be noted that in the first FFT block the lost 
samples are substituted with zeros, thus a noise is added to the 
initial estimate. It depends on the actual application if it is a 
problem or not, because exponential averaging reduces this 
noise over time. If it is a problem, we can wait for the first 
block without lost samples. 

With the phase shift on      the phase of the fundamental 
harmonic (in the DFT base functions) is made equal in      
and     . Similar phase shift is necessary at the computation 
of the replacement values. These can be done only for 
coherently sampled signals. That’s why this method is not 
applicable for incoherently sampled signals. The phase shifts 
can be done automatically by implementing the method with a 
circular buffer. 

B. Computation of the Replacement Values 

The computation of a single replacement value needs 
     operations using IDFT. In an   samples long block 
there are on average    lost samples, so the replacement 
values can be computed with        operations. If the data 
loss rate isn’t small enough, these operations make the method 
complexity quadratic. In this case, IFFT can be used to 
compute a whole replacement block and use only the 
necessary positions of it. Of course, this solution needs more 
memory and at low data loss rates it is slower than individual 
computation. 

It can be easily suspected that there is a data loss rate, 
where the two procedures have the same computational 
requirement, this is called critical data loss rate (     ). Below 
it, IDFT, above it, IFFT needs less operations. 

An individual replacement value can be computed with    
real operations using IDFT, for the whole block we need 
     steps. Assuming the usage of radix-2 IFFT, the 

replacement block can be computed with 
 

 
      complex 

multiplications and        complex additions, which means 
        real operations. We also need to check every 
position if there was data loss (  operations) and replace the 
lost samples with the computed values (   operations). In 
total, IFFT-based replacement has              steps. 

At the critical data loss rate, the two procedures have the 
same number of operations, from which we obtain 

      
        

    
  (12) 

Considering that this is only an estimate (e.g. different 
operations need different number of machine cycles, SIMD 
instruction execution, etc.), we can rewrite (12) as 

      
      

  
  (13) 

The evaluation of (13) for different   values can be found in 
Table 1. 

TABLE I.  CRITICAL DATA LOSS RATES 

                              
16 31,250% 5 4096 0,366% 15 

64 11,719% 7,5 16384 0,107% 17,5 

256 3,906% 10 65536 0,031% 20 

1024 1,221% 12,5 262144 0,009% 22,5 

The first and fourth column show the size of the FFT, the 
second and fifth ones show the critical data loss rate and the 
third and last ones show the critical number of lost samples in 
a block. Based on this, if the data loss rate and the FFT size 
are known in advance, we can decide which replacement 
procedure is faster. If data loss rate varies within a large 
interval which contains       and speed is critical, it should be 
taken into consideration to count the number of lost samples in 
each block and use the appropriate method. If this means too 
much overhead, IFFT-based replacement should be used. 

IV. SIMULATIONS AND MEASUREMENT RESULTS 

The proposed method was examined and compared with 
RBO and zero padding FFT via simulations and 
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measurements. Some results are presented to demonstrate the 
features of the proposed method. 

A. Simulation Results 

Simulation parameters:  =256 FFT size,     = /4 
minimal valid block size for zero padding FFT, 75% overlap 
ratio, exponential averaging for all three methods with the 
same time constant (1000), square wave with 1/64 relative 
frequency input signal with additive white noise (SNR=20 
dB),  =50*  simulation time, random independent data loss 
with 0.1% data loss rate. 

Fig. 5. shows the settling of the spectral estimation. The 
error was formed as the Euclidean (L2) norm of the difference 
of the original and the estimated magnitude spectra. It must be 
noted that the original spectrum was calculated without 
windowing for RBO and replacement FFT but with Hanning 
window for zero padding FFT. The reason of this asymmetry 
is that in zero padding FFT windowing should be used, but it’s 
problematic to use a window function with RBO. Replacement 
FFT behaves similarly to RBO and provides accurate estimate 
only with coherent sampling, that’s why it doesn’t need 
windowing. The Euclidean norm of the noise magnitude 
spectrum (Noise FFT) is displayed for comparison. In the 
bottom, the data availability ( ) is shown: high level means 
available, low level means lost samples. 

 

Fig. 5. Simulation results of coherently sampled square wave with 0.1% data 

loss rate 

It can be seen that when there are complete blocks, all the 
three methods give fairly accurate results. The precision of the 
replacement FFT is the same as that of the RBO. Data loss 
leads to a peak in the error of zero padding FFT, but the 
estimates of replacement FFT and RBO are unaffected. 

B. Measurement Results 

Measurements were conducted with a Sharc ADSP-21364 
Ez-kit Lite DSP board. A noise generator has been used to 
independently control the data availability. 

Fig. 6. shows the measurement results of the processing of 
a square wave sampled in a special way: the sampling is 
incoherent for the first harmonic, but coherent for the third 
harmonic. That’s why the third harmonic and its higher 
harmonics are measured correctly with all the methods. In this 

measurement, FFT methods were compared with 0.1% data 
loss rate and  =4096. 

The other components are measured incorrectly with the 
replacement FFT even with applying a window function, 
because the problem arises from averaging complex spectra. 
Examining the results of zero padding FFT, it can be stated 
that windowing should be used with the method. 

 

Fig. 6. Measurement results of incoherently sampled square wave with 0.1% 
data loss (zoomed) 

Other measurements have shown that RBO and 
replacement FFT yield the same results. 

V. CONCLUSION 

In this paper, a new method of spectral estimation in the 
case of data loss was introduced and examined. This method 
calculates a replacement value for each lost sample from the 
latest estimate. The replacement FFT can be used effectively 
for coherently sampled signals, even at high data loss rates and 
provides distortion-free spectral estimate. This method has 
linearithmic complexity which makes it beneficial for real-
time applications. 
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Abstract—Unlike testing, formal verification can not only prove
the presence of errors, but their absence as well, thus making it
suitable for verifying safety-critical systems. Formal verification
may be performed by transforming the already implemented
source code to a formal model and querying the resulting model
on reachability of an erroneous state. Sadly, transformations from
source code to a formal model often yield large and complex
models, which may result in extremely high computational
effort for a verifier algorithm. This paper describes a workflow
that provides formal verification for C programs, aided by
optimization techniques usually used in compiler design in order
to reduce the size and complexity of a program and thus improve
the performance of the verifier.

I. INTRODUCTION

As our reliance upon safety-critical embedded software
systems grows, so does our need for the ability to prove their
fault-free behavior. Formal verification techniques offer reli-
able proofs of a system’s correctness. These algorithms operate
on formal models which describe the semantic behavior of
the system under verification and are able to answer queries
on its properties. However, model-driven design can be rather
difficult and the financial and time constraints of a project
often do not make it a viable choice for development.

Many projects start right at the implementation phase
without sufficient planning and modeling. In the domain of
embedded systems, implementation is usually done in C.
Although there are many tools that can be used to generate
C code from a formal model (model-to-source), the reverse
transformation (source-to-model) is far less supported.

Another difficulty with this process is the size of the
state space of the model generated from the source code.
As most verification algorithms have a rather demanding
computational complexity (usually operating in exponential
time and beyond), the resulting model may not admit efficient
verification. A way to resolve this issue is to reduce the size of
the generated model during source-to-model transformation.

The project presented in this paper proposes a transforma-
tion workflow from C programs to a formal model, known
as control flow automaton. The workflow enhances this trans-
formation procedure by applying some common optimization
transformations used in compiler design [1]. Their application
results in a simpler model, which is then split into several

†This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

smaller, more easily verifiable chunks using the so-called
program slicing technique [2]. This allows the verification
algorithm to handle multiple small problems instead of a single
large one. At the the end of the workflow, the resulting sim-
plified slices are verified using bounded model checking [3]
and k-induction [4].

Measurements show that the applied transformations re-
duced the models’ size considerably, making this technique a
promising choice for efficient validation. Benchmarks on the
execution time of the verifier algorithm suggest that breaking
up a larger program into several smaller slices may also speed
up the verification process.

II. BACKGROUND AND NOTATIONS

There are several program representations with formal se-
mantics suitable for verification. In this paper we shall focus
on the one called control flow automaton (CFA) [5]. A CFA
is a 4-tuple (L,E, `0, `e), where
• L = {`0, `1, . . . , `n} is a set of locations representing

program counter values,
• E ⊆ L×Ops×L is a set of edges, representing possible

control flow steps labeled with the operations performed
when a particular path is taken,

• `0 ∈ L is the distinguished entry location, and
• `e ∈ L is the special error location.
During verification we will attempt to prove that there is

no feasible execution path which may reach `e, thus proving
that the input program is not faulty. Let π be a path in a CFA
(L,E, `0, `e). We say that π is an error path iff its last location
is `e. π is an initial path iff its first location is `0. The path
π in a CFA is an initial error path iff its both an initial path
and an error path.

The verification algorithms used in our work are bounded
model checking and k-induction. A bounded model checker [3]
(BMC) searchers for initial error paths with the length of
k (the bound) and reduces them to SMT formulas. If the
resulting formula is satisfiable, then its solution will serve
as a counterexample to correctness. If no satisfiable formula
was found for a length of k, then the algorithm increases
the bound to k + 1. It repeats this process until it finds a
counterexample or reaches a given maximum bound. Bounded
model checking is not complete, and can only be used for
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finding counterexamples in erroneous programs, as the BMC
algorithm always runs into timeout for safe programs.

For proving safety, we can use k-induction [4]. A
k-induction model checker applies inductive reasoning on the
length of program paths. For a given k, k-induction first proves
that all paths from `0 with the length less than k are safe,
using bounded model checking. If the BMC algorithm finds
no counterexamples then the algorithm performs an induction
step, attempting to prove that a safe path with the length of
k−1 can only be extended to a safe path with the length of k.
This is done by searching for error paths with the length of k
and proving that their respective SMT formula is unsatisfiable.
If all error paths with the length of k are unsatisfiable then
all initial error paths will be unsatisfiable, thus the safety of
the system is proved. If a feasible error path exists then it is a
counterexample to the induction and the safety of the program
cannot be proved of refuted with the bound k.

In order to reduce the resulting model’s size, we shall use
optimization transformations usually known from compiler
theory. Compiler optimizations transform an input program
into another semantically equivalent program while attempting
to reduce its execution time, size, power consumption, etc [1].
In our work we used these transformations to reduce the result-
ing model’s size and complexity. Many of these optimization
algorithms are present in most modern compilers. The project
presented in this paper focuses on the following algorithms:
• constant folding,
• constant propagation,
• dead branch elimination,
• function inlining.
Constant folding evaluates expressions having a constant

argument at compile-time. Constant propagation substitutes
constants in place of variables with a value known at compile-
time. Both algorithms operate on local and global constants.
In many cases, these two algorithms are able to replace one or
more branching criteria with the boolean literals true or false.
Dead branch elimination examines these branch decisions and
deletes inviable execution paths (e.g. the true path of a branch
decision always evaluating to false). Function inlining is the
procedure of replacing a function call with the callee’s body.
In this work we shall use function inlining to support simple
inter-procedural analysis, as an inlined function offers more
information of its behavior than a mere function definition.

This work also makes use of an efficient and precise
program size reduction technique known as program slicing.
Weiser [2] suggested that programmers, while debugging a
complex program, often dispose code pieces irrelevant to
the problem being debugged. This means that programmers
usually mentally extract a subset from the entire program
relevant to some criteria. He called these subsets program
slices. Attempting to formalize this practice, Weiser defined
a program slice P ′ as an executable subset of a program P ,
which provides the same output and assigns the same values
to a set of variables V as P at some given statement S. This
statement S and the variable set V is often put together into a
pair which will serve as the slicing criterion. By using slicing

with multiple criteria, it is possible divide a larger program
into several smaller executable slices.

III. CONTRIBUTION

The project presented in this paper implements a verification
compiler, that is a compiler built to support verification. This
is done by using a complex workflow which transforms C
source code to control flow automata, applying optimization
transformations and program slicing during the process. The
resulting model(s) can then be verified using an arbitrary
verification algorithm. An overview of the workflow can be
seen in Figure 1.

C code AST CFG CFA

DT PDT UD-chains

PDG

Fig. 1. Transformation workflow.

