Operating Systems – File systems part 2

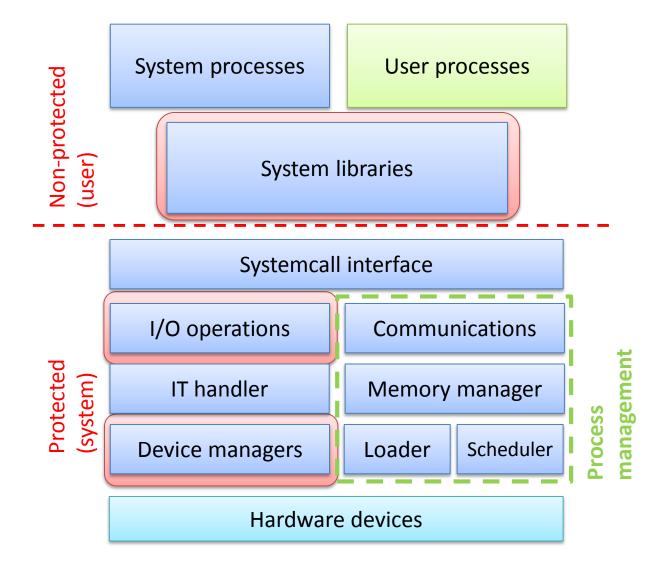
Péter Györke

http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

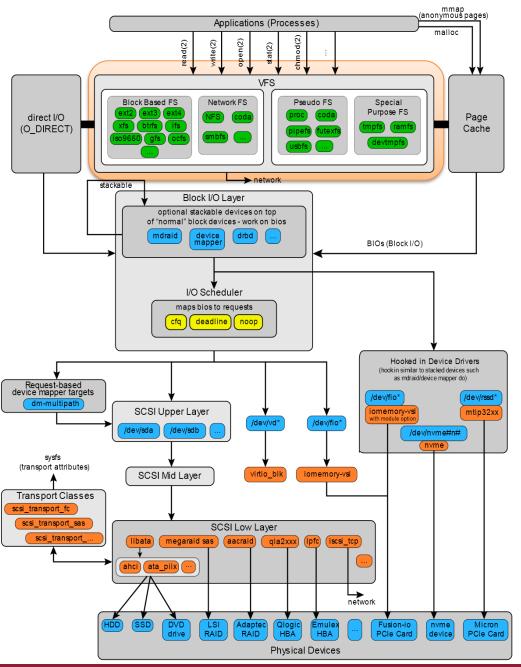
Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)


The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)

These slides are under copyright.

File systems 2. 1 / 29


The main blocks of the OS and the kernel (recap)

File systems 2. 2 / 29

Overview of the topic

- User interfaces
 - User
 - Administrator
 - Programmer
- File systems
 - Kernel data structures
 - File system interfaces
 - Data arranged in blocks on disks
 - Virtual file systems
- Storing the data
 - Physical storages (HDD, SSD)
 - I/O scheduling
 - Local storage system virtualization (RAID, LVM)
 - Network and distributed file systems

File systems 2. 3 / 29

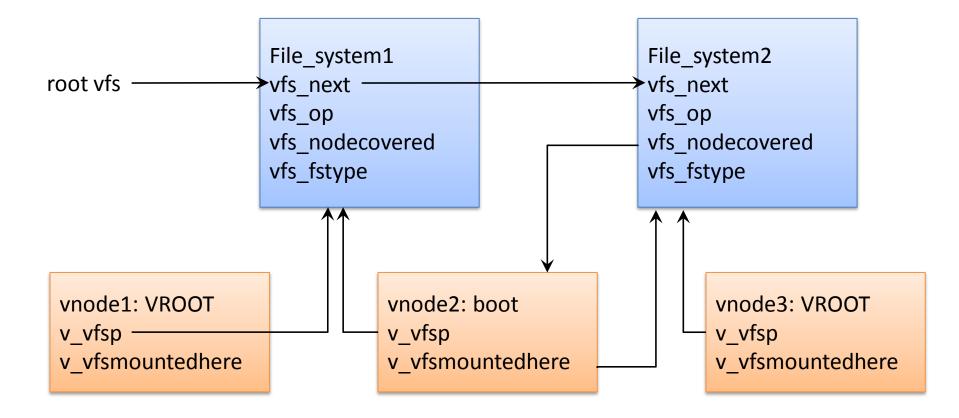
The Virtual File System (VFS)

