
© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

ARM Cortex Core microcontrollers

8th Debugging

Balázs Scherer

© BME-MIT 2017 2.

Traditional debug methods

 Measurement based

o Oscilloscope

o Logic analyzer

o Printf

o LEDs

 In-Circuit Emulators

o Debug variant special microcontrollers

o Dual port RAM

• Hardware based break points

• Register reading, writing

© BME-MIT 2017 3.

Debug methods of early 32-bit
microcontrollers

 ROM monitors: GDB stub

Communication interface
Rs232

Ethernet

ROM monitor / Stub

Flash

Application

RAM

Communication interface
Rs232

Ethernet

Debugger szoftver

IDE
(Integrated Development Environment)

Embedded targetPC, development station

© BME-MIT 2016 4.

ROM monitor

© BME-MIT 2017 5.

Rom monitor

 Only the RAM area can be used by the
application

o Early 32-bit microprocessors used mainly external
RAMs

 Communication between the ROM monitor
and the debugger is standardized in GNU
environment

o GDB: Remote Serial Protocol

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debugger software

© BME-MIT 2017 7.

GDB: GNU Debugger I.

 GDB: command line debugger, many IDE use it

o Eclipse

o DDD

Example GDB session

localhost$ gdb a.out // A GDB elindítása
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
(gdb) set remotebaud 57600
(gdb) target rdi com1 // connect to target machine, process, or file
(gdb) load // dynamically link file and add its symbols
Loading section .text, size 0x1280 vma 0x1000
Loading section .data, size 0x760 vma 0x2280
Loading section .stack, size 0x10 vma 0x30000
Start address 0x1000
Transfer rate: 53120 bits in � 1 sec.

© BME-MIT 2017 8.

GDB: GNU Debugger II.

(gdb) break main // breakpoint b [file:]line or function
Breakpoint 1 at 0x8048476: file test.c, line 5.
(gdb) continue // continue running your program
Breakpoint 1, main () at test.c:5
5 for(i = 0; i � 10; i++) {
(gdb) display j // show value of expr each time program stops [according to
format f]
1: j = 1074136126
(gdb) step // stepping program
6 j = i * 2 + 1;
1: j = 1074136126
(gdb) step // stepping program
5 for(i = 0; i � 10; i++) {
1: j = 1
(gdb) quit // quiting debugg session

© BME-MIT 2017 9.

GDB commands

 run: Program running

 continue: continuing the program

 next: next instruction

 step: step-into

 list: listing the source code

 break: setting the break point (can be hw or sw
breakpointok)

o disable/ enable

 print: displaying a value of a variable

 set: setting a value of the variable

And many more …

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debugger, ROM monitor connection

© BME-MIT 2017 11.

GDB: Remote serial protocol

 Connection to the target
o Rs232

o TCP protocol

 ASCII characters based commands
o Start with $ symbol

o End with # and 8-bit cheksum

 The stub answares
o Postive answare with + negative response with –

o “OK” or Error code is the response for commands

© BME-MIT 2017 12.

Frequently used RSP commands

 Read Registers (g): read the register’s of targer

 Write Register n (P): write a value to a register

 Read Memory (m): read from a memory address

 Write Memory (M): write to a memory address

 step (s): Step one instruction. Only answare is a +

 Continue (c): Continue the program execution

 Breakpoint-ok (Z0 packet):

o GDP usually tries to set a SW breakpoint (Z0 packet)

o Z1 hardware breakpoint (limited numbers).

© BME-MIT 2017 13.

Degubbing support without ROM monitor

 Emulator properties are needed

o Reading variable values

o Setting variable values

o Instruction stepping

o Breakpoint setting

 JTAG based debugging

o JTAG is just a low level communication protocol

o 5 wires
• TDI, TDO, TMS, TCK, nTRST

© BME-MIT 2017 14.

JTAG based debugging

 ROM monitor function is re allocated

Special debug blokk

Application

RAM, Flash

TCP/IP, USB, Serial

Debugger software

IDE
(Integrated Development Environment)

Embedded Target

PC, based development IDE

Debug communication

ROM monitor

Debugger hardware

ROM monitor communication

JTAG

© BME-MIT 2017 15.

JTAG based debugging

 ROM monitor function is re allocated many
times into the PC

Special debug blokk

Application
RAM, Flash

TCP/IP, COM

Debugger software

IDE
(Integrated Development Environment)

Embedded Target

PC, based development IDE

USB

ROM monitor

Debugger hardware

Debug communication

USB, Debug fordítás

USB

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debugger communication

© BME-MIT 2017 17.

JTAG (Joint Test Access Group)

 State machine based communication

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debugger hardware

© BME-MIT 2017 19.

JTAG tools

 FT2232(H)

o Used by many cheao USB based JTAG tools

o Max. 30 MHz JTAG clock

© BME-MIT 2017 20.