As an input, the compiler takes a C source code file, which
is then parsed and transformed into an abstract syntax tree
(AST), representing the syntactic structure of the program.
This AST is then transformed into a control flow graph (CFG),
representing the instructions and control flow paths of the
program. Optimization algorithms and program slicing are
performed on the CFG, resulting in multiple smaller CFG
slices of the program. These slices then are transformed into
control flow automata. Currently the slicer criteria are the
assertion instructions in the control flow graph (which are calls
to the assert function in C), meaning that each assertion
gets its own CFA slice. In the resulting CFA, the error location
represents a failing assertion.

Several helper structures are required for these transforma-
tions, such as call graphs (for function inlining), use-definition
chains for data dependency information, dominator trees
(DT) and post-dominator trees (PDT) for control structure
recognition [1]. The program slicing algorithm requires the
construction of a program dependence graph (PDG), which is
a program representation that explicitly shows data and control
dependency relations between two nodes in a control flow
graph. The control dependencies show if a branch decision in a
node affects whether another instruction gets executed or not.
Data dependencies tell which computations must be done in
order to have all required arguments of an instruction. Slicing
is done by finding the criteria instruction S in the PDG and
finding all instructions which S (transitively) depends on [6].

IV. IMPLEMENTATION AND EVALUATION

The implemented system has three main components: the
parser, the optimizer and the verifier. The parser component
handles C source parsing and the control flow graph con-
struction. The optimizer module performs the optimization
transformations and program slicing and is also responsible for
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building the control flow automata from the CFG slices. The
verifier component (implemented as a bounded model checker
with k-induction) performs the verification on its input model.

Parser Optimizer Verifier

Optimization
algorithms

Dependency
analysis

Fig. 2. Architecture of the implemented program.

All components are implemented in Java 8, with dependen-
cies on certain Eclipse1 libraries. The program also makes
use of the theta formal verification framework, developed
at the Fault Tolerant Systems Research Group of Budapest
University of Technology and Economics. It defines several
formal tools (mathematical languages, formal models) and
algorithms. It also provides a set of utilities for convenience,
such as expression representations and interfaces to SAT/SMT
solvers, which are used in the project’s implementation. The
work discussed here extends this framework with an interface
and toolset for C code verification.

The parser module utilizes the parsing library of the Eclipse
C/C++ Development Tools plug-in (CDT). The CDT library
performs lexing and parsing and returns an abstract syntax
tree, which is then transformed into a control flow graph.
Currently only a small subset of the C language is supported.
The current implementation only allows the usage of control
structures (such as if-then-else, do-while, switch, while-do,
break, continue, goto) and non-recursive functions. Types are
only restricted to integers and booleans. Arrays and pointers
are not supported at the moment.

The optimizer module handles optimization transformations
and program slicing. The implemented transformation algo-
rithms are constant folding, constant propagation, dead branch
elimination, function inlining and program slicing. After fin-
ishing with the optimization and transformation passes, the
optimizer generates a list of control flow automata from each
extracted slice. These smaller slices then later will be used as
the verifier’s input.

Currently the verifier is implemented as a simple bounded
model checker extended with a k-induction algorithm. The
verifier operates on a collection of control flow automata,
with each automaton being a slice extracted from the input
program. If a CFA was deemed faulty, then the whole program
is reported as erroneous. Currently the verifier may report one
of the following statuses: FAILED for erroneous programs,
PASSED for correct programs and TIMEOUT if it was not
able to produce an answer in a given time limit.

To evaluate the effects of the optimizations mentioned previ-
ously, we shall use two types of measurements: the size of the
control flow automata used as the verifier input and the results
of a benchmarking session on the verifier execution time. The
size of an automaton is currently measured by two factors:

1http://www.eclipse.org/

the number of its locations and edges. The performance
benchmarking was performed by measuring the execution time
of the verifier on every input CFA. Due to the slicing operation,
a single input model may get split into several smaller slices,
which then can be verified independently.

The verification task sets are divided into three categories,
two of them are taken from the annual Competition on Soft-
ware Verification (SV-COMP) [7]. The first task set, trivial,
contains trivially verifiable tasks, such as primitive locking
mechanisms and greatest common divisor algorithms. The
task sets used from the SV-COMP repertoire are the ones
called locks and eca. The locks category consists of pro-
grams describing locking mechanisms with integer variables
and simple if-then-else statements.The eca (short for event-
condition-action) task set contains programs implementing
event-driven reactive systems. The events are represented by
nondeterministic integer variables, the conditions are simple
if-then-else statements.

The results are shown with two different optimization levels.
The first level only uses function inlining, as it is needed
for verifying some interprocedural tasks. The second level
utilizes all optimizing transformations presented in this paper,
including function inlining and program slicing.

The measurement results for each optimization level are
shown in different tables. The first column always contains the
task name, while the other columns contain the measurement
and benchmarking data for a given slice. The legend of column
labels is shown in Table I.

TABLE I
COLUMN LABELS AND THEIR ASSOCIATED MEANINGS.

Label Description
L CFA location count
E CFA edge count
R Verification result (FAILED/PASSED/TIMEOUT)

ER Expected verification result (F/P)
T Verification execution time (average of 10 instances, in ms)
S Slice count (for sliced programs)

SL Average location count (for sliced programs)
SE Average edge count (for sliced programs)

All models were checked with the timeout of 5 minutes on
a x86 64 GNU/Linux (Arch Linux with Linux Kernel 4.7.6-1)
system with an Intel i7-3632QM 2.20 GHz processor and
16 GB RAM.

TABLE II
BENCHMARK RESULTS WITH INLINING ONLY.

Task L E R ER T
triv-lock 8 8 F F 5

triv-gcd0 11 11 F F 4
triv-gcd1 9 9 F F 18

locks05 62 86 T P -
locks06 53 73 T P -
locks10 98 138 T P -
locks14 136 194 F F 33
locks15 145 207 F F 36

eca0-label00 391 459 T F -
eca0-label20 391 459 T F -
eca0-label21 391 459 T F -
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The benchmark results without any optimization algorithms
(except inlining) are summarized in Table II. As it can be seen,
the erroneous tasks can usually be verified rather fast, except
for the eca task set. This set contains models with large if-else
constructs inside loops. This yields an exponential number of
possible error paths. The bounded model checking algorithm is
rather ineffective for such problems and thus, it cannot handle
these models in a reasonable amount of time, resulting in a
timeout in all cases. It is also worth noting that the k-induction
algorithm could not prove the non-faulty models’ correctness
within the given time frame.

TABLE III
BENCHMARK RESULTS WITH FULL OPTIMIZATION.

Task S SL SE R ER T
triv-lock 1 8 8 F F 6

triv-gcd0 1 11 11 F F 4
triv-gcd1 1 9 9 F F 20

locks05 6 18 23 P P 9
locks06 5 17 21 P P 9
locks10 10 22 29 P P 14
locks14 16 33 45 F F 25
locks15 17 33 47 F F 27

eca0-label00 1 309 377 T F -
eca0-label20 1 309 377 T F -
eca0-label21 1 309 377 T F -

Benchmark results with optimization are listed in Table III,
which shows the number of produced slices, their average
location and edge count (rounded to the nearest integer) and
also the verifier running time. As it is sufficient to find one
failing assertion among all slices for reporting that the input
program is faulty, the running time for erroneous programs
is the time until the verifier found the first failing slice. For
correct programs, the running time is equals to the sum of the
running time for all slices.

Table III shows that while the optimization transformation
have little to no effect on trivial programs, it reduces the size of
larger programs considerably. While the non-faulty programs
of the locks category have all ran into timeout without opti-
mization, their verification finished almost instantly after the
optimization transformations. Due to the small running time,
the other running time measurement differences are within the
margin of error.

The tasks of the eca set were also reduced considerably,
location count is reduced by 21%, edge count is reduced
by 17%. Sadly, the verifier algorithm was not able to cope
even with the reduced programs of this set, still timing out
during verification. As the verification method is completely
replaceable and this bounded model checking was merely
implemented for the workchains completeness, this is not
a large issue. However, further investigation is required for
execution time evaluation.

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a transformation workflow for
generating multiple smaller optimized formal models from
a single C program. To achieve this, the workflow uses

optimization algorithms known from compiler theory and the
program slicing technique.

The resulting models are then verified using a simple
bounded model checking and k-induction algorithm. The de-
veloped project was built as modular components, therefore
any module can be replaced for further improvement.

The evaluation of the above methods showed that program
slicing is promising technique for program size reduction
especially for verification. It is also worth noting that split-
ting a larger problem into multiple ones may allow efficient
parallelization of the verification algorithm. As the runtime
evaluation proved to be difficult because of the implemented
verifiers performance, further evaluation is in order with other,
more effective verification algorithms.

The project has several opportunities for improvements and
feature additions. Some of them are listed below.
• Extending the support for more features of the C lan-

guage. Such features could be arrays, pointers, structs.
• Introducing other optimization algorithms into the work-

flow, such as interprocedural slicing, or more aggressive
slicing methods such as value slicing [8].

• Currently the counterexample is only shown in the ver-
ified formal model. The additions of traceability infor-
mation would allow showing the counterexample in the
original source code.

• The LLVM compiler infrastructure framework2 provides
a language-agnostic intermediate representation (LLVM
IR) for several programming languages. Adding support
for the LLVM IR would extend the range of supported
languages and would also implicitly add multiple fine-
tuned optimizations into the workflow.
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Abstract— Providing a mechanism for authenticating a 

user’s access to resources is very important, especially for 
systems that can be considered critical for the data stored and 
the functionalities offered. In those environments, traditional 
authentication mechanisms can be ineffective to face 
intrusions: they usually verify user’s identity only at login, and 
even repeating this step, frequently asking for passwords or 
PIN would reduce system’s usability. Biometric continuous 
authentication, instead, is emerging as viable alternative 
approach that can guarantee accurate and transparent 
verification for the entire session: the traits can be repeatedly 
acquired avoiding disturbing the user’s activity. Another 
important property that critical systems may need to be 
guaranteed is non-repudiation, which means protection against 
the denial of having used the system or executed some specific 
commands with it. The paper focuses on biometric continuous 
authentication and non-repudiation, and it briefly presents a 
preliminary solution based on a specific case study. This work 
presents the current research direction of the author and 
describes some challenges that the student aims to address in 
the next years.   

Keywords—authenticity; non-repudiation; continuous 
authentication; biometrics; security; 

I. INTRODUCTION 
In the last decades, the constant growth and diffusion of 

Information and Communications Technology (ICT) 
contributed to make people’s life easier. Today, users and 
operators can exploit technologies to share confidential data 
from a long distance or to execute critical commands in real-
time. However, the need for security services has gone hand 
in hand with the technological progress.  

Especially when some operation is considered highly 
critical, preventing unauthorized access can avoid 
undesirable consequences or even catastrophes. The system 
in charge to execute an operation has to verify that the 
involved users are really who they claim to be, before giving 
them the permission to accomplish the action. 

Authentication is the process of providing assurance in 
the claimed identity of an entity. The identity verification is 
obtained exploiting a piece of information and/or a process 
called authentication factor that belongs to one of the 
following categories: knowledge (e.g. password, PIN); 
possession (e.g. passport, private key); inherence (biometric 

characteristics, physiological or behavioral, e.g. fingerprint 
or keystroke).  

Traditionally this verification is based on pairs of 
username and password and performed as a single-
occurrence process, only at login phase. No checks are 
executed during sessions, which are terminated by an 
explicit logout or expire after an idle activity period of the 
user. Instead, if the operation covers a long period, it may be 
necessary to repeat the authentication procedure; however, 
asking for passwords and secrets several times requires 
users’ active participation, and it may disturb their main 
activity. In order to design an effective continuous 
authentication mechanism for critical systems, together with 
security, also usability has to be taken into account. 

To prevent unauthorized access of ICT systems, 
solutions based on biometric continuous authentication have 
been studied in literature. They modify user identity 
verification from a single-occurrence to a continuous 
process [1], [2]. To enhance security, authentication can also 
exploit multiple traits, being multimodal; in fact it has been 
verified that using various biometric traits, properly 
combined, can improve the performance of the identity 
verification process. In addition, with appropriate sensors, 
some biometric traits can be acquired transparently. 

 However, most of the existing solutions suffer from 
high computational overhead or their usability has not been 
adequately substantiated. Our goal is to design a multi-
biometric continuous authentication system that is usable, 
incurs in little system overhead and permits to easily 
manage the trade-off between security and usability through 
configuration parameters. 