- There are many types of file systems
 - Typically under UNIX systems, multiple types used at the same time
 - We can't except that the programmers manage them separately
- VFS is an implementation independent file system abstraction
 - The basis of the modern UNIX file systems
- Goals
 - Supporting multi type file systems running simultaneously
 - Standard programming interface (after mounting)
 - Provide the same interface also for special FS (e.g. network)
 - Modular structure
- Abstraction
 - fs (file system metadata) → vfs
 - inode (file metadata) → vnode

File systems 2. 4 / 29

vnode and vfs

vnode data fields


BME MIT

- Common data (type, mounting, link counter)
- v_data: file system dependent data (inode)
- − v op: table of the file methods (operations)
- vfs data fields
 - Common data (FS type, mounting, vfs next)
 - vfs data: file system dependent data
 - vfs op: table of the FS methods (operations)
- Virtual functions
 - vnode: vop_open(), vop_read(), ...
 - vfs: vfs_mount, vfs_umount, vfs_sync, ...
 - These are translated to the FS dependent methods

File systems 2. 5 / 29

The connection between vfs and vnode

File systems 2. 6 / 29

Special virtual file systems (examples)

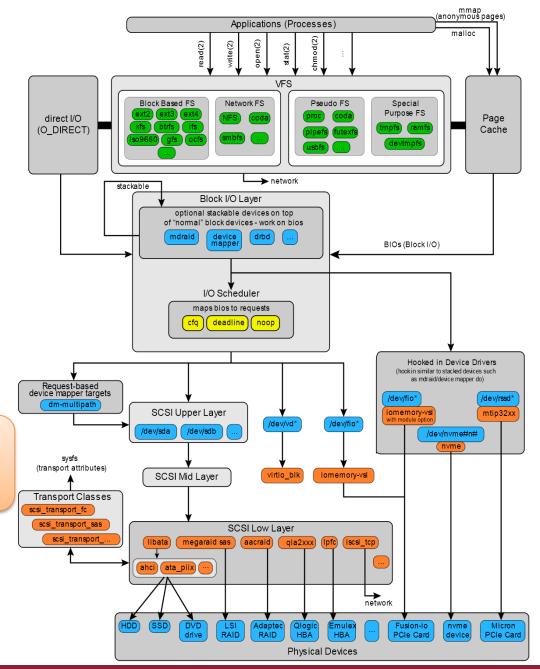
Which file systems are supported?

```
cat /proc/filesystems
```

devtmpfs and devfs

BME MIT

- accessing the HW devices trough the file system
- procfs
 - accessing to the process metadata and kernel structure through the FS
- sysfs
 - accessing to kernel subsystems through FS
- cgroup, cpuset
 - setting resource allocation for process groups


```
mount | egrep "cgroup|cpuset"
```

File systems 2. 7 / 29

Overview of the topic

- User interfaces
 - User
 - Administrator
 - Programmer
- File systems
 - Kernel data structures
 - File system interfaces
 - Data arranged in blocks on disks
 - Virtual file systems
- Storing the data
 - Physical storages (HDD, SSD)
 - I/O scheduling
 - Local storage system virtualization (RAID, LVM)
 - Network and distributed file systems

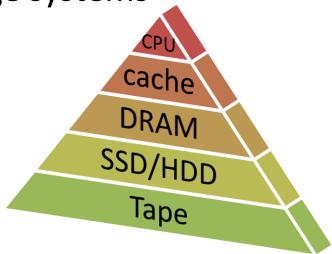
8 / 29 File systems 2.

