
BME MIT Operating Systems Spring 2017.

File systems 2. 1 / 29

Péter Györke
http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

Operating Systems – File systems part 2

BME MIT Operating Systems Spring 2017.

File systems 2. 2 / 29

The main blocks of the OS and the kernel (recap)

Hardware devices

System libraries

System processes User processes
N

o
n

-p
ro

te
ct

ed
(u

se
r)

P
ro

te
ct

ed
(s

ys
te

m
)

Device managers Loader Scheduler

IT handler

I/O operations

Systemcall interface

Memory manager

Communications

P
ro

ce
ss

m

an
ag

e
m

e
n

t

BME MIT Operating Systems Spring 2017.

File systems 2. 3 / 29

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• File systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks
– Virtual file systems

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

La
st

 le
ct

u
re

BME MIT Operating Systems Spring 2017.

File systems 2. 4 / 29

The Virtual File System (VFS)

• There are many types of file systems
– Typically under UNIX systems, multiple types used at the same time
– We can’t except that the programmers manage them separately

• VFS is an implementation independent file system abstraction
– The basis of the modern UNIX file systems

• Goals
– Supporting multi type file systems running simultaneously
– Standard programming interface (after mounting)
– Provide the same interface also for special FS (e.g. network)
– Modular structure

• Abstraction
– fs (file system metadata)  vfs
– inode (file metadata)  vnode

https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/

BME MIT Operating Systems Spring 2017.

File systems 2. 5 / 29

vnode and vfs

• vnode data fields
– Common data (type, mounting, link counter)
– v_data: file system dependent data (inode)
– v_op: table of the file methods (operations)

• vfs data fields
– Common data (FS type, mounting, vfs_next)
– vfs_data: file system dependent data
– vfs_op: table of the FS methods (operations)

• Virtual functions
– vnode: vop_open(), vop_read(), …
– vfs: vfs_mount, vfs_umount, vfs_sync, …
– These are translated to the FS dependent methods

BME MIT Operating Systems Spring 2017.

File systems 2. 6 / 29

The connection between vfs and vnode

File_system1
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system2
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

root vfs

vnode1: VROOT
v_vfsp
v_vfsmountedhere

vnode2: boot
v_vfsp
v_vfsmountedhere

vnode3: VROOT
v_vfsp
v_vfsmountedhere

BME MIT Operating Systems Spring 2017.

File systems 2. 7 / 29

Special virtual file systems (examples)

• Which file systems are supported?
cat /proc/filesystems

• devtmpfs and devfs
– accessing the HW devices trough the file system

• procfs
– accessing to the process metadata and kernel structure through the FS

• sysfs
– accessing to kernel subsystems through FS

• cgroup, cpuset
– setting resource allocation for process groups

mount | egrep „cgroup|cpuset”

BME MIT Operating Systems Spring 2017.

File systems 2. 8 / 29

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• File systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks
– Virtual file systems

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

BME MIT Operating Systems Spring 2017.

File systems 2. 9 / 29

Physical storage solutions behind file systems

• Physical storage devices
– Magnetic

• HDD and tape devices

– Optical
• CD, DVD, Blu-ray

– Nonvolatile memories (solid state, integrated circuit based)
• SSD, USB drive, SD card

• Virtual storage systems
– extends the services of the physical storage systems with further

layers
• Merging devices

– To increase storage size or reliability
– e.g. RAID, LVM

• Provides network interfaces
– With file or block level transfer
– e.g. NAS, SAN

• Creating a distributed storage system
– For reliable and scalable storage systems
– e.g. Ceph, GlusterFS

– In certain cases these are integrated with the FS
• e.g. Solaris ZFS, Linux BTRFS, …

BME MIT Operating Systems Spring 2017.

File systems 2. 10 / 29

Properties of physical storage systems

• Performance
– Capacity: 4 B  TB
– Throughput (read/write)

• 10 MiB/s  200 GiB/s

– Access time: 0.5 ns  50 ns

• Reliability
– measures related to the life-time of a device (see SMART)
– Annualized failure rate (AFR)

• How many devices fail within a year?
• Typically 2-4%, but sometimes above 10%

– Mean time to failure (MTTF)
• Millions of operating hours (>100 years), according to vendors
• It is related to all of the devices averaged, not for a single device
• Bathtub curve: higher failure chance for old and new devices
• Disk failures in the real world: What does an MTTF of 1,000,000 hours mean to you?

