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Traditional debug methods

 Measurement based

o Oscilloscope

o Logic analyzer

o Printf

o LEDs

 In-Circuit Emulators

o Debug variant special microcontrollers

o Dual port RAM

• Hardware based break points

• Register reading, writing
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Debug methods of early 32-bit 
microcontrollers

 ROM monitors: GDB stub
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(Integrated Development Environment)
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ROM monitor
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Rom monitor 

 Only the RAM area can be used by the 
application

o Early 32-bit microprocessors used mainly external 
RAMs

 Communication between the ROM monitor 
and the debugger is standardized in GNU 
environment

o GDB: Remote Serial Protocol 
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Debugger software
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GDB: GNU Debugger I. 

 GDB: command line debugger, many IDE use it

o Eclipse

o DDD

Example GDB session

localhost$ gdb a.out                // A GDB elindítása 
GNU gdb 5.0 
Copyright 2000 Free Software Foundation, Inc. 
(gdb) set remotebaud 57600 
(gdb) target rdi com1 // connect to target machine, process, or file 
(gdb) load                  // dynamically link file and add its symbols 
Loading section .text, size 0x1280 vma 0x1000 
Loading section .data, size 0x760 vma 0x2280 
Loading section .stack, size 0x10 vma 0x30000 
Start address 0x1000 
Transfer rate: 53120 bits in � 1 sec. 
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GDB: GNU Debugger II. 

(gdb) break main           // breakpoint b [file:]line or function  
Breakpoint 1 at 0x8048476: file test.c, line 5. 
(gdb) continue          // continue running your program 
Breakpoint 1, main () at test.c:5 
5 for( i = 0; i � 10; i++ ) { 
(gdb) display j       // show value of expr each time program stops [according to 
format f ]    
1: j = 1074136126 
(gdb) step    // stepping program 
6 j = i * 2 + 1; 
1: j = 1074136126 
(gdb) step    // stepping program 
5 for( i = 0; i � 10; i++ ) { 
1: j = 1 
(gdb) quit    // quiting debugg session 
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GDB commands

 run: Program running

 continue: continuing the program

 next: next instruction

 step: step-into

 list: listing the source code

 break: setting the break point (can be hw or sw 
breakpointok)

o disable/ enable

 print: displaying a value of a variable

 set: setting a value of the variable

And many more …
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Debugger, ROM monitor connection
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GDB: Remote serial protocol 

 Connection to the target
o Rs232

o TCP protocol

 ASCII characters based commands
o Start with $ symbol

o End with # and 8-bit cheksum

 The stub answares
o Postive answare with + negative response with –

o “OK” or Error code is the response for commands
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Frequently used RSP commands

 Read Registers (g): read the register’s of targer

 Write Register n (P): write a value to a register

 Read Memory (m): read from a memory address

 Write Memory (M): write to a memory address

 step (s): Step one instruction. Only answare is a +

 Continue (c): Continue the program execution

 Breakpoint-ok (Z0 packet): 

o GDP usually tries to set a SW breakpoint (Z0 packet)

o Z1 hardware breakpoint (limited numbers).
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Degubbing support without ROM monitor

 Emulator properties are needed

o Reading variable values

o Setting variable values

o Instruction stepping

o Breakpoint setting

 JTAG based debugging

o JTAG is just a low level communication protocol

o 5 wires
• TDI, TDO, TMS, TCK, nTRST
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JTAG based debugging

 ROM monitor function is re allocated

Special debug blokk
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JTAG based debugging

 ROM monitor function is re allocated many 
times into the PC

Special debug blokk

Application
RAM, Flash
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Debugger software

IDE 
(Integrated Development Environment)

Embedded Target

PC, based development IDE
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Debugger communication
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JTAG (Joint Test Access Group)

 State machine based communication



© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debugger hardware
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JTAG tools

 FT2232(H)

o Used by many cheao USB based JTAG tools

o Max. 30 MHz JTAG clock
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Board Controllers

 Many development tools use this method
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Integrated Debug monitor
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JTAG, GDB adapter

 Open OCD

o GDB server

o JTAG, SWD support

o RSP commands conversion 
to JTAG or SWD commands

o Separate port for 
configuration

• Server handling 

• Target management 

• JTAG memory management

• Flash memory management
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Target dependent modules of OpenOCD

 Target modul
o Separate core files for 

targer core 
architectures

 Flash modul

o Hardware 
dependent Flash 
support



© BME-MIT 2017 24.