Physical storage solutions behind file systems

- Physical storage devices
 - Magnetic

BME MIT

- HDD and tape devices
- Optical
 - CD, DVD, Blu-ray
- Nonvolatile memories (solid state, integrated circuit based)
 - SSD, USB drive, SD card
- Virtual storage systems
 - extends the services of the physical storage systems with further layers
 - Merging devices
 - To increase storage size or reliability
 - e.g. RAID, LVM
 - Provides network interfaces
 - With file or block level transfer
 - e.g. NAS, SAN
 - Creating a distributed storage system
 - For reliable and scalable storage systems
 - e.g. Ceph, GlusterFS
 - In certain cases these are integrated with the FS
 - e.g. Solaris ZFS, Linux BTRFS, ...

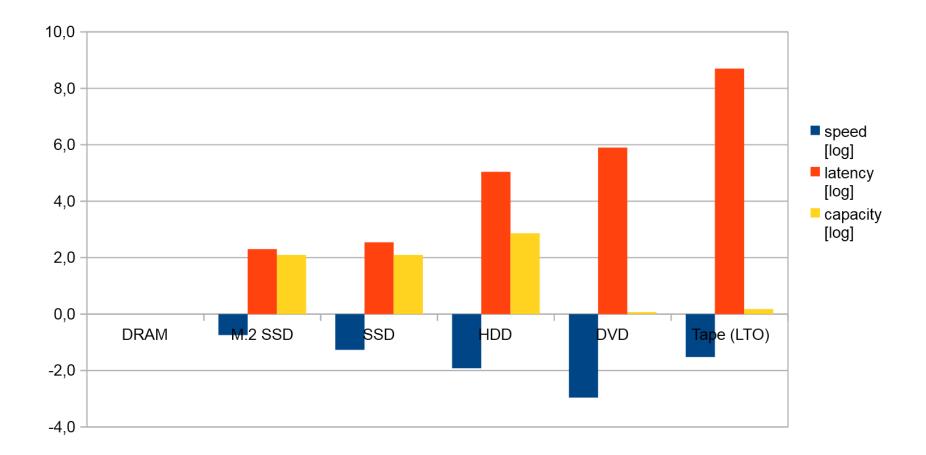

File systems 2. 9 / 29

Properties of physical storage systems

- Performance
 - Capacity: 4 B \rightarrow TB

BME MIT

- Throughput (read/write)
 - 10 MiB/s → 200 GiB/s
- Access time: 0.5 ns \rightarrow 50 ns


- Reliability
 - measures related to the life-time of a device (see <u>SMART</u>)
 - Annualized failure rate (AFR)
 - How many devices fail within a year?
 - Typically 2-4%, but sometimes above 10%
 - Mean time to failure (MTTF)
 - Millions of operating hours (>100 years), according to vendors
 - It is related to all of the devices averaged, not for a single device
 - Bathtub curve: higher failure chance for old and new devices
 - Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?
 - Total bytes written (TBW, for memory based devices)
 - The memory pages cannot written infinite times
 - The amount of bytes written, which won't cause a failure
 - It can be decades for a daily 50 GB amount of data (<u>link</u>)