– Total bytes written (TBW, for memory based devices)
• The memory pages cannot written infinite times
• The amount of bytes written, which won’t cause a failure
• It can be decades for a daily 50 GB amount of data (link)

https://en.wikipedia.org/wiki/S.M.A.R.T.
https://en.wikipedia.org/wiki/Bathtub_curve
http://www.cs.cmu.edu/~bianca/fast/
http://www.anandtech.com/show/7173/samsung-ssd-840-evo-review-120gb-250gb-500gb-750gb-1tb-models-tested/3

BME MIT Operating Systems Spring 2017.

File systems 2. 11 / 29

Performance of storage devices

• Compared to DRAM
– Log scale comparison of the speed, latency and capacity

BME MIT Operating Systems Spring 2017.

File systems 2. 12 / 29

Trends of storage systems

• In the past
– Significant performance difference between CPU and disks

• The CPU-s were developed faster than HDD-s
• The slow I/O (relative) operations defined the principle of operation of the

operating systems

• Recently
– The size of the physical memory is highly increased

• The size of disk cache is higher

– There are methods based on fast CPU-s
• runtime data compression (ZFS, btrfs)
• Deduplication

– A type of compression: avoiding the storage of the same data part more than one times

– Spreading of memory based „disks”
• Increasing speed and capacity, low latency
• Storage class memory: Almost DRAM performance

• What’s changing?
– Memory management (faster swapping)
– Scheduling (lower waiting times)

BME MIT Operating Systems Spring 2017.

File systems 2. 13 / 29

Tape drives

• Traditional tool for back-ups
– High capacity
– Long lifetime
– slow operation, manual

cassette change

• Recent developments
– Sequential read speed is almost

SSD fast
• Tape – 300 MB/s, SSD – 500

MB/s

– Can it replace the HDD?
• Pro-s and con-s

– Larger caches
• Almost every data is there
• Filled with sequential read

– log-structured file systems
• sequential read/write

http://www.networkcomputing.com/storage/will-tape-replace-hard-drive/261206937

BME MIT Operating Systems Spring 2017.

File systems 2. 14 / 29

Data allocation on disk drives
• The location of the superblock, inode list,

data blocks on the disk
– Goals: performance, reliability

• Cylinder block
– Tracks assigned to the same head position
– The data can be accessed without head

movement
– Collective damage is possible when a head-disk

collision happens

• Allocation principles
– The superblock is stored in every cylinder block
– inode list and free blocks are in a separate

c.block
– Small files in the same c.block
– Larger files are distributed between c.blocks
– The new files will be on a less used c.block

BME MIT Operating Systems Spring 2017.

File systems 2. 15 / 29

Scheduling of disk operations

• The kernel schedules the requests from the user layer towards the
storage devices

• I/O schedulers is LINUX
– Noop: simple FIFO scheduler

• may concatenate adjacent requests
• Small overhead
• It is recommended if the storage system (RAID, NCQ, virtual systems,…) has an

internal scheduling, or if scheduling is unnecessary (RAM disk)
• Best solution for CPU intensive systems (low load on disks)

– Deadline: tries to perform requests before a deadline
• The requests are ordered by the block address in read and write batches
• Recommended for I/O intensive systems with many parallel requests

– CFQ (Completely Fair Queuing): equal service for every request
• Request queues for every process, and a time-slice is assigned
• With the ionice command the following states can be set: real-time, best

effort, idle
• A predictive estimation is also assigned to each queue, for estimating the

further load
• The scheduling is depends in priority and estimation of the queues, not the

individual requests
• Recommended for general usage (usually this is the default)

BME MIT Operating Systems Spring 2017.

File systems 2. 16 / 29

Reliability of hard disk drives

• Statistics for 56K disks of the Backblaze data center

(HGST is the former Hitachi Global Storage Technologies)

BME MIT Operating Systems Spring 2017.

File systems 2. 17 / 29

Reliability of SSD-s

• With the written
amount of 50
GB/day, the
expected lifetime
is about 40 years

Source: http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

BME MIT Operating Systems Spring 2017.

File systems 2. 18 / 29

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• File systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks
– Virtual file systems

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

BME MIT Operating Systems Spring 2017.