Besides authentication, being able to demonstrate user 
involvement in the usage of a system or application can also 
be useful. In fact, when a dispute arises or a disaster happens 
people may try to deny their involvement and to repudiate 
their behavior.  

Repudiation can be defined as the denial of having 
participated in all or part of an action by one of the entities 
involved. Consequently non-repudiation is the ability to 
protect against denial by one of the entities involved in an 
action of having participated in all or part the action.  

A non-repudiation mechanism should guarantee the 
establishment of the facts even in front of a court of law. 
Therefore, a non-repudiation service can be useful both as a 
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mean to obtain accountability as well as a deterrent for 
deliberate misbehaviors.  

This paper presents the research plan of a second year 
Ph.D. student and it follows [13] and [14]. The objective of 
the research direction identified is to study, define, and 
possibly test, mechanisms that can offer authentication and 
non-repudiation, with the aim to provide trustworthy 
security services for ICT systems.  

  The present work is focused on biometric continuous 
authentication and describes a case study regarding control 
room workstations, in which traditional mechanisms -i.e. 
password-based authentication- are not sufficient for the 
expected requirements. In addition, it addresses the issue of 
repudiation and study scenarios, and possible solutions in 
which a biometric-based non-repudiation service can help 
solving disputes between entities.  

The paper proceeds as follows: Section II presents our 
contribution in providing continuous authentication, briefly 
describing the approach we followed, some results regarding 
its usability and the ongoing work related to risk assessment; 
Section III concentrates on non-repudiation, its connection 
with biometrics and introduces some scenarios.  

 

II. BIOMETRIC CONTINUOUS AUTHENTICATION OF CONTROL 
ROOM OPERATORS 

A. Context and Requirements 
Control room operators are a category of users that can 

access potentially sensitive information to issue critical 
commands for the entire working session. They are also 
directly responsible for such commands and for the data 
accessed, modified and deleted.  

For instance, transportation (e.g. airways, railways), 
electric power generation, military or aerospace operations 
are some contexts in which control rooms are often adopted. 
Operators are in charge of analyzing and interpreting 
situations that describe the current status of events and 
activities. They are also able to command intervention teams 
on field, or to dispatch instructions in a target area. It is 
required to protect the control rooms and their workstations 
from unauthorized people, both intruders and insiders, that 
may want to acquire privacy-sensitive data, disrupt the 
operations, disseminate false information, or simply commit 
errors which will be ascribed to the operator in charge of the 
workstation.  

Consequently, in order to protect the workstations, we 
need to guarantee authenticity and non-repudiation of the 
commands/functions executed, meaning that the identity of 
the worker which sends the commands from a workspace 
should be properly verified and they cannot deny that action.  

In addition, the workspace should be usable for the 
legitimate worker: the security mechanism should not 
disturb or excessively slow down the working activity of the 
operator. For that reason the verification process should be 
transparent. 

B. The Proposed Continuous Authentication Protocol 
To comply with the above requirements we defined a 

client-server multimodal continuous authentication protocol 
(for further details on requirements please refer to [3]). The 
overall architecture of the biometric system is composed of 
the operator workstation and the connected sensors required 
for acquiring the biometric data. It is based on three 
biometric subsystems, for face recognition, fingerprint 
recognition and keystroke recognition.  

The protocol is shown in the sequence diagram of Fig. 1. 
and is divided in two phases: the initial phase and the 
maintenance phase. 

Initial phase. It is composed of the following steps: 
− The user logs in with a strong authentication or a 

successful biometric verification executed with all the 
three subsystems in a short time interval. 

− Biometric data is acquired by the workstation and 
transmitted to the authentication server.  

− The authentication server matches the operator’s 
templates with the traits stored in a database and 
verifies his/her identity.  

− In case of successful verification, the Critical System 
establishes a session and allows all restricted 
functions expected for the operator's role.  

− The authentication server computes and updates a 
trust level that decreases as time passes; the session 
expires when such level becomes lower than a 
threshold.  

Maintenance phase.  
− The authentication server waits for fresh biometric 

data, from any of the three subsystems.  
− When new biometric data is available, the 

authentication server verifies the identity claimed by 
the operator and, depending on the matching results 
of each subsystem, updates the trust level. 

− When the trust level is close to the threshold, the 
authentication server may send a notification to the 
operator, to signal that the session will expire soon. 

− When the trust level is below the threshold, the 
Critical System disables the restricted functions, 

Fig. 1 Sequence Diagram of the Protocol 
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which will be available again only when the operator  
restarts from the initial phase.  

No active participation of the operator is necessary, 
which only needs to use the mouse – that should incorporate 
a fingerprint scanner at the place where users would 
normally place their thumb-, a keyboard, or to be positioned 
in front of a webcam.  

More details about the protocol, the algorithm for trust 
level computation the prototype realized and the software 
implemented can be found in [3]. 

C. Usability and Risk Assessment  
To investigate the usability of the system, we are 

conducting an experiment (which in part is a replication of 
[10]) involving a wide group of participants, asking them to 
complete four tasks on a workstation provided with our 
continuous authentication application running in 
background. First, we want to measure the effectiveness of 
our solution, calculating the FAR (False Acceptance Rate), 
and the FRR (False Rejection Rate) for each of the 
biometric subsystem, and for the main biometric continuous 
authentication system. 

Then, we are going to measure the efficiency of the 
system, tracking the time interval between the initial 
authentication and any unexpected termination (meaning 
that the trust level has fallen below the threshold). Similarly, 
we are interested in the time necessary to the authentication 
system to reject an impostor. The user satisfaction will be 
measured with a questionnaire. In addition to usability 
testing, we want to clarify if the overhead introduced by the 
continuous authentication system can slow down the 
workstation and consequently increase the users’ required 
effort. Another main goal is to perform the specified 
measurements with different parameters configuration, e.g. 
varying the trust threshold (the minimum trust level allowed 
to remain authenticated).  

Preliminary results are in [11]. They show that the 
system appears to be secure and usable, and there is every 
chance to increase its usability integrating three highly 
accurate recognition algorithms. In fact, 75% of the users 
completed the tests without unexpected expirations, and this 
result is interesting if compared with the previous studies. 
As expected, modifying parameters we were able to obtain a 
highly usable configuration, with which the users remained 
authenticated for the whole duration of the session. In terms 
of resources utilization, Biometric Continuous 
Authentication System did not have any significant impact 
on task performance, and its overhead was negligible.  

We are also conducting a NIST-compliant qualitative 
risk assessment for the biometric continuous authentication 
protocol [15]. The activity focuses on both threats related to 
transmission and specific for the biometric system level. 
The goal is to establish its strengths, weaknesses and 
consequently understand the countermeasures needed in 
order to improve the security of our authentication solution.  

The proposed protocol addressed the problem of non-
repudiation exploiting the biometric nature of the 

credentials, which are supposed to provide it inherently. 
However, this is still under discussion, as described in 
Section IV; for this reason we are working on improvements 
that should fully guarantee non-repudiation. 

III. NON-REPUDIATION 
Explanatory tests show that with our solution for 

continuous authentication, the authenticity of control room 
operators is guaranteed. However, although with this 
solution it appears very hard for the user to deny having 
accessed the system, the deniability is related to error rates: 
is an intruder still able to repudiate actions?  

 Trying to directly address this problem, we aim to 
discuss if a continuous authentication mechanism, based on 
the usage of biometric traits, provides sufficient undeniable 
evidence of user’s participation in an action. 

A. Biometrics Can Guarantee Non-Repudiation? 
According to the author of [12], unlike passwords and 

tokens, biometrics - because of their strong binding to 
specific persons- is the only authentication factor capable of 
guaranteeing that authentication cannot subsequently be 
refused by a user.  
In [4] the author claims that for authentication mechanisms, 
non-repudiation depends on: (i) The ability of the 
authentication mechanism to discriminate between 
individuals; (ii) The strength of binding between the 
authentication data and the individual in question; (iii) 
Technical and procedural vulnerabilities that could 
undermine the intrinsic strength of the binding; (iv) 
Informed consent of the individual at the time the 
authentication is given.  

In addition, the discrimination capabilities of biometrics 
depend on the technology used and on other application-
related factors, that are quantified in terms of error rates 
(FAR and FRR) [4]. Despite biometric traits are sometimes 
presented in the computer security literature as an 
authentication factor that may solve the repudiation problem 
[12], [4], other works like [5], [6] draw completely different 
conclusions. Analyzing the state of the art, we can state that 
the answers to this question are contradictory.  

However, the situation changes if biometric 
authentication is coupled with another security mechanism 
like digital signature, which is commonly considered as the 
standard approach to achieve non-repudiation.  In fact, 
public key infrastructure, or PKI, and biometrics can well 
complement each other in many security applications [7]. 

Apart from biometrics, our opinion is that a non-
repudiation service should be capable of:  
- Reliably (and if necessary continuously) verifying the 

user’s identity.  In other words, we think that non-
repudiation is impossible without authentication. 

- Generating an undeniable and unforgeable evidence of 
the action and bind it with the user’s identity. 

B. Further Non-repudiation Scenarios  
There are many actions that an individual or an entity 

may want to deny, e.g. for economic reasons, to fraud 
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someone or to hide a malpractice. The most studied non-
repudiation protocols in the state of the art regard the 
transactions and exchange of messages scenario [8], [9].  

Usually a basic transaction is defined as the transferring 
of a message M from user A to user B, and the following are 
the typical disputes that may arise: 

− A claims that it has sent M to B, while B denies 
having received it; 

− B claims that it received M from A, while A denies 
sending it; and 

− A claims that it sent M before a deadline T, while B 
denies receiving it before T. 

Transactions, especially in the e-commerce field, are 
often denied by consumers. According to The New York 
Times, 0.05% of MasterCard transactions worldwide are 
subjects of disputes, that probably means around 15 million 
questionable charges per year. Analysts, in general, estimate 
that 20% of disputes involve fraud. Providing a non-
repudiation service for this scenario and solving those 
disputes, would probably make issuers save a lot of money. 
Non-repudiation services can cover other kind of actions, 
not only transactions.  In fact, there are many scenarios in 
the field of information exchange that may be better 
protected with proper authentication and non-repudiation 
services. Changing the mean of communication, the nature 
of exchanged data or the kind of information flow (i.e. one-
time occurrence or continuous), we can distinguish several 
issues to address and related solutions. For instance, e-mails, 
instant messaging, VoIP communications or accessing files 
stored in a private area on a server are some of the possible 
scenarios. In general, what the service should generate is 
undeniable evidence that can be used if a dispute arises. 
Evidence is a crucial object, and sometimes has to be 
processed by a Trusted Third Party (TTP) [8]. 

IV. CONCLUSIONS AND FUTURE WORKS 
Security is a fundamental property in the ICT field, 

especially for critical systems and applications in which 
confidential data are managed and where unauthorized 
accesses and behaviors can cause undesirable consequences 
or even catastrophes. In this context, authentication and 
non-repudiation are common requirements. The aim of our 
research is to study approaches to guarantee them. First, we 
are planning to integrate an existing biometric continuous 
authentication mechanism [2] with a non-repudiation service 
and our solution will probably combine biometric 
continuous authentication with digital signature.  

Finally, another ongoing activity is investigating if 
biometrics-based solutions permit to obtain irrefutable 
evidence of user identity: for different scenarios we will 
study which biometric trait –single or combined- can be 
appropriate, also considering the error rates that may be 
admissible, the technological or environmental limitations 
and the user acceptability. A strategy can be searching a set 
of the most accurate biometric verification algorithms in 
literature (e.g. exploiting initiatives like [16]), and trying to 

evaluate the probability of successful non-repudiation for a 
user of a continuous authentication system based on a 
combination of those algorithms. 
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Abstract—Due to their simplicity and structured nature, block-
oriented models are popular in nonlinear modeling applications.
A wide range of block-oriented identification algorithms were
developed over the years. One class of these approaches uses the
so-called best linear approximation to initialize the identification
algorithm. The best linear approximation framework allows the
user to extract important information about the system, it guides
the user in selecting good candidate model structures and orders,
and it proves to be a good starting point for nonlinear system
identification algorithms. This paper gives an overview of the
benefits and drawbacks of using identification algorithms based
on the best linear approximation.