File systems 2. 10 / 29

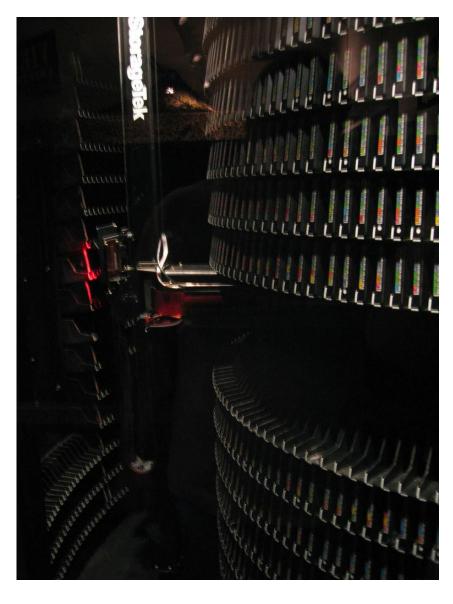
Performance of storage devices

- Compared to DRAM
 - Log scale comparison of the speed, latency and capacity

File systems 2. 11 / 29

Trends of storage systems

- In the past
 - Significant performance difference between CPU and disks
 - The CPU-s were developed faster than HDD-s
 - The slow I/O (relative) operations defined the principle of operation of the operating systems
- Recently
 - The size of the physical memory is highly increased
 - The size of disk cache is higher
 - There are methods based on fast CPU-s
 - runtime data compression (ZFS, btrfs)
 - Deduplication
 - A type of compression: avoiding the storage of the same data part more than one times
 - Spreading of memory based "disks"
 - Increasing speed and capacity, low latency
 - Storage class memory: Almost DRAM performance
- What's changing?
 - Memory management (faster swapping)
 - Scheduling (lower waiting times)

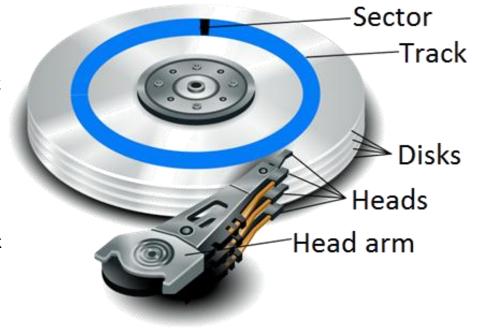

File systems 2. 12 / 29

Tape drives

- Traditional tool for back-ups
 - High capacity

BME MIT

- Long lifetime
- slow operation, manual cassette change
- Recent developments
 - Sequential read speed is almost SSD fast
 - Tape 300 MB/s, SSD 500 MB/s
 - Can it replace the HDD?
 - Pro-s and con-s
 - Larger caches
 - Almost every data is there
 - Filled with sequential read
 - log-structured file systems
 - sequential read/write



File systems 2. 13 / 29

Data allocation on disk drives

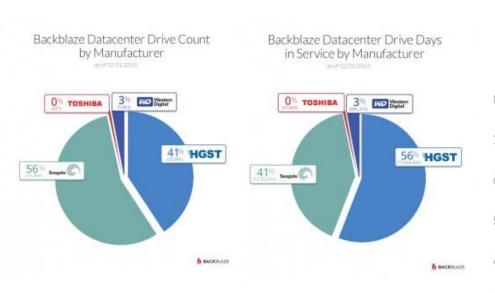
- The location of the superblock, inode list, data blocks on the disk
 - Goals: performance, reliability
- Cylinder block
 - Tracks assigned to the same head position
 - The data can be accessed without head movement
 - Collective damage is possible when a head-disk collision happens

- Allocation principles
 - The superblock is stored in every cylinder block
 - inode list and free blocks are in a separate c.block
 - Small files in the same c.block
 - Larger files are distributed between c.blocks
 - The new files will be on a less used c.block

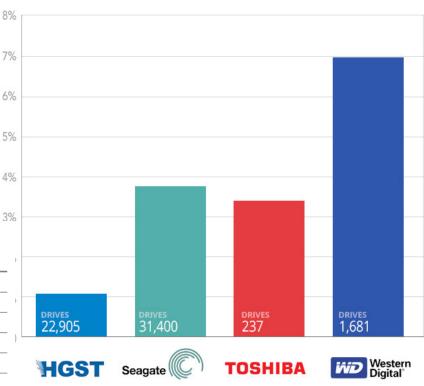
File systems 2. 14 / 29

Scheduling of disk operations

- The kernel schedules the requests from the user layer towards the storage devices
- I/O schedulers is LINUX