File systems 2. 19 / 29

Virtual storage systems: Logical Volume Management (LVM)

• Virtual storage systems can combine/merge more physical storages
– Increase capacity, performance, reliability
– Common management for multiple type devices
– Easier maintenance: replacement of faulty drives, adding new devices

• Logical Volume Management (LVM)
– An allocation system beyond the boundaries of the physical devices
– More flexible management than partitions
– Logical volumes can be created from partitions and disks, but other virtual

sources also possible (network)
– E.g. Windows: Logical Disk Manager, Linux: Logical Volume Manager

• Parts of the LVM
– Physical volumes (PV): disks, partitions, other volumes
– Logical volumes (LV): virtual disk partitions
– Logical volume group (VG): a set of LV-s – virtual storage
– Allocation units

• Physical extents (PE): parts of the PV-s
• Logical extents (LE): LE-s are assigned to PE-s (1-N)

– Usually N=1  1 logical unit is stored by 1 physical unit
– RAID may use it differently (see later)

BME MIT Operating Systems Spring 2017.

File systems 2. 20 / 29

Virtual storage systems: RAID

• Redundant Array of Inexpensive Disks
– „Cheap” (smaller capacity) disks merged together

• Recently I means Independent, the disks which are supporting RAID by HW are
expensive

– It defines a single common interface for the physical devices
– Goal: improve redundancy (reliability), performance
– HW and SW implementations

• Mainboard RAID  SW (cheap)
• RAID Disks  HW (expensive)

• Reliability
– With the increasing number of devices, the possibility of a failure is

also increasing
• 1 disk MTTF: 100 000 hours, 100 disk MTTF: 1000 hours (41 days)
• How can we increase the reliability with more disks?

– Using redundancy
• Storing additional information to correct errors
• The most simple way is the mirroring: storing the data twice

– Not so efficient from the capacity point of view

• Parity: the parity bit can also detect the error and correct it

BME MIT Operating Systems Spring 2017.

File systems 2. 21 / 29

RAID levels: 0 - 1
• RAID level: the mode of merging the physical devices

– How the data is distributed on the N disks

• RAID 0 (stripe): the data is distributed on the N disks
equally
– Goal: improve performance
– It can increase the throughput and the latency also
– The disks capacities are combined
– Failure of 1 disk  data loss

• RAID 1 (mirror): the same data are stored on multiple
disks
– Goal: improve reliability
– The combined capacity is the size of a single disk
– Slower write operations, read can be faster

• Hybrid (nested) RAID solutions
– RAID 01 (0+1): mirror of stripes

• Rather a theoretical possibility, not used in practice

– RAID 10 (1+0): stripe of mirrors
• Great performance, improved reliability
• Recommended for I/O intensive systems

BME MIT Operating Systems Spring 2017.

File systems 2. 22 / 29

Widely used RAID levels

• Levels 2-3-4 are not used in practice
• RAID 5 and 6 are using parity for

redundancy rather than mirroring

• RAID 5: block-level striping with distributed
parity (N+1 disk fault tolerance)
– A parity block is assigned to a group of data
– This block is distributed among the disks
– The performance is close to RAID0
– the capacity is smaller with a size of 1 disk

• RAID 6: block-level striping with double
distributed parity (N+2 disk fault tolerance)
– Extension of RAID5 with an additional parity

block
– No significant performance degradation
– The capacity is smaller with a size of 2 disks

BME MIT Operating Systems Spring 2017.

File systems 2. 23 / 29

The limits of RAID (drawbacks)

• RAID is almost 3 decades old
– When developed, the disk capacity was the fraction of today’s disks

• How long does is take to correct an error?
– In the case of 4+1 disks (RAID5)

• 150 GB disks: ~10 hours
• 6 TB disks: ~80 hours

– Disk errors are not rare, a system cannot spend days with error correction
• Hot spare and RAID6 may improve the situation

• RAID needs the same type of disks
– After years, the replacement can be difficult
– Moving the whole RAID array to new disks is a long time  long system

downtime

• RAID is a bonded structure, not flexible
– Cannot upgrade a RAID5 system to RAID6

• Limited combined storage capacity
– The HW and SW solutions only managing 6-8 disks maximum

• RAID only protects against disk errors
– What happens if the motherboard, CPU, RAM, power supply has an error?