I. INTRODUCTION

Nonlinear models are often used these days to obtain a
better insight in the behavior of the system under test, to com-
pensate for a potential nonlinear behavior using predistortion
techniques, or to improve plant control performance. Popular
nonlinear model structures are, amongst others, nonlinear
state-space models [1], NARMAX models [2], and block-
oriented models [3]. This paper focuses on the block-oriented
class of models.

Many different types of block-oriented identification algo-
rithms exist [3], where the linear-approximation based algo-
rithms are amongst the more popular. One particular method
to obtain such a linear approximation is the Best Linear
Approximation (BLA) framework. This paper discusses the
benefits and drawbacks of using BLA-based block-oriented
system identification algorithms.

II. BLOCK-ORIENTED SYSTEMS

Block-oriented models are constructed starting from two
basic building blocks: a linear time-invariant (LTI) block and
a static nonlinear block. Due to the separation of the nonlinear
dynamic behavior into linear time invariant dynamics and the
static nonlinearities, block-oriented nonlinear models are quite
simple to understand and easy to use. They can be com-
bined in many different ways. Series, parallel and feedback
connections are considered in this paper, resulting in a wide
variety of block-oriented structures as is depicted in Figure 1.
These block-oriented models are only a selection of the many
different possibilities that one could think of. For instance the
generalized Hammerstein-Wiener structure that is discussed in
[4] is not considered in this paper.

The LTI blocks and the static nonlinear blocks can be
represented in many different ways. The LTI blocks are most
often represented as a rational transfer function. The model

order selection of the order of the numerator and denominator
of the different blocks is a challenging problem. The static
nonlinear block can again be represented in a nonparamet-
ric way using, for instance, kernel-based methods, or in a
parametric way using, for instance, a linear-in-the-parameters
basis function expansion (polynomial, piecewise linear, radial
basis function network, ...), neural networks, or other dedicated
parametrizations for static nonlinear functions. Again, in the
parametric case, the nonlinear function complexity (number of
basis functions, neurons, ...) needs to be selected by the user.

Another issue of block-oriented models is the uniqueness of
the model parametrization. Gain exchanges, delay exchanges
and equivalence transformations are present in many block-
oriented structures [5]. This results in many different models
with the same input-output behavior, but with a different
parametrization.

It is assumed throughout this paper that a Gaussian additive,
colored zero-mean noise source ny(t) with a finite variance
σ2 is present at the output of the system only:

y(t) = y0(t) + ny(t). (1)

This noise ny(t) is assumed to be independent of the known
input u(t). The signal y(t) is the actual output signal and a
subscript 0 denotes the exact (unknown) value.

III. BEST LINEAR APPROXIMATION

A linear model often explains a significant part of the
behavior of a (weakly) nonlinear system. This approximative
linear model also provides the user with a better insight into
the behavior of the system under test. It motivates the use of
a framework that approximates the behavior of a nonlinear
system by a linear time invariant model. This paper considers
the Best Linear Approximation (BLA) framework [6], [7] to
estimate a linear approximation of a nonlinear system..

The BLA is best in mean square sense for a fixed class of
input signals U only, it is defined in [6], [7] as:

Gbla(q) , arg min
G(q)

E
{
|ỹ(t)−G(q)ũ(t)|2

}
, (2)

where E {.} denotes the expected value operator. The expected
value E {.} is taken w.r.t. the random input ũ(t). The zero-
mean signals ũ(t) and ỹ(t) are defined as:

ũ(t) , u(t)− E {u(t)} , (3)

ỹ(t) , y(t)− E {y(t)} . (4)
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Fig. 1. An overview of possible block-oriented structures. The different structures are obtained by using series, parallel and feedback connections of LTI
blocks (G(q) and S(q)) and static nonlinear blocks (f(·) and g(·)). There are three types of structure classes: single branch structures (Wiener, Hammerstein,
Wiener-Hammerstein and Hammerstein-Wiener), parallel branch structures (parallel Wiener, parallel Hammerstein, parallel Wiener-Hammerstein) and feedback
structures (simple feedback structure, Wiener-Hammerstein feedback and LFR).

The error in eq. (2) is minimized by [6], [7]:

Gbla(e
jωTs) =

SỸ Ũ (e
jωTs)

SŨŨ (e
jωTs)

, (5)

where SỸ Ũ and SŨŨ denote the crosspower of ỹ(t) and ũ(t)
and autopower of ũ(t) respectively.

The BLA of a system depends on the signal class U that is
used. This work considers U to be the Riemann equivalence
class of asymptotically normally distributed excitation signals.
The signal class U contains Gaussian noise sequences, but
contains also periodic signal sets known as random phase
multisines [7]. This class of signals will be referred to as
Gaussian signals in the remainder of this paper. When sta-
tionary Gaussian excitation signals are used, the BLA of many
block-oriented systems becomes a simple function of the linear
dynamics that are present in that system.

A. BLA of Single Branch Structures

The BLA of Wiener, Hammerstein and Wiener-
Hammerstein structures are a very simple expression of
the LTI-blocks present in the block-oriented system when
Gaussian excitation signals are used. Due to Bussgang’s
Theorem [8] one obtains the following expression for the
BLA of a Wiener-Hammerstein structure [9]:

Gbla(q) = λG(q)S(q), (6)

where q−1 is the backwards shift operator, and λ is a gain
depending on the system and considered class of input (input
power, offset and power spectrum). Note that the poles and
zeros of the BLA are the poles and zeros of the LTI blocks
present in the system [9].

B. BLA of Parallel Branch Structures

The output of a parallel branch structures is the summation
of multiple single branch system, hence, the BLA of a parallel
Wiener-Hammerstein system is given by:

Gbla(q) =

nbr∑

i=1

λiG
[i](q)S[i](q). (7)

Note that zeros of the BLA depend on the gains λi, while
the poles of the BLA are the poles of the LTI blocks of the
parallel Wiener-Hammerstein system [10].

C. BLA of structures containing feedback

Bussgangs Theorem cannot be used anymore in the case
of nonlinear feedback structures since the input of the static
nonlinear block is not Gaussian anymore. Therefore, only
approximate expressions of the BLA are given here. The BLA
of a simple feedback structure is approximately given by [1]:

Gbla(q) ≈
G(q)

1 + λG(q)
. (8)

The case of the LFR structure is more involved [11]:

Gbla(q) ≈ G[1](q) +
G[2](q)G[3](q)

1 + λG[4](q)
. (9)

It can be observed that the poles of the BLA of a simple
feedback structure depend on the gain lambda. In the case of
the LFR structure both the poles and the zeros depend on the
gain lambda.

IV. DETECTION OF NONLINEARITY

Although one might know beforehand that a given system is
nonlinear, it can very well turn out that, for the class of signals
that will realistically act on the system, and for the frequency
region of interest, and application on hand, no significant
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nonlinear behavior is observed. In such a case, much modeling
effort can be spared by simply estimating the BLA of the
system, and using it later on for its intended task (control
design, simulation, system analysis, ...).

The BLA framework allows a user to detect and quantify
the level of the nonlinear distortions. Based on this analysis
one can see, for a chosen class of input signals, if the effects
of the nonlinearity are dominant or not, in which frequency
region the nonlinearity is active, and how much can be gained
by estimating a nonlinear model [7].

V. MODEL ORDER AND MODEL STRUCTURE SELECTION

The model structure and model order selection problem is
a though challenge in many nonlinear system identification
problems. Given an input/output dataset the user has to decide
what type of nonlinear model will be used (e.g. Hammerstein,
Wiener, nonlinear feedback, ...) and which model orders (e.g.
orders of the dynamics and degree of the static nonlinearity)
are to be selected.

A. Model Order Selection

The model order selection problem in block-oriented mod-
eling problems is much harder than the one in the LTI
framework. One needs to select the model order of each LTI
block separately and on top of this, also the complexity of
the static nonlinearity needs to be decided on. Using the BLA
framework to start the modeling of a block-oriented system
allows one to extract the model orders of the combined linear
dynamics present in the block-oriented structure. Indeed, the
BLA is in many cases a simple function of the underlying
linear blocks of the block-oriented system under test (see
Section III).

An important part of the model order selection problem, the
selection of the order of the dynamics of the system, is now
taking place in a linear framework on the BLA, separate from
the nonlinearity selection problem. This results in a problem
which is much more simple and better understood by many
researchers and practitioners.

The selected model orders of the BLA can be used di-
rectly in the nonlinear modeling step (Hammerstein, Wiener,
Simple Feedback structure), or they are translated auto-
matically in a second step into the model orders of each
LTI block separately using either pole-zero allocation algo-
rithms [9], [10] to split the dynamics over the front and
the back (Wiener-Hammerstein, parallel Wiener-Hammerstein
and Wiener-Hammerstein Feedback structure), singular value
decomposition approaches [10], [12] to split the dynamics over
the parallel branches (parallel Hammerstein, parallel Wiener
and parallel Wiener-Hammerstein), or by solving a Riccati
equation in the case of the LFR structure [11].

B. Model Structure Selection

The model structure selection problem can also be tackled
in part by taking a closer look at the expression of the BLA for
the different block-oriented model structures. It is discussed in
[13] how the BLA behaves when it is estimated at different

setpoints of the system (different input amplitudes, constant
offsets or power spectra).

Single-branch system structures such as the Wiener-
Hammerstein structure will only exhibit a varying gain over
the different BLA setpoints, while parallel branch systems
exhibit varying zeros and feedback structures exhibit varying
poles over the different BLA setpoints (see Table I). Note that
the LFR structure is both a parallel branch and a nonlinear
feedback structure. Hence, both poles and zeros of the BLA
will depend on the input power, constant offset and power
spectrum. This analysis demonstrates how one can quickly
detect some important structural features of the nonlinear
system under test using only linear approximations of that
system.

VI. DRAWBACKS OF BLA-BASED MODELING

Of course, obtaining a sufficiently high-quality estimate
of the BLA (sufficiently low variance on the BLA) comes
at a cost. The variance on the estimated BLA depends on
how nonlinear the system under test is. If the system is very
nonlinear, a significant error is introduced when the least-
squares linearization is performed. This results in a high
variance on the estimate. The classical approach to lower the
variance on the estimated BLA is to use more input-output
data. Hence, it can be the case that to model a strongly
nonlinear system using the BLA, a larger dataset is required
compared to some of the approaches that take the nonlinearity
directly into account.

Another issue can be the presence of nonlinearities which
give rise to a BLA equal to zero over all frequencies. Of course
this is input dependent: this problem can be circumvented by
doing measurements at different constant offset of the input
signal. For example, the BLA of an even nonlinearity using a
zero-mean Gaussian input is equal to zero [8]. However, when
an constant offset is added to this input signal a non-zero BLA
is obtained.

A last remark concerns the systems with nonlinear feedback
(simple feedback structure, Wiener-Hammerstein feedback and
LFR). The BLA expressions given in this paper for these
systems are not exact. Although they are a good approximation
of reality, more involved effects come into play due to the non-
Gaussianity of the signal at the input of the static nonlinearity.
However, it is observed in many practical applications that
the simplification used in this paper does lead to good model
estimates, e.g. [1].

Note that, aside the drawbacks listed above, many other
challenges exists. The selection of the nonlinearity present in
the model, the validation of the system structure over a wide
range of use, dealing with model errors in a proper manner,
using more involved noise frameworks, and many more are all
open problems in nonlinear system identification.

VII. EXAMPLE: SILVERBOX

The Silverbox system (an electronic realization of the duff-
ing oscillator) is studied (see for instance [1]) here as a simple
illustration of the theory explained in the previous sections.
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TABLE I
MODEL STRUCTURE SELECTION USING THE BLA BY OBSERVING THE GAIN, POLES AND ZEROS OF THE BLA ESTIMATED AT MULTIPLE SETPOINTS OF

THE SYSTEM (W-H STANDS FOR WIENER-HAMMERSTEIN).