BME MIT

- Noop: simple FIFO scheduler
 - may concatenate adjacent requests
 - Small overhead
 - It is recommended if the storage system (RAID, NCQ, virtual systems,...) has an internal scheduling, or if scheduling is unnecessary (RAM disk)
 - Best solution for CPU intensive systems (low load on disks)
- Deadline: tries to perform requests before a deadline
 - The requests are ordered by the block address in read and write batches
 - Recommended for I/O intensive systems with many parallel requests
- CFQ (Completely Fair Queuing): equal service for every request
 - Request queues for every process, and a time-slice is assigned
 - With the ionice command the following states can be set: real-time, best effort, idle
 - A predictive estimation is also assigned to each queue, for estimating the further load
 - The scheduling is depends in priority and estimation of the queues, not the individual requests
 - Recommended for general usage (usually this is the default)


Reliability of hard disk drives

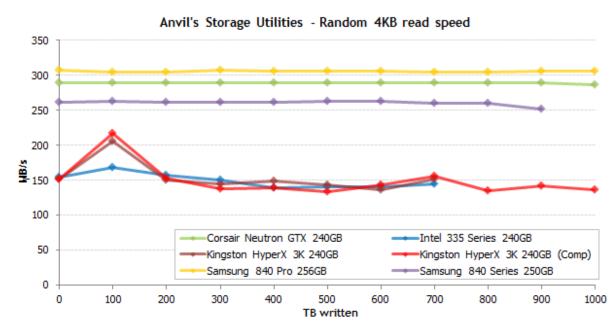
Statistics for 56K disks of the Backblaze data center

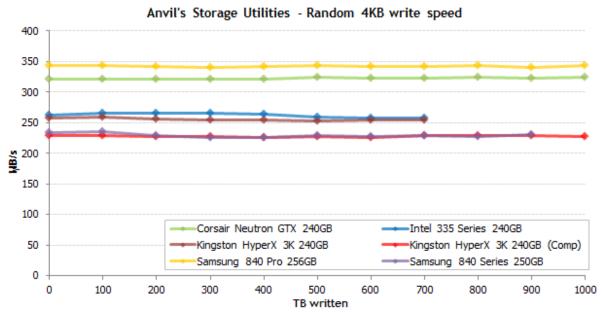
Failure Rate by Manufacturer

Cumulative from 4/2013 to 12/2015

Cumulative Failure Rate through the Period Ending

Camalative Fanare Mate Iniough the Ferral Entanty						
MFG	Model #	Highest QTY	12/31/13	12/31/14	12/31/15	
HGST	HDS5C3030ALA630	4,596	0.9%	0.7%	0.8%	
HGST	HDS723030ALA640	1,022	0.9%	1.8%	1.8%	
Seagate	ST3000DM001	4,074	9.8%	28.3%	28.3%	
Seagate	ST33000651AS	325	7.3%	5.6%	5.1%	
Toshiba	DT01ACA300	58	-	4.8%	3.8%	
WDC	WD30EFRX	1,105	3.2%	6.5%	7.3%	

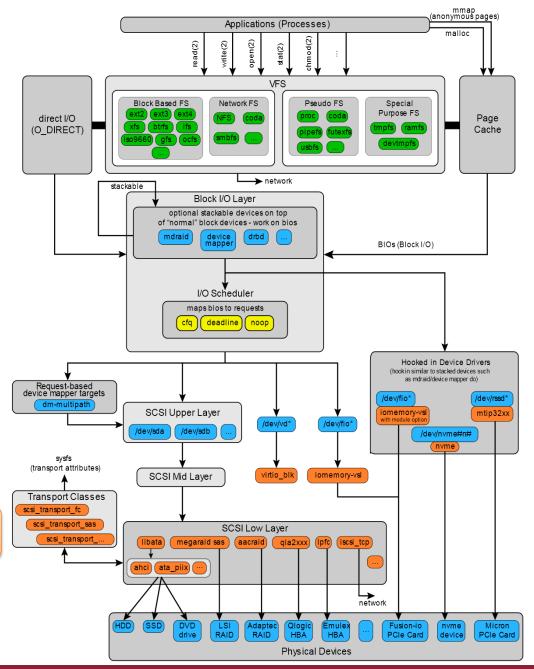

(HGST is the former Hitachi Global Storage Technologies)