BME MIT Operating Systems Spring 2017.

File systems 2. 24 / 29

Overview of the topic

• User interfaces
– User
– Administrator
– Programmer

• File systems
– Kernel data structures
– File system interfaces
– Data arranged in blocks on

disks
– Virtual file systems

• Storing the data
– Physical storages (HDD, SSD)
– I/O scheduling
– Local storage system

virtualization (RAID, LVM)
– Network and distributed file

systems

BME MIT Operating Systems Spring 2017.

File systems 2. 25 / 29

Network and distributed file systems

• Goal: access to files stored in remote machines, sharing files
• Client-server based storage systems

– Server: provides access to the local storage system
– Client: connects to the server and grants access to the remote data
– Network Attached Storage (NAS) file systems

• High-level, file oriented transmission
• NFS (Network File System), see next slide
• SMB/CIFS (Common Internet File System) – Network file system of Windows

– Block level network storage: SAN (Storage Area Network)
• Low level data transmission
• iSCSI (internet SCSI): for transmitting SCSI commands over IP

• Distributed file system
– Operates as a distributed system
– The data storage is distributed amongst the nodes of the system
– Examples:

• Ceph (Inktank, RedHat, SUSE), Google GFS, RedHat GlusterFS,
• Windows DFS, PVFS  Orange FS

• Challenges: latency, network errors, consistency

BME MIT Operating Systems Spring 2017.

File systems 2. 26 / 29

A simple implementation of NFS

process
open()

VFS (vfs_open)

NFS client
nfs_open()

machine_1

NFS server
open()

VFS (vfs_open)

ext2
ext2_open()

machine_2

BME MIT Operating Systems Spring 2017.

File systems 2. 27 / 29

Challenges of network file systems

• Location: where is the data stored?
– Location transparency

• The name/path of the files are not referring the location

– Location independency
• The names and paths don’t change when the data is moved

• Question of network copies
– The requests are served by remote services

• Every operation should be performed on a single instance of the data
• The network introduce latency and possible errors
• The order of the operations are critical

– The requests are served with the help of temporary local storages
• the local machine maintain a copy of the data
• Size is limited by the local machine
• Multiple instances  consistency problems

• Operation of the network server
– stateful: the file operations have a state (faster)
– stateless: slower, but more reliable

BME MIT Operating Systems Spring 2017.

File systems 2. 28 / 29

Scalable, distributed storage systems: Ceph

• Universal, virtual storage systems (SW implementation)
– Block based system (SAN)
– File based system (NAS)
– Object store (OSD)

• Scalable, fault tolerant
– no single point of failure
– Every component is replaceable at runtime (disc, machine)
– Dynamic configuration (level of replication)

• Further advantages
– PB capacity
– Significantly faster error recovery than RAID
– No special HW
– Hot spares are not required (see RAID spare disk)
– Cooperates with other virtualization systems (OpenStack, Amazon S3)
– Open source

http://docs.ceph.com/docs/master/start/intro/
http://docs.ceph.com/docs/master/
http://docs.ceph.com/docs/master/

BME MIT Operating Systems Spring 2017.

File systems 2. 29 / 29

Further development of storage systems
• Integrated file and storage systems

– Integrating the file systems with the solutions of RAID and LVM
– e.g. zfs, btrfs

• Scalability
– dynamic change of storage capacity (runtime)

• Reliability
– large capacity many disks  high possibility of errors
– The error correction time should be eliminated

• Memory based storages
– The SSD’s speed is reaching the speed of the physical memory  new principles of

development

• Data deduplication (e.g. zfs, btrfs)

• Further reading
– Microsoft ReFS (Resilient File System)
– Solaris ZFS (Z File System)
– Linux Btrfs (B-Tree File System, „butter F S”)
– F2FS (Flash-Friendly File System, Samsung)
– GPUfs (file access on GPU-s, see heterogenous multiprocessor systems)

https://en.wikipedia.org/wiki/Data_deduplication
https://blogs.msdn.microsoft.com/b8/2012/01/16/building-the-next-generation-file-system-for-windows-refs/
http://www.oracle.com/technetwork/systems/hands-on-labs/s11-intro-zfs-1408637.html
https://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/F2FS
https://www.cs.utexas.edu/users/witchel/pubs/silberstein13asplos-gpufs.pdf