LTI Wiener Hammerstein W-H Parallel W-H Simple Feedback W-H Feedback LFR
Gain fixed varying varying varying varying varying varying varying
Poles fixed fixed fixed fixed fixed varying varying varying
Zeros fixed fixed fixed fixed varying fixed fixed varying

As a first step the nonparametric BLA is estimated. The
estimated FRF and the total (noise + nonlinearities) and noise
distortion variance are shown in Figure 2 for two different
amplitudes of the input excitation. Based on this figure, the
user can observe that a nonlinear model would not offer much
improvement in the low input level case. On the other hand,
the nonlinear contribution are almost as large as the linear one
for the high input level case.

A clear shift in the resonance frequency can be observed.
This is a strong indication for a shifting pole, and hence, the
presence of a nonlinear feedback in the system. The system
dynamics are also clearly visible, and can easily be determined
using the linear model order selection techniques, 2nd order
dynamics are clearly present.

To conclude, a nonlinear feedback model structure with 2nd
order linear dynamics should be a good candidate to model
the behavior of the Silverbox system when it is excited by the
high amplitude input level. This corresponds with the known
underlying structure of the Silverbox system, it is a simple
feedback structure. A linear model will be qualitative enough
in the low input case.

Fig. 2. The BLA of the Silverbox system for low (blue) and high (red) level
of excitation. The FRF (full line), total distortion levels (circles) and noise
distortion levels (dots) are shown. The size of the gap between the noise and
total distortion level indicate how nonlinear the system behaves.

VIII. CONCLUSION

The paper has presented an overview on how the complexity
of the (block-oriented) nonlinear modeling process can be
reduced significantly using the Best Linear Approximation.
The BLA framework offers answers to the questions: ”Should
I use a nonlinear model for the application at hand?”, ”What

model structure should I select?”, and ”How can I select the
model orders in a simple but efficient way?”.

The main disadvantage of using the BLA framework is that
it possibly requires more data than some of the other nonlinear
modeling approaches which are available. Furthermore, one
has to be aware that the BLA can be equal to zero in the
presence of nonlinearities which are even around the setpoint
of the input signal. This can, of course, easily be solved by
changing the constant offset of the input signal used.
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Abstract—Cyber-physical systems process a huge amount of
data coming from sensors and other information sources and
they often have to provide real-time feedback and reaction.
Cyber-physical systems are often critical, which means that their
failure can lead to serious injuries or even loss of human lives.
Ensuring correctness is an important issue, however traditional
design-time verification approaches can not be applied due to
the complex interaction with the changing environment, the
distributed behavior and the intelligent/autonomous solutions.

In this paper we present a framework for distributed runtime
verification of cyber-physical systems including the solution for
executing queries on a distributed model stored on multiple
nodes.

I. INTRODUCTION

The rapid development of technology leads to the rise of
cyber-physical systems (CPS) even in the field of safety crit-
ical systems like railway, robot and self-driving car systems.
Cyber-physical systems process a huge amount of data coming
from sensors and other information sources and it often has
to provide real-time feedback and reaction.

Cyber-physical systems are often critical, which means
that their failure can lead to serious damages or injuries.
Ensuring correctness is an important issue, however traditional
design-time verification approaches can not be applied due to
the complex interaction with the environment, the distributed
behavior and the intelligent controller solutions. These charac-
teristics of CPS result many complex behavior, huge or even
infinite number of possible states, so design-time verification
is infeasible.

There are plenty of approaches for monitoring require-
ments [6]. Runtime analysis provides a solution where graph-
based specification languages and analysis algorithms are
the proper means to analyze the behavior of cyber-physical
systems at runtime.

In this paper a distributed runtime verification framework
is presented. It is capable of analyzing the correctness of
cyber-physical systems and examining the local behavior of
the components. An open-source graph query engine being
able to store a model in a single machine served as a base of
the work [4]. It was extended to support distributed storage
and querying: in case of complex specifications, the algorithm
collects the information from the various analysis components
and infers the state of the system. The introduced framework

was evaluated in a research project of the department and
proved its usefulness.

Figure 1 shows the basic approach to runtime verification.
System development is started by specifying the requirements
for the system. Then it is designed, according to the specifica-
tion. From the specification and the system design, a monitor
is created for observing the environment. The monitoring
component stores the gathered information in a live model
which is updated continuously to represent the actual state
of the system. The runtime requirements can be evaluated on
the live model and the solution can find if a requirement is
violated. Various monitoring approaches exist, some observes
data dependent behavior, others can analyze temporal behavior.
In this paper the focus is on the runtime analysis of data
dependent behavior which can be captured by a graph based
representation.

Runtime verificationEngineering

Monitor

Specification

System design

Runtime 
requirements

Live model

Implementation
Monitoring

Fig. 1. Model-based runtime verification of a cyber-physical system.

II. GRAPHS AS ABSTRACTIONS

To verify cyber-physical systems, we need to have informa-
tion about its operation context. Various kinds of information
might belong to the context such as the physical environment,
computational units, configuration settings or other domain
specific information. In modern cyber-physical systems, sen-
sors provide a huge amount of data to be processed by the
monitors, it is important to have a comprehensive image of
the operation context which can be supported by graph-based
knowledge representations.
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The current snapshot of the system and its operational
context can be formally captured as a live model which
continuously gets updated to reflect relevant changes in the
underlying real system [3]. This live model serves as an
abstraction of the analyzed system. The framework uses graph
representation to model the actual state of the system. These
are directed, typed and attributed graphs. Their vertex types,
edge types, and other constraints must be specified in a meta-
model. The metamodel is also needed for the formalization of
specification, since it also specifies the possible structure of
the live model.

Runtime verification

Modeling

Allocation

Requirement
Specification 

Fig. 2. The presented approach for runtime verification.

The steps of our approach to graph based runtime verifi-
cation are illustrated on Figure 2. First we need to describe
the metamodel which captures the domain information of the
monitored system. According to the metamodel and the initial
state of the system, a live model is created. This live model
is used during the runtime analysis. Then requirements can be
defined. After modeling, the system engineer shall specify the
allocation i.e. how the elements of the live model are allocated
to the computational units of the distributed system. After
these tasks, the framework is able to generate the code for
runtime verification of the system.

We illustrate this approach with an example of a simplified
version of a train control system. First the metamodel shall
be created for the system. (Figure 3). In our case, the model
is composed of two types of elements: Segment and Train.
Segments next to each other in the physical configuration are
connected with connectedTo edges in the model. If a train is on
a segment, the model represents it with the onSegment edge.
An example live model of the system can be seen on Figure 4.

SegmentTrain

connectedTo

onSegment

Fig. 3. The metamodel for the system

Safety requirements of the system can be described using
graph patterns. A graph pattern is given by

1) a list of variables, each representing a vertex of the live
model with a given type

2) a set of constraints, which must be satisfied by the
variables, to match the pattern

S1
:Segment

connectedTo

connectedTo

T5 
:Train

S2
:Segment

S3
:Segment

S4
:Segment

T6 
:Train

onSegment onSegment

connectedTo

connectedTo

connectedTo

connectedTo

Fig. 4. An example live model for a train control system

Graph patterns in the framework are defined using the
VIATRA Query Language (VQL) [1]. It has a rich expressive
power capable of expressing constraints like:

• path expression – a specific reference, an attribute, or a
path of references must exist between two variables.

• attribute equality – an attribute of a vertex must be a
given value

• matching to a pattern – a list of given vertices must match
to a pattern

• negative pattern matching – a list of given vertices must
not match to another pattern

• check expression - an arbitrary expression containing
attributes must be evaluated true

Graph patterns expressed as VQL expressions are evaluated
on the input models. Graph pattern matching is reduced to
a search for isomorphic subgraphs in the input model. The
structure of the graph pattern yields the constraints during
the search: the parameters of the graph pattern will finally
be assigned to the corresponding graph nodes.

For example, if we want to find trains on adjacent segments,
we can use the following pattern (given in VQL):

pattern NeighboringTrain(TA, TB) // 1
{
Train(TA); // 2 TA is a train
Train(TB); // 3 TB is a train
Train.currentlyOn(TA, SA); // 4 TA is currently on SA
Segment.connectedTo(SA, SB); // 5 SA is connected to SB
Train.currentlyOn(TB, SB); // 6 TB is currently on SB

}

Fig. 5. Graphical visualization of the query.

The pattern’s header (1) specifies its name and its parame-
ters. Every statement in the body of the pattern is a constraint
(2–6) for variables (SA, SB) and parameters (TA, TB). The
visualized version of this pattern can be seen on Figure 5.

In the example model (Figure 4) there are 2 matches of this
pattern. One is {TA = T5 ,TB = T6 ,SA = S2 ,SB = S3}
and the other is {TA = T6 ,TB = T5 ,SA = S3 ,SB = S2}.

79



After the requirements are specified, the user has to decom-
pose the model and allocate it into computational units (see
Section III). We call this the allocation of the live model. The
computational units, the live model, and its allocation can be
given in JSON format:

{
"nodes" : [

{
"name" : "nodeA",
"ip" : "127.0.0.1",
"port" : 54321

}
,
...

],

"model" : [
{":id": 0, ":node": "nodeA", ":type": "Segment",

"connectedTo" : [1] },
{":id": 1, ":node": "nodeA", ":type": "Segment",

"connectedTo" : [0, 2] },
{":id": 2, ":node": "nodeB", ":type": "Segment",

"connectedTo" : [1, 3] },
...

]
}

The allocation of a model element can be given by the ”:node”
attribute. Model elements, like trains still must be assigned to
a specific computational unit, although its physical place can
change in time.

After the model elements are allocated to the computational
units, and the framework generated the necessary artifacts,
runtime verification can be started.

It works in a way depicted on Figure 6. The live model
is continuously updated with the runtime information coming
from sensors. Runtime requirements of the system – for-
malized as graph patterns – are verified on the live model
continuously, as it is described in the next section, to ensure
the system’s correct operation.

Fig. 6. Runtime verification of the system

III. DISTRIBUTED GRAPH QUERIES

The distributed nature of cyber-physical systems makes
runtime verification a challenging task. Various approaches
exist regarding the model and query management. The main
difference is the way they gather and process the information
and evaluate the requirements:

• Centralized model and query management. It would re-
quire the sensor information to be transmitted to a central
processing machine.

• Distributing the model to each computational unit. It
would require model synchronization between nodes.

• Dividing the live model and the query processing tasks
to the computational units.

Centralized approaches are not always viable due to various
reasons, like the central machine can be easily overloaded, it
can be a single point of failure (SPOF), which is undesirable
in safety-critical systems. In the second case, model synchro-
nization can introduce unwanted complexity, and overhead in
network communication. We solve these problems by process-
ing the sensor information on the corresponding computational
units, and updating the local part of a distributed live model.

A. Distributing the storage of the model

After the metamodel is specified, which describes the types
of vertices and edges, etc., an initial live model shall be
created, representing the initial state of the system. As parts
of the model are stored on different computational units,
each vertex of the global model must be assigned to a given
computational unit. References are stored where the source
object for that reference is stored. Basically, the reference can
only refer to a local object, i.e. a vertex assigned to the same
computational unit. If the reference’s destination vertex is not
assigned to the same computational unit, we create a proxy
object on the same computational unit. Vertices are identified
with a globally unique identifier, which is portable between
the computational units.

B. Distributed Query Evaluation Algorithm

The algorithm is based on the so-called local search algo-
rithm [2]. To find matches of a given graph pattern, we start
from a frame, i.e. a list of variables, unassigned at first. After
that, we execute a given list of search operations (called search
plan) being specific to the pattern.

To make the algorithm working in distributed systems, we
examined the search operations that cannot be executed locally.
There are basically two operations, that need to be handled
differently from the single machine solution:

• Iterating over the instances of a given vertex type cannot
be done locally, since there can be instances for that type
on any of the computational units.

• Assigning a variable through a given reference cannot be
done, if the source object is not present on the node.

At these operations we inserted a ,,virtual” search operation. It
doesn’t operate on the frame, but transmits the query execution
to the other computational units of the system. To iterate
over instances, first the query execution is distributed between
units by the virtual operation, and after that, iterating over
local instances can be done. In case of assigning variable
via a reference the virtual search operation checks, whether
the source object is present on the computational unit, then
transmits it to the other units if the source object is not
available.
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Fig. 7. Architecture of the distributed query evaluation.

C. Architecture
The architectural overview of the distributed query engine

is depicted on Figure 7.
On every computational unit of the distributed system, a

QueryRunner is set up for each generated query. Their role is
to execute query tasks specific to their Generated Query, on
the given local part of the model. An input for a query task
consists of 1) a frame, containing the assigned variables, i.e.
partial match, and 2) the index of the next search operation to
be executed.