Board Controllers

 Many development tools use this method

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Integrated Debug monitor

© BME-MIT 2017 22.

JTAG, GDB adapter

 Open OCD

o GDB server

o JTAG, SWD support

o RSP commands conversion
to JTAG or SWD commands

o Separate port for
configuration

• Server handling

• Target management

• JTAG memory management

• Flash memory management

© BME-MIT 2017 23.

Target dependent modules of OpenOCD

 Target modul
o Separate core files for

targer core
architectures

 Flash modul

o Hardware
dependent Flash
support

© BME-MIT 2017 24.

Configurating the OpenOCD

 Configurating the OpenOCD

o Server (daemon) configuration

o JTAG configuration

o JTAG scan chain configuration

o Target configuration

o Flash configuration

Example of an STM32 configuration

openocd -f olimex-jtag-tiny.cfg -f stm32.cfg -f
stm32_gdb.cfg

© BME-MIT 2017 25.

Example of Server and JTAG configuration

stm32_gdb.cfg
default ports
telnet_port 4444
gdb_port 3333
tcl_port 6666
init
jtag_khz 565
reset init
verify_ircapture disable

olimex-jtag-tiny.cfg
interface ft2232
ft2232_device_desc "Olimex OpenOCD JTAG
TINY"
ft2232_layout olimex-jtag
ft2232_vid_pid 0x15ba 0x0004

© BME-MIT 2017 26.

STM32 example configuration

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Debug blocks of ARM Cortex M

© BME-MIT 2017 28.

Cortex M: Coresight debug system

© BME-MIT 2017 29.

Debug port interface

 SWD or JTAG connection

© BME-MIT 2017 30.

AHB-AP: Advanced High-Performance Bus
Acces Port

 Bridge between the debug ports and the Cortex M3
system
o TAR: Transfer Address

o CSW: Control and status

o DATA

© BME-MIT 2017 31.

Identification of debug blocks

 There is an ROM table containing the address of debug blocks

© BME-MIT 2017 32.

Debug modes

 C_DEBUGEN bit in the Debug Halting Control and Status
register sets the MCU into debug mode

o Only setable throug the DAP by external device

o Setting the processor int Halt mode is also in this register. It is
setable through SW

 1. Halt mode

o Instruction execution is stopped

o The System Tick Timer (SYSTICK) counter stops

o Step instruction can be used

o Interupts are suspended

© BME-MIT 2017 33.

Debug modes

 2. Debug monitor mode
o The MCU executes the 12th interupts (debug monitor)

o The SYSTICK counter continues to count

o The interupts can preemtp or not preept the debugger
based on their priority levels

o Support single stepping

o Memory content can be modified through the debug
monitor handler

© BME-MIT 2017 34.

Debug modes

 2. Debug monitor mode
o The MCU executes the 12th interupts (debug monitor)

o The SYSTICK counter continues to count

o The interupts can preemtp or not preept the debugger
based on their priority levels

o Support single stepping

o Memory content can be modified through the debug
monitor handler

 For systems where the full stop is non allowed
o High priority interrupts can serve critical hardware

handling

© BME-MIT 2017 35.

FPB: Flash Patch and Breakpoint Unit

 Generating Hardware breakpoints

o 8 comparators

• 6 program address

• 2 complex literal

 Flash Patch feature

o Modification to the non modifiable ROM

o 2 literal comparator

o Flash area remappel to SRAM

o Not important for us

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

ARM Cortex M trace blocks

© BME-MIT 2017 37.

Trace ports

© BME-MIT 2017 38.

Coresight trace system

© BME-MIT 2017 39.

DWT: Data Watchpoint Trace
 4 comparators: data address / program counter

o Hardware watchpoint: took the processor into debug mode
o ETM trigger: trace packet sending indicator
o PC sampling trigger
o Data address sample trigger

 Counters
o CPU core clock counter
o Sleep cycle counter
o Interrupt overhead counter

 PC sampling

 Interrupt trace

© BME-MIT 2017 40.

ITM: Instrumentation Trace Macrocell

 Consol messages (printf)
 Can be used by the DWT
 Timestamp generator

© BME-MIT 2017 41.

ETM: Embedded Trace Macrocell

 Introduced for the ARM7 cores
 Instruction execution trace
 DWT can be used as comparators

 Traceing interrupts
 Tracing instructions

o Every executed instruction is traceable
• Debugger must have the binary code, and debug data to process

the trace messages

© BME-MIT 2017 42.

Cortex M3: Coresight debug system

© BME-MIT 2017 43.

TPIU: Trace Port Interface Unit

 4-bit syncronous mode
 1-bit UART like asyncronous mode

© BME-MIT 2017 44.

TPIU: Trace Port Interface Unit

 Trace output

© BME-MIT 2017
Budapest University of Technology and Economics
Department of Measurement and Information Systems

New generation of debuggers:

CMSIS-DAP

© BME-MIT 2017 46.

CMSIS-DAP