File systems 2. 16 / 29

Reliability of SSD-s

 With the written amount of 50
 GB/day, the expected lifetime is about 40 years



Source: http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

Overview of the topic

- User interfaces
 - User
 - Administrator
 - Programmer
- File systems
 - Kernel data structures
 - File system interfaces
 - Data arranged in blocks on disks
 - Virtual file systems
- Storing the data
 - Physical storages (HDD, SSD)
 - I/O scheduling
 - Local storage system virtualization (RAID, LVM)
 - Network and distributed file systems

Virtual storage systems: Logical Volume Management (LVM)

- Virtual storage systems can combine/merge more physical storages
 - Increase capacity, performance, reliability
 - Common management for multiple type devices
 - Easier maintenance: replacement of faulty drives, adding new devices

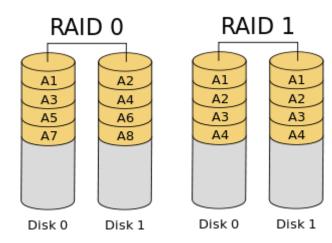
Logical Volume Management (LVM)

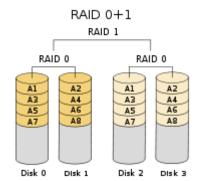
- An allocation system beyond the boundaries of the physical devices
- More flexible management than partitions
- Logical volumes can be created from partitions and disks, but other virtual sources also possible (network)
- E.g. Windows: Logical Disk Manager, Linux: Logical Volume Manager
- Parts of the LVM

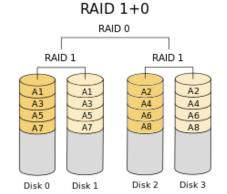
BME MIT

- Physical volumes (PV): disks, partitions, other volumes
- Logical volumes (LV): virtual disk partitions
- Logical volume group (VG): a set of LV-s virtual storage
- Allocation units
 - Physical extents (PE): parts of the PV-s
 - Logical extents (LE): LE-s are assigned to PE-s (1-N)
 - Usually N=1 → 1 logical unit is stored by 1 physical unit
 - RAID may use it differently (see later)

Virtual storage systems: RAID

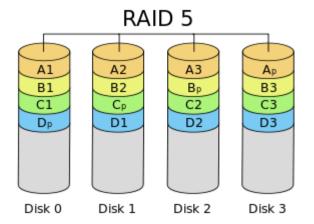

- Redundant Array of Inexpensive Disks
 - "Cheap" (smaller capacity) disks merged together
 - Recently I means Independent, the disks which are supporting RAID by HW are expensive
 - It defines a single common interface for the physical devices
 - Goal: improve redundancy (reliability), performance
 - HW and SW implementations
 - Mainboard RAID → SW (cheap)
 - RAID Disks → HW (expensive)
- Reliability
 - With the increasing number of devices, the possibility of a failure is also increasing
 - 1 disk MTTF: 100 000 hours, 100 disk MTTF: 1000 hours (41 days)
 - How can we increase the reliability with more disks?
 - Using redundancy
 - Storing additional information to correct errors
 - The most simple way is the mirroring: storing the data twice
 - Not so efficient from the capacity point of view
 - Parity: the parity bit can also detect the error and correct it

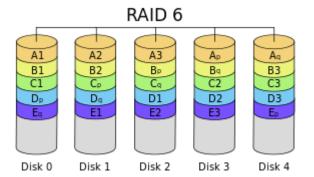

File systems 2. 20 / 29



RAID levels: 0 - 1

- RAID level: the mode of merging the physical devices
 - How the data is distributed on the N disks
- RAID 0 (stripe): the data is distributed on the N disks equally
 - Goal: improve performance
 - It can increase the throughput and the latency also
 - The disks capacities are combined
 - Failure of 1 disk → data loss
- RAID 1 (mirror): the same data are stored on multiple disks
 - Goal: improve reliability
 - The combined capacity is the size of a single disk
 - Slower write operations, read can be faster
- Hybrid (nested) RAID solutions
 - RAID 01 (0+1): mirror of stripes
 - Rather a theoretical possibility, not used in practice
 - RAID 10 (1+0): stripe of mirrors
 - Great performance, improved reliability
 - Recommended for I/O intensive systems