If an operation needs distributed execution, the QueryRun-
ner uses the QueryService of the computational unit, which
handles network communication and reach other computa-
tional unit. To serialize the data between different nodes, we
used Protocol Buffers [5].

IV. EVALUATION

The query evaluation time of the framework was measured
in several configuration with the example railway control
system, that was presented before, but with a more complex
live model, containing 6000 elements. We split the model of
the railway system into 2, 3, and 4 parts. First we ran the
example query on each configuration, but every computational
unit was run on the same machine. So practically, network
communication had no overhead during the measurement
(Figure 8).

After that, every computational unit of the system was
run on different machines. This shows how network com-
munication affects the speed of our implementation. We can
conclude, that networking introduces overhead, but using more
computational units makes the system’s performance closer to
single machine solution. The integration of sensor information
in cyber-physical systems cause additional overhead, that can
be prevented using the distributed solution.

V. CONCLUSION

In this paper, we presented a framework for distributed
runtime verification of cyber-physical systems based on graph

Fig. 8. Average time of query execution by computational units

queries. Our approach represents the gathered information in
a distributed live model and evaluates the queries as close to
the informations sources as possible. A method for distributed
model storage and query execution is developed based on a
widely used search algorithm. In the future we plan to integrate
incremental graph query algorithms to further improve the
efficiency of the framework.
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[2] M. Búr. A general purpose local search-based pattern matching frame-
work. masters thesis. 2015.

[3] I. Dávid, I. Ráth, and D. Varró. Foundations for streaming model
transformations by complex event processing. Software & Systems
Modeling, 2016.
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Abstract—The behavior of safety critical systems is often
constrained by real time requirements. To model time dependent
behavior and enable formal verification, timed automata are
widely used as a formal model of such systems. However, due
to real-valued clock variables, the state space of these systems is
not finite, thus model checkers for timed automata are usually
based on zone abstraction. The coarseness of the abstraction
profoundly impacts performance of the analysis. In this paper,
we propose a lazy abstraction algorithm based on interpolation
for zones to enable efficient reachability checking for timed
automata. In order to efficiently handle zone abstraction, we
define interpolation in terms of difference bound matrices. We
extend the notion of zone interpolants to sequences of transitions
of a timed automaton, thus enabling the use of zone interpolants
for abstraction refinement.

I. INTRODUCTION

The behavior of safety critical systems is often time de-
pendent. Timed automata [1] are widely used in the formal
modeling and verification of such systems. Model checkers
for timed automata, e.g. UPPAAL [2], are most commonly
based on zone abstraction [3], used in conjunction with an
extrapolation operator to ensure termination and accelerate
convergence. The quality of the abstraction obtained this way
is imperative for performance, and many different techniques
have been proposed, including abstractions based on LU-
bounds [4], [5] and region closure [6]. In [7], a lazy abstraction
scheme is proposed for LU-abstraction where the abstraction
is refined only if it enables a spurious step in the abstract
system. This results in an abstraction that is based not only on
structural properties of the automaton (like constants appearing
in guards) but the state itself.

On the other hand, in SAT/SMT based model checking,
interpolation [8] is a commonly used technique [9], [10] for
building safe abstractions of systems. As interpolants can be
used to extract coarse explanations for the infeasibility of error
paths, they can be used for abstraction refinement [11] in a
way relevant for the property to be proved. Algorithms for in-
terpolant generation have been proposed for several first order
theories, including linear arithmetic (LA(Q)) and difference
logic (DL(Q)) over the rationals [12]. To better support certain
verification tasks, classical interpolation has been generalized
in various ways, e.g. to sequence interpolants [10].

In this paper, we propose a lazy abstraction algorithm
similar to [7] for reachability checking of timed automata

∗This work was partially supported by Gedeon Richter’s Talentum Foun-
dation (Gyömrői út 19-21, 1103 Budapest, Hungary).

based on interpolation. In order to efficiently handle zone
abstraction, we define interpolation for zones represented in
terms of difference bound matrices. Moreover, we extend the
notion of zone interpolants to sequences of transitions of a
timed automaton, thus enabling the use of zone interpolants
for abstraction refinement.

The rest of the paper is organized as follows. In Section II,
we define the notations used throughout the paper, and present
the theoretical background of our work. In Section III we
present our work: we give an interpolation algorithm for
zones represented as DBMs (Section III-A), describe how
inductive sequences of zones can be computed for timed
automata using zone interpolation (Section III-B), and outline
how such sequences can be used to speed up convergence
for reachability checking of timed automata (Section III-C).
Section IV describes the implementation and a preliminary
evaluation of the proposed algorithm. Finally, conclusions are
given in Section V.

II. BACKGROUND AND NOTATIONS

In this section, we define the notations used throughout the
paper, and outline the theoretical background of our work.

A. Timed Automata

Timed automata [1] is a widely used formalism for mod-
eling real-time systems. A timed automaton (TA) is a tuple
(Loc,Clock , ↪→, Inv , `0) where
• Loc is a finite set of locations,
• Clock is a finite set of clock variables,
• ↪→⊆ Loc × ClockConstr × P(Clock)× Loc is a set of

transitions where for (`, g, R, `′) ∈ ↪→, g is a guard and
R is a set containing clocks to be reset,

• Inv : Loc → ClockConstr is a function that maps to each
location an invariant condition over clocks, and

• `0 ∈ Loc is the initial location.
Here, ClockConstr denotes the set of clock constraints, that

is, difference logic formulas of the form

ϕ ::= true xi ≺ c xi − xj ≺ c ϕ ∧ ϕ
where xi, xj ∈ Clock , ≺ ∈ {<,≤, .=} and c ∈ Z.
The operational semantics of a TA can be defined as a

labeled transition system (S,Act ,→, I) where
• S = Loc × Eval is the set of states,
• I = {(`0, η0)} where η0(x) = 0 for all x ∈ Clock is the

set of initial states,
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• Act = R≥0 ∪ {α}, where α denotes discrete transitions,
• and a transition t ∈→ of the transition relation
→⊆ S ×Act × S is either a delay transition that in-
creases all clocks by a value δ ≥ 0:

` ∈ Loc δ ≥ 0 η′ = Delayδ(η) η′ |= Inv(`)

(`, η)
δ−→ (`, η′)

or a discrete transition:

`
g,R
↪−−→ `′ η |= g η′ = ResetR(η) η′ |= Inv(`′)

(`, η)
α−→ (`′, η′)

Here, Eval denotes the set of clock valuations, that is,
mappings of clocks to real values. For a real number δ ≥ 0
the function Delayδ : Eval → Eval assigns to a valuation
η ∈ Eval a valuation Delayδ(η) such that for all x ∈ Clock

Delayδ(η)(x) = η(x) + δ

Moreover, ResetR(η) models the effect of resetting all
clocks in R to 0 for a valuation η ∈ Eval :

Resetη(R)(x) =

{
0 if x ∈ R
η(x) otherwise

For these functions, we define images and preimages in the
usual way.

As the concrete semantics of a timed automaton is infinite
due to real valued clock variables, model checkers are often
based on a symbolic semantics defined in terms of zones. A
zone Z is the solution set of a clock constraint ϕ, that is
Z = JϕK = {η | η |= ϕ}. The following functions are opera-
tions over zones:
• Conjunction: Z ∩ g = Z ∩ JgK,
• Future: Z↑ =

⋃
δ≥0 Delayδ(Z),

• Past: Z↓ =
⋃
δ≥0 Delay−1δ (Z),

• Reset: R(Z) = ResetR(Z),
• Inverse reset: R−1(Z) = Reset−1R (Z).
For timed automata, an exact pre- and postimage operator

can be defined over zones. Let e = (`, g, R, `′) be an edge of
a TA with invariants Inv . Then
• post(Z, e) = R(Z↑ ∩ Inv(`) ∩ g) ∩ Inv(`′),
• pre(Z, e) = (R−1(Z ∩ Inv(`′)) ∩ g ∩ Inv(`))↓.

B. Difference Bound Matrices

Clock constraints and thus zones can be efficiently repre-
sented by difference bound matrices.

A bound is either ∞ or of the form (m,≺) where m ∈ Z
and ≺ ∈ {<,≤}. Difference bounds can be totally ordered
by ”strength”, that is, (m,≺) < ∞, (m1,≺1) < (m2,≺2)
iff m1 < m2 and (m,<) < (m,≤). Moreover the sum of
two bounds is defined as b+∞ =∞, (m1,≤) + (m2,≤) =
(m1 +m2,≤) and (m1, <) + (m2,≺) = (m1 +m2, <).

Let Clock = {x1, x2, . . . , xn} and x0 a reference clock
with constant value 0. A difference bound matrix (DBM)

over Clock is a square matrix D of bounds of order n + 1
where an element Dij = (m,≺) represents the clock con-
straint xi − xj ≺ m. We say that a clock xi is constrained
in D iff Dii < (0,≤), or there exists an index j 6= i such that
Dij <∞ or Dji <∞.

We denote by JDK the zone represented by the constraints
in D. When it is unambiguous from the context, we omit the
brackets. D is consistent iff D 6= ∅. D is closed iff constraints
in it can not be strengthened without losing solutions, formally,
iff Dij ≤ Dik +Dkj for all 0 ≤ i, j, k ≤ n. We will call D
canonical iff it is either closed, or D0,0 = (0, <). The canon-
ical form of a DBM is unique up to the ordering of clocks.
The zone operations above can be efficiently implemented over
canonical DBMs [13].

The intersection of DBMs A and B, defined over
the same set of clocks with the same ordering, is
A uB = [min(Aij , Bij)]ij . Here, JA uBK = JAK ∩ JBK, re-
gardless of whether A and B are closed, but A u B might
not be closed even if A and B are. We denote by A v B iff
JAK ⊆ JBK. Moreover, > = ((0,≤)) and ⊥ = ((0, <)), that
is, > and ⊥ are the smallest canonical DBMs representing
Eval and ∅, respectively.

III. INTERPOLATION FOR TIMED AUTOMATA

A. Binary Interpolants from DBMs
Let A and B two DBMs such that A u B is inconsistent.

An interpolant for the pair (A,B) is a DBM I such that
• A v I ,
• I uB is inconsistent and
• clocks constrained in I are constrained in both A and B.
This definition of a DBM interpolant is analogous to the

definition of an interpolant in the usual sense [9]. As DBMs
encode formulas in DL(Q), a theory that admits interpola-
tion [12], an interpolant always exists for a pair of inconsistent
DBMs. Our approach for interpolant generation is the direct
adaptation of the graph-based algorithm of [12] for DBMs.
For the ease of exposition, we assume that A and B are
defined over the same set of clocks with the same ordering.
This is without the loss of generality, as a DBM can be
easily extended with extra columns and rows representing
unconstrained clocks without changing its canonicity or the
zone it encodes.

The algorithm searches for a negative cycle in A u B
to establish its inconsistency by running a variant of the
Floyd-Warshall algorithm [14] on it. In this context, a cycle
is negative iff the sum of its constituting bounds is less than
(≤, 0). If no such cycle is found, then A is consistent with B,
thus no interpolant exists, and as a side effect the canonical
representation of their intersection is obtained. Otherwise, the
cycle is reconstructed as a list of indexes and from it an
interpolant is extracted in the following way.

Without loss of generality, assume that the cycle is
C = (0, 1, . . . , l − 1), and addition for indexes is inter-
preted modulo l. If for all indexes 0 ≤ i < l it holds
that Ai,i+1 ≥ Bi,i+1, then B is inconsistent, and the inter-
polant is >. Dually, if for all indexes 0 ≤ i < l we have
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Ai,i+1 ≤ Bi,i+1, then A is inconsistent and the interpolant
is ⊥. Otherwise maximal A-paths can be established, each
being a maximal list (i, i + 1, . . . , j) of indexes in C such
that Ai−1,i ≥ Bi−1,i, Ai,i+1 < Bi,i+1, Ak,k+1 ≤ Bk,k+1 for
all i ≤ k < j and Aj,j+1 > Bj,j+1. Notice that clocks xi and
xj are constrained in both A and in B. The interpolant I is
then defined as

Iij =





∑j−1
k=i Ak,k+1 if (i, . . . , j) is a maximal A-path

(0,≤) if i = j

∞ otherwise

The algorithm thus yields a canonical DBM in time O(n3),
even if A and B are not canonical. However, the interpolant
obtained for canonical DBMs might be simpler.