Configurating the OpenOCD

 Configurating the OpenOCD

o Server (daemon) configuration

o JTAG configuration

o JTAG scan chain configuration

o Target configuration

o Flash configuration

Example of an STM32 configuration

openocd -f olimex-jtag-tiny.cfg -f stm32.cfg -f 
stm32_gdb.cfg
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Example of Server and JTAG configuration

stm32_gdb.cfg
# default ports
telnet_port 4444
gdb_port 3333
tcl_port 6666
init
jtag_khz 565
reset init
verify_ircapture disable

olimex-jtag-tiny.cfg
interface ft2232
ft2232_device_desc "Olimex OpenOCD JTAG 
TINY"
ft2232_layout olimex-jtag
ft2232_vid_pid 0x15ba 0x0004
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STM32 example configuration
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Debug blocks of ARM Cortex M
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Cortex M: Coresight debug system
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Debug port interface

 SWD or JTAG connection



© BME-MIT 2017 30.

AHB-AP: Advanced High-Performance Bus 
Acces Port

 Bridge between the debug ports and the Cortex M3 
system
o TAR: Transfer Address

o CSW: Control and status

o DATA
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Identification of debug blocks

 There is an ROM table containing the address of debug blocks
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Debug modes

 C_DEBUGEN bit in the Debug Halting Control and Status 
register sets the MCU into debug mode

o Only setable throug the DAP by external device

o Setting the processor int Halt mode is also in this register. It is 
setable through SW

 1. Halt mode

o Instruction execution is stopped

o The System Tick Timer (SYSTICK) counter stops

o Step instruction can be used

o Interupts are suspended
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Debug modes

 2. Debug monitor mode
o The MCU executes the 12th interupts (debug monitor)

o The SYSTICK counter continues to count

o The interupts can preemtp or not preept the debugger 
based on their priority levels

o Support single stepping

o Memory content can be modified through the debug 
monitor handler
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Debug modes

 2. Debug monitor mode
o The MCU executes the 12th interupts (debug monitor)

o The SYSTICK counter continues to count

o The interupts can preemtp or not preept the debugger
based on their priority levels

o Support single stepping

o Memory content can be modified through the debug
monitor handler

 For systems where the full stop is non allowed
o High priority interrupts can serve critical hardware 

handling
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FPB: Flash Patch and Breakpoint Unit

 Generating Hardware breakpoints

o 8 comparators

• 6 program address

• 2 complex literal

 Flash Patch feature

o Modification to the non modifiable ROM

o 2 literal comparator

o Flash area remappel to SRAM

o Not important for us
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ARM Cortex M trace blocks



© BME-MIT 2017 37.

Trace ports
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Coresight trace system
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DWT: Data Watchpoint Trace
 4 comparators: data address / program counter

o Hardware watchpoint: took the processor into debug mode
o ETM trigger: trace packet sending indicator
o PC sampling trigger
o Data address sample trigger

 Counters
o CPU core clock counter
o Sleep cycle counter
o Interrupt overhead counter

 PC sampling

 Interrupt trace
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ITM: Instrumentation Trace Macrocell

 Consol messages (printf)
 Can be used by the DWT
 Timestamp generator
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ETM: Embedded Trace Macrocell

 Introduced for the ARM7 cores
 Instruction execution trace
 DWT can be used as comparators

 Traceing interrupts
 Tracing instructions

o Every executed instruction is traceable
• Debugger must have the binary code, and debug data to process 

the trace messages
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Cortex M3: Coresight debug system
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TPIU: Trace Port Interface Unit

 4-bit syncronous mode
 1-bit UART like asyncronous mode
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TPIU: Trace Port Interface Unit

 Trace output
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New generation of debuggers: 

CMSIS-DAP
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CMSIS-DAP