File systems 2. 21 / 29

Widely used RAID levels

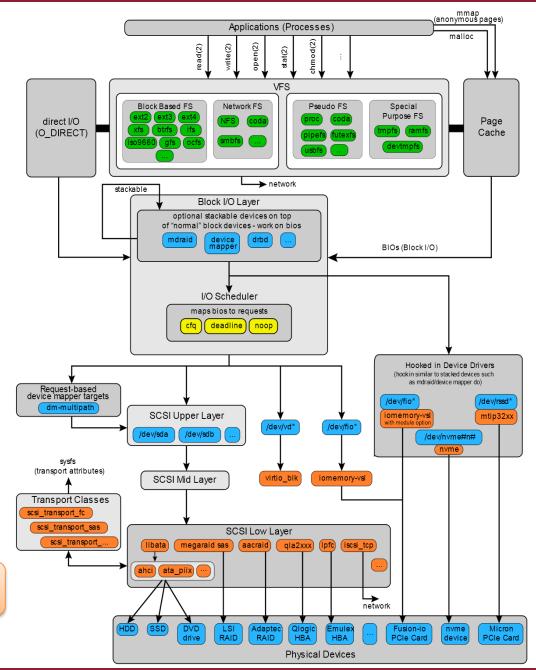
- Levels 2-3-4 are not used in practice
- RAID 5 and 6 are using parity for redundancy rather than mirroring
- RAID 5: block-level striping with distributed parity (N+1 disk fault tolerance)
 - A parity block is assigned to a group of data
 - This block is distributed among the disks
 - The performance is close to RAID0
 - the capacity is smaller with a size of 1 disk
- RAID 6: block-level striping with double distributed parity (N+2 disk fault tolerance)
 - Extension of RAID5 with an additional parity block
 - No significant performance degradation
 - The capacity is smaller with a size of 2 disks

File systems 2. 22 / 29

The limits of RAID (drawbacks)

RAID is almost 3 decades old

BME MIT


- When developed, the disk capacity was the fraction of today's disks
- How long does is take to correct an error?
 - In the case of 4+1 disks (RAID5)
 - 150 GB disks: ~10 hours
 - 6 TB disks: ~80 hours
 - Disk errors are not rare, a system cannot spend days with error correction
 - Hot spare and RAID6 may improve the situation
- RAID needs the same type of disks
 - After years, the replacement can be difficult
 - Moving the whole RAID array to new disks is a long time → long system downtime
- RAID is a bonded structure, not flexible
 - Cannot upgrade a RAID5 system to RAID6
- Limited combined storage capacity
 - The HW and SW solutions only managing 6-8 disks maximum
- RAID only protects against disk errors
 - What happens if the motherboard, CPU, RAM, power supply has an error?