B. Sequence interpolants for Timed Automata

In SAT/SMT based model checking, interpolation is used
to obtain inductive sequences of states in order to refine
abstractions [10]. To do this, the transitions constituting of
a given path are transformed to a formula that is satisfiable iff
the path is feasible. If the formula is unsatisfiable, a sequence
interpolant can be extracted from its refutation produced by
the solver.

This same approach can be applied to timed automata, as for
a sequence of transitions, such a formula can be constructed in
LA(Q) [15], a theory that admits interpolation. However, due
to delay transitions, the formula will not be in DL(Q), thus
the interpolant is not guaranteed to be a sequence of zones.

So in order to make interpolation applicable for the zone-
based model checking of timed automata, we generalize binary
interpolation for DBMs to sequences of transitions of a timed
automaton, analogously to the usual definition of sequence
interpolation.

Let (e1, e2, . . . en) be a sequence of edges of a timed
automaton that induce an infeasible path. Then there exists
a sequence of zones, represented by DBMs (I0, I1, . . . , In)
such that
• I0 = > and In = ⊥,
• post(Ii, ei+1) v Ii+1 for all 0 ≤ i < n and
• for all 0 < i < n, the clocks constrained in Ii are con-

strained both in I0, . . . , Ii and Ii+1, . . . , In.
Such an interpolant can be calculated by using the

image operators post and pre. Let Bn = > and
Bi−i = pre(Bi, ei) for all 0 ≤ i < n. Moreover, let
A0 = >, and Ai+1 = post(Ii, e1+1) for all 0 ≤ i < n. Then
we can define Ii for all 0 ≤ i ≤ n as the interpolant for
the pair (Ai, Bi). This calculation is analogous to the usual
computation of a sequence interpolant in terms of binary
interpolation, and it can be easily shown that (I0, I1, . . . , In)
is indeed a sequence interpolant.

C. Lazy Abstraction for Timed Automata using Interpolants

For our purposes, an abstract reachability tree (ART) is
a rooted directed tree of nodes labeled by pairs of the form

(`, E), where E is an abstract state representing a zone JEK.
A node where JEK = ∅ is called infeasible. A node might be
marked covered by an other node, called the covering node.
A node is excluded iff it is either covered, infeasible or has
an excluded parent. An ART is `-safe iff all nodes labeled by
location ` are excluded. An ART is said to be well-labeled iff
it satisfies the following properties:

1) the root of the tree is labeled (`0, E0) for E0 such that
JE0K = {η0},

2) for each non-excluded node labeled (`, E) and transition
e = (`, g, R, `′), there is a successor node labeled
(`′, E′) such that post(JEK, e) ⊆ JEK, and

3) each covered node labeled (`, E) is covered by a non-
excluded node (`, E′) such that JEK ⊆ JE′K.

A well-labeled, `-safe ART for a timed automaton is a proof
that ` is unreachable. The goal of model checking is to find
such an ART, or show a counterexample.

For this end, one extreme would be to expand the tree based
on a precise post-image operator post and never apply refine-
ment. An other approach, known as IMPACT [10] in software
model checking, would expand the tree with abstraction > for
each new node, and apply interpolation-based refinement to
maintain well-labeledness and safety in the following cases:

• A non-excluded node labeled with `err is encountered. To
exclude the error node, an interpolant is calculated for the
path from root to the node. If such an interpolant exists,
it is used to strengthen the current abstraction, otherwise
a counterexample is given.

• To enforce coverage. To enforce JEK ⊆ JE′K and enable
coverage between non-excluded nodes (`, E) and (`, E′),
an interpolant is calculated for the path from the least
common ancestor of the two nodes and the node to cover.
If such an interpolant exists, it is used to strengthen the
abstraction, and thus enable coverage.

Our approach can be seen as the combination of the two
algorithms above. It is the adaptation of the strategy proposed
in [7] for interpolation-based refinement. In this framework,
an abstract state is essentially a pair of zones (Z,W ). Here, Z
tracks the precise reachability information, and W an abstrac-
tion of it, thus we define J(Z,W )K as JW K. The root of the tree
is labeled (Z0, Z0). When expanding a node labeled (`, Z,W )
for a transition e = (`, g, R, `′), the successor obtains label
(`′, Z ′,W ′) such that Z ′ = post(Z, e) and W ′ = >. Once
a node labeled (`err , Z,W ) is encountered where Z 6= ⊥, we
know that `err is reachable, and the counterexample can be
reported.

We apply interpolation in the following two cases to main-
tain well-labeledness:

• A non-excluded node labeled (`err ,⊥,W ) is encoun-
tered. In this case, the only reasonable thing to do is to
exclude the node. Suppose the node can not be excluded
by covering any of its ancestors. We then strengthen the
abstraction by a zone interpolant computed for the path
from the root to the node, thus excluding the node.
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• To enforce coverage. Given a pair of non-excluded nodes
labeled (`, Z,W ) and (`, Z ′,W ′), respectively, such that
Z ⊆ W ′ but W 6⊆ W ′, we can strengthen the ab-
straction to obtain W ⊆ W ′. This however requires the
complementation of zone W ′, which may yield more
than one zones. We use each of those zones as a target
for computing an interpolant from the root to the node.
By strengthening the abstraction with each of those
interpolants, we effectively enforce coverage.

Note that by strengthening the abstraction for a given path,
some previously covered nodes might become uncovered. For
these nodes, we can try to enforce coverage, which might be
a costly operation. However, forced coverage can be applied
incrementally: when the abstraction W of a covering node is
strengthened by an interpolant I , it is sufficient to use I as a
target for interpolation, which is possibly simpler than the new
abstraction. Moreover, a heuristic can be applied that restricts
forced coverage for cases where the target is represented by a
small DBM.

IV. IMPLEMENTATION

We implemented the DBM-based interpolation approach
described in Section III-A. Moreover, as a proof of concept,
we implemented the algorithm proposed in Section III-C as
a prototype in the formal analysis framework THETA. Our
current implementation does not support forced coverage.

Nevertheless, the algorithm shows promising results in
terms of both speed and the size of the ART it constructs. We
compared our algorithm with basic forward search (without
extrapolation), and two versions of IMPACT without forced
covering implemented for timed automata, one for predicate
abstraction (P), and one for zone abstraction (Z). We used
a small model, the model of Fischer’s protocol for four
processes. Besides execution time of the analysis and the
number of nodes in the resulting ART, we calculated the
number of nodes that are either non-excluded or leaf, as this
is the number of meaningful nodes.

e. time (s) #n #n minimized
our algorithm 7 4946 985
basic search 10 9857 9857
IMPACT(Z) TO - -
IMPACT(P) TO - -

From the results in the table above, it can be seen that
IMPACT without forced covering reaches timeout (set to one
minute) regardless of the abstract domain used, as the al-
gorithm spends a significant amount of time searching in
unreachable segments of the state space. On the other hand,
our algorithm generates an ART half as big as the basic
algorithm, even without forced covering. As the number of
nodes in the reduced ART suggests, with a better search and
covering strategy, the number of nodes in the ART can be
significantly decreased.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a lazy abstraction algorithm for
reachability checking of timed automata based on interpolation

for zones. In order to efficiently handle zone abstraction, we
treat interpolant generation as an operation over difference
bound matrices. Furthermore, we extended the notion of zone
interpolation to sequences of transitions of a timed automaton.
By using interpolants for abstraction, the proposed algorithm
has the potential to significantly speed up the convergence of
reachability checking.

We are currently extending our implementation with forced
covering. In the future, we plan to investigate how inter-
polation can be efficiently used in conjunction with known
abstractions for zones to obtain coarse abstractions for timed
automata. Moreover, we intend to search for more efficient
interpolant generation algorithms for DBMs. Furthermore,
we are going to thoroughly evaluate an optimized version
of our algorithm on usual benchmarks for timed automata,
and compare it to the lazy abstraction algorithm based on
LU-bounds [7].
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Abstract—Revealing anomalies in data usually suggests 

significant - also critical - actionable information in a wide variety 

of application domains. Anomaly detection can support 

dependability monitoring when traditional detection mechanisms 

e.g., based on event logs, probes and heartbeats, are considered 

inadequate or not applicable.  On the other hand, checking the 

behavior of complex and dynamic system it is not trivial, since the 

notion of “normal” – and, consequently, anomalous - behavior is 

changing frequently according to the characteristics of such system. 

In such a context, performing anomaly detection calls for dedicate 

strategies and techniques that are not consolidated in the state-of-

the-art. The paper expands the context, the challenges and the 

work done so far in association with our current research direction. 

The aim is to highlight the challenges and the future works that the 

PhD student tackled and will tackle in the next years.   

Keywords—anomaly detection; monitoring; multi-layer; 

dynamicity; complex system; online 

I. INTRODUCTION 

Using anomaly detectors to assess the behavior of a target 
complex system at runtime is a promising approach that was 
explored in the last decade [1], [2]. Previous works showed that 
anomaly detection is a very flexible technique, analyzing 
different monitored behavioral data flows, finally allowing 
correlation between different events. This technique is 
commonly used to build error detectors [5], intrusion detectors 
[4] or failure predictors [3], assuming that a manifestation of an 
error or an adversarial attacker activity leads to an increasingly 
unstable performance-related behavior before escalating into a 
(catastrophic) failure. Anomaly detectors are in charge of i) 
detecting these fluctuations, and ii) alerting the administrator – 
who triggers proactive recovery or dumps critical data - with a 
sufficient look-ahead window. As stated in [1], anomaly 
detection strictly depends on the ability of distinguishing among 
normal and anomalous behavior. Unfortunately, complex and 
dynamic systems can often hide behavioral details (e.g., Off-
The-Shelf components) or call for frequent reconfigurations, 
negatively affecting our ability in performing anomaly detection.  

In particular, enterprise solutions such as Nagios, Ganglia or 
Zenoss allow the administrator to choose which indicators (e.g., 
CPU usage, accesses to hard disk) to observe, tracing their 
evolution through time. These enterprise tools also give the 
chance to setup static thresholds for each indicator, testing the 
availability of each single functionality or service exposed by 
the target system. Nevertheless, as expanded in Section III, they 
i) do not implement dynamic thresholds (e.g., statistical) for the 

monitored indicator, and ii) cannot easily adapt their behaviour 
when the configuration of the target system changes, calling for 
manual reconfigurations. This represents a strong limitation for 
the usage of such tools in dynamic systems. 

The paper is structured as follows: Section II reports on 
anomaly detection, while Section III points out the motivations 
of our work and the related challenges. Section IV describes the 
framework for anomaly detection that is currently under 
investigation, while Section V and Section VI conclude the 
paper focusing on the ongoing and planned future works.  

II. ANOMALY DETECTION IN COMPLEX DYNAMIC SYSTEMS 

Dynamicity is the property of an entity that constantly changes 
in term of offered services, built-in structure and interactions 
with other entities. From one side, this defines systems that can 
adapt their behavior according to the actual needs, but on the 
other side it makes all the behavioral checks harder to execute 
since the normal behavior is changing very often. Regarding 
dependability assessment, this means that failure predictors must 
be kept up-to-date as the system is running, calling for a new 
training phase aimed at reconfiguring all the involved 
parameters. This calls for a monitoring solution that i) 
continuously observes the system to avoid or mitigate failures of 
attack, ii) gathers data from modules or layers where possible, 
and iii) is able to infer the status of the whole system looking 
only at data collected at its constituent modules. It follows that 
detection algorithms based on fingerprints e.g., antiviruses [14], 
intrusion detectors [13] or failure predictors [9], may result not 
adequate for complex systems due to their intrinsic dynamicity. 