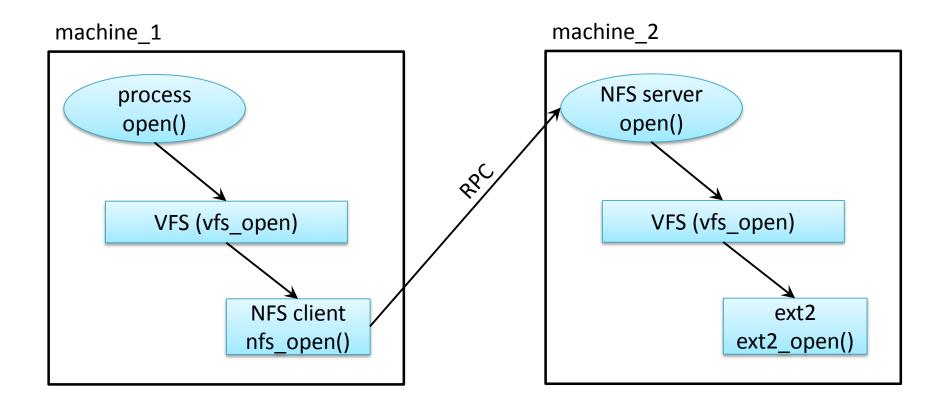
File systems 2. 23 / 29

Overview of the topic

- User interfaces
 - User
 - Administrator
 - Programmer
- File systems
 - Kernel data structures
 - File system interfaces
 - Data arranged in blocks on disks
 - Virtual file systems
- Storing the data
 - Physical storages (HDD, SSD)
 - I/O scheduling
 - Local storage system virtualization (RAID, LVM)
 - Network and distributed file systems

24 / 29 File systems 2.

Network and distributed file systems


- Goal: access to files stored in remote machines, sharing files
- Client-server based storage systems
 - Server: provides access to the local storage system
 - Client: connects to the server and grants access to the remote data
 - Network Attached Storage (NAS) file systems
 - High-level, file oriented transmission
 - NFS (Network File System), see next slide
 - SMB/CIFS (Common Internet File System) Network file system of Windows
 - Block level network storage: SAN (Storage Area Network)
 - Low level data transmission
 - iSCSI (internet SCSI): for transmitting SCSI commands over IP
- Distributed file system

BME MIT

- Operates as a distributed system
- The data storage is distributed amongst the nodes of the system
- Examples:
 - Ceph (Inktank, RedHat, SUSE), Google GFS, RedHat GlusterFS,
 - Windows DFS, PVFS → Orange FS
- Challenges: latency, network errors, consistency

File systems 2. 25 / 29

A simple implementation of NFS

File systems 2. 26 / 29

Challenges of network file systems

- Location: where is the data stored?
 - Location transparency
 - The name/path of the files are not referring the location
 - Location independency
 - The names and paths don't change when the data is moved
- Question of network copies
 - The requests are served by remote services
 - Every operation should be performed on a single instance of the data
 - The network introduce latency and possible errors
 - The order of the operations are critical
 - The requests are served with the help of temporary local storages
 - the local machine maintain a copy of the data
 - · Size is limited by the local machine
 - Multiple instances → consistency problems
- Operation of the network server
 - stateful: the file operations have a state (faster)
 - stateless: slower, but more reliable

File systems 2. 27 / 29

Scalable, distributed storage systems: Ceph

- Universal, virtual storage systems (SW implementation)
 - Block based system (SAN)
 - File based system (NAS)
 - Object store (OSD)
- Scalable, fault tolerant

BME MIT

- no single point of failure
- Every component is replaceable at runtime (disc, machine)
- Dynamic configuration (level of replication)
- Further advantages
 - PB capacity
 - Significantly faster error recovery than RAID
 - No special HW
 - Hot spares are not required (see RAID spare disk)
 - Cooperates with other virtualization systems (OpenStack, Amazon S3)
 - Open source

File systems 2. 28 / 29

Further development of storage systems

- Integrated file and storage systems
 - Integrating the file systems with the solutions of RAID and LVM
 - e.g. zfs, btrfs

BME MIT

- Scalability
 - dynamic change of storage capacity (runtime)
- Reliability
 - large capacity → many disks → high possibility of errors
 - The error correction time should be eliminated
- Memory based storages
 - The SSD's speed is reaching the speed of the physical memory → new principles of development
- <u>Data deduplication</u> (e.g. zfs, btrfs)
- Further reading
 - Microsoft <u>ReFS</u> (Resilient File System)
 - Solaris ZFS (Z File System)
 - Linux <u>Btrfs</u> (B-Tree File System, "butter F S")
 - <u>F2FS</u> (Flash-Friendly File System, Samsung)
 - GPUfs (file access on GPU-s, see heterogenous multiprocessor systems)

File systems 2. 29 / 29