In such a context, anomaly detection seems one of the most 
suitable approaches in detecting unexpected behaviors in 
dynamic and complex systems. In the security domain, this 
technique was proven effective [14] in detecting zero-day 
attacks, which exploit unknown vulnerabilities to get into the 
targeted system. Antiviruses and intrusion detectors can detect 
hazards when they identify a behavior that is compliant with a 
known fingerprint of an attacker or a malware, but they need 
also rules to detect zero-day attacks or attacks from unknown 
adversaries [12]. The same approach is commonly used to detect 
threats to dependability in complex systems, also when the 
system is composed by OTS components [10], [7]. Moreover, 
unexpected or previously unknown system failures can be 
predicted observing specific indicators to characterize if the 
runtime system behavior is compliant with given performance 
expectations [9], [10]. Several frameworks targeting anomaly 
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detection in a specific subset of complex systems, namely 
Systems-of-Systems (SoSs) are summarized in [20]. More in 
detail, some of them deal with dynamicity [11], while others 
tackle systems composed of OTS components [9], [10]. All the 
considered frameworks are realized either for dependability [9], 
[10], [11] or security [4], [12] purposes. 

III. MAIN CHALLENGES 

To the authors’ knowledge, the topic of bringing anomaly 
detection into the design of complex dynamic systems e.g., 
Service Oriented Architectures (SOAs) [8] or SoSs [20], was not 
explored in the recent years. Consequently, after expanding the 
topic of anomaly detection, in the rest of the paper we will report 
on both the motivations of the research and the challenges that 
the 3

rd
-year PhD student tackled in the first two years, with a 

closer look to the next planned research steps. 

Summarizing, the tackled research challenges are:  

CH1. Design a monitoring and anomaly detection framework 
that is suitable for dynamic and/or distributed systems and 
therefore is tailored to automatically adapt its parameters 
depending on the current configuration of the target system; 

CH2. Provide a flexible monitoring strategy that copes with 
dynamicity of complex systems. The strategy must allow 
the collection of data coming from different system layers 
and constituent machines that can be updated frequently; 

CH3. Understand the expected behavior of the system according 
to its current context. The context must be detected at 
runtime, calling for specific training phases that should not 
interfere with the normal usage of the platform (e.g., 
availability to the users) 

CH4. Analyze monitored data to extract the minimum set of 
features (i.e., anomaly checkers and, consequently, 
monitored indicators) which guarantees the best tradeoff 
between monitoring effort and efficiency of the anomaly 
detection process at runtime; 

IV. BUILDING A FRAMEWORK FOR MULTI-LAYER ANOMALY 

DETECTION IN COMPLEX DYNAMIC SYSTEMS 

A. Designing the framework 

In [7] the authors applied the Statistical Predictor and Safety 
Margin (SPS) algorithm to detect the activation of software 
faults in an Air Traffic Management (ATM) system, that has few 
defined functionalities with respect to a SOA. Observing only 
Operating System (OS) indicators, SPS allowed performing 
error detection with high precision. This is a promising approach 
since it i) relies on a multi-layer monitoring strategy that allows 
to infer the state of the applications looking only at the 
underlying system layers (see CH2), and ii) uses a sliding-
window-based machine learning algorithm that automatically 
tunes its parameters as the data flows (see CH1). Therefore we 
adapted this approach to work in a more dynamic context [5] 
where we instantiated the framework on one of the 4 virtual 
machines running the prototype of the Secure! [6] SOA.  

The results achieved showed that analysing such a dynamic 
system without adequate knowledge on its behavior reduces the 

efficiency of the whole solution. We explain these outcomes as 
follows. SPS detects changes in a stream of observations 
identifying variations with respect to a predicted trend: when an 
observation does not comply with the predicted trend, an alert is 
raised. If the system has high dynamicity due to frequent 
changes or updates of the system components, or due to 
variations of user behaviour or workload, such trend may be 
difficult to identify and thus predict. Consequently, our ability in 
identifying anomalies is affected because boundaries between 
normal and anomalous behaviour cannot be defined properly. 

Consequently, we investigated which information on SOA 
services we can obtain in absence of details on the services 
internals and without requiring user context (i.e., user profile, 
user location). In SOAs, the different services share common 
information through an Enterprise Service Bus (ESB, [8]) that is 
in charge of i) integrating and standardizing common 
functionalities, and ii) collecting data about the services. This 
means that static (e.g., services description available in Service 
Level Agreements - SLAs) or runtime (e.g., the time instant a 
service is requested or replies, or the expected resources usage) 
information about the context can be retrieved using knowledge 
given by ESB. In particular, having access to the ESB provides 
knowledge on the set of generic services running at any time t. 
We refer to this information as context-awareness of the 
considered SOA.  

We can exploit this information to define more precisely the 
boundaries between normal and anomalous behaviour of the 
system under observation. For example, consider a user that 
invokes a store file service at time t. We can combine context-
awareness with information on the usual behaviour of the 
service, which here regards data transfer. Therefore, if the store 
file service is invoked at time t, we expect the exchange of data 
during almost the entire execution of the service. Contrary, we 
can reveal that something anomalous is happening. This also 
highlights that the observation of lower levels make us able to 
identify the manifestation of errors at service level, ultimately 
providing both i) monitoring flexibility, and ii) maximum 
detection capability. 

B. High-Level Architecture 

In Figure 1 we depicted a high-level view of the framework. 
Starting from the upper left part of the figure, the framework can 
be described as follows. The user executes a workload, which is 
a sequence of invocations of SOA services hosted on the Target 
Machine. In this machine, probes are running, observing the 
indicators coming from 3 different system layers: i) OS, ii) 
middleware and iii) network. These probes collect data, 
providing a snapshot of the target system composed by the 
observation of indicators retrieved at a defined time instant. The 
probes forward the snapshot to the communication handler, 
which encapsulates and sends the snapshot to the other 
communication handler. Data is analyzed on a separate machine, 
the Detector Machine. This allows i) not being intrusive on the 
Target Machine, and ii) connecting more Target Machines to the 
same Detector Machine (note that the number of Target 
Machines is limited by the computational resources of the 
Detector Machine). The communication handler of the Detector 
Machine collects and sends these data to the monitor 
aggregator, which merges them with runtime information on the 
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context (e.g., the sequence of service calls) obtained from the 
ESB. Looking at runtime information, the monitor aggregator 
can detect changes in the SOA and notify the administrator that 
up-to-date services information is needed to appropriately tune 
the anomaly detector. The administrator is in charge of running 
tests (test invocation) to gather novel information on such 
services.  

The snapshots collected when the SOA is opened to users are 
sent to the anomaly detection module, which can query the 
database for contextual services information. The anomaly 
detection module analyzes each observed snapshot to detect 
anomalies. If an anomaly is detected, an alert is raised to the 
system administrator that takes countermeasures and applies 
reaction strategies. These are outside from the scope of this work 
and will not be elaborated further. 

C. Exercising the framework 

The framework is instantiated specifying: i) a workload, ii) the 
approach to obtain contextual data (as mentioned in Section 
4.A), iii) the set of monitored indicators, and iv) the amount of 
data needed for training. The methodology is composed of two 
phases: Training Phase and Runtime Execution. 

Training Phase. First, the approach (static or runtime) to obtain 
contextual data characterizing the fingerprint of the investigated 
services is instantiated. Then, training data is collected during 
the execution of the chosen workload, storing in a database a 
time series for each monitored indicator representing the 
evolution of its value during the train experiment. These data are 
complemented with data collected conducting anomaly injection 
campaigns, where anomalies are injected in one of the SOA 
services, to witness the behavior of the target system in such 
situations. These data are lastly used by the anomaly detection 
module to tune its parameters depending on the current context. 
Injected anomalies simulate the effect of the manifestation of an 
error or of an upcoming failure, e.g., anomalous resource usage. 

Runtime Execution. Once the training phase is ended and the 
parameters of the anomaly detector are defined, the system is 
opened to users. Monitor aggregator merges each snapshot 
observed by the probing system with runtime information, and it 
sends them to the anomaly detection module. This module 
provides a numeric anomaly score: if the score reaches a 
specified threshold, an anomaly alert is risen and the 

administrator is notified. If during this phase a change in the 
system is detected, a new training phase is scheduled and it will 
be executed depending on the policies defined by the 
administrator (e.g., during lunchtime, instantly, at night). 

V. DEALING WITH ONLINE TRAINING 

According to the description in Section 4, we can observe how 
the availability of the anomaly detector is affected from the time 
it needs to train its algorithms and to detect the contextual data 
(see CH3). All the detection systems that depend on training 
data have to deal with this turnover between training phase – in 
which the system is tuning the detector – and runtime execution 
– where the system is opened to users and executing its tasks 
with anomaly detection support.  

A. Limitations of Training Phases 

The time requested by the training phase is considered not 
influent in systems that i) can be put offline in defined time 
periods (e.g., servers that are unused at night), or ii) have static 
behaviors (e.g., air traffic management systems), meaning that 
the training phase can be executed once keeping their results 
valid through time. Nevertheless, a big subset of systems do not 
adhere with these specifications since they have a dynamic 
behavior that calls for frequent training phases needed to adapt 
the parameters of the anomaly detector to the current context. In 
such a context, frequent training phases are needed to keep the 
anomaly detection logic compliant with the current notion of 
“normal” and “anomalous” behavior. Unfortunately, during 
these training phases the anomaly detector is working with 
outdated parameters negatively affecting the correct detection of 
anomalies. To limit these adverse effects, several authors [16], 
[17], [18], [19] dealing with detector or predictors in the context 
of complex systems proposed an “online training” approach.  

B. Online Training 

A strong support for the design of online training techniques 
comes from systems that study trajectories [15], [16]. In this 
field, abnormal trajectories tend to carry critical information of 
potential problems that require immediate attention and need to 
be resolved at an early stage [15]. The trajectories are 
continuously monitored as they evolve to understand if they are 
following normal or anomalous paths, ultimately breaking the 
classic training-validation turnover (see conformal anomaly 

 
Fig 1. High-level view of the multi-layer anomaly detection framework 
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detection [16]). In [17], authors tackle online training for failure 
prediction purposes i) continuously increasing the training set 
during the system operation, and ii) dynamically modifying the 
rules of failure patterns by tracing prediction accuracy at 
runtime. A similar approach is adopted also to model up-to-date 
Finite State Automata tailored on sequences of system calls for 
anomaly-based intrusion detection purposes [18] or Hidden Semi 
Markov Models targeting online failure prediction [19]. 

C. Shaping Online Training for Dynamic Systems  

When the target system is dynamic, it can change its behavior in 
different ways, consequently affecting the notion of normal or 
expected behavior. These changes must trigger new training 
phases aimed at defining the “new” normal behavior, allowing 
the parameters of the anomaly detector to be tailored on the 
current version of the system. Moreover, according to [17], the 
training set is continuously enriched by the data collected during 
the executions of services, providing wide and updated datasets 
that can be used for training purposes. This training phase starts 
once one of the triggers will activate, calling for complex data 
analytics that are executed on a dedicated machine, to do not 
bother the target system with these heavy computations. 

Looking at the possible ways systems have to dynamically 
change their behavior, we are currently considering as triggers: 
i) update of the workload, ii) addition or update of a service in 
the platform, iii) hardware update, and iv) degradation of the 
detection scores. While the first three triggers can be detected 
easily either looking at the basic setup of the SOA or after a 
notification of the administrator, the degradation of detection 
scores needs more attention. Concisely, the dynamicity of the 
system is not only due to events that can alter its behavior (i.e., 
the first three triggers). The notion of normal behavior may be 
affected also by changes of the environment or of some internals 
of the systems than cannot be easily identified. Unfortunately, 
they might lead to a performance degradation of the anomaly 
detector (e.g., higher number of false positives) ultimately 
calling for an additional training phase. 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents the topic the student is tackling during his 
PhD. More in detail, after describing the research area and the 
state of the art that was consolidated in the recent years, the 
paper addressed the motivations and the related challenges. 
Then, we described a framework for multi-layer anomaly 
detection in complex and dynamic systems that we developed 
during the PhD research period.  

Future works will be oriented to deal with the dynamicity of 
complex systems. While a strategy for the collection and the 
analysis of data is already implemented in the framework 
mentioned before, some improvements need to be considered in 
order to make this framework suitable for dynamic systems. In 
particular, we will go through the online training approach, 
looking for strategies that will allow having always a clear 
definition of normal behavior. As discussed in Section 5.C, this 
will require deeper investigations on all the possible ways 
systems have to dynamically change their behavior. Moreover, 
we are planning to tackle the feature selection problem (see 
CH4) after the dynamic characteristics will be clearly defined. 
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