i i BME MIT Operating Systems 2018.

Operating Systems
Basic architecture and operation

Tamas Mészaros
http://www.mit.bme.hu/~meszaros/

Budapest University of Technology and Economics (BME)
Department of Measurement and Information Systems (MIT)

© Tamas Mészaros. Permission to use is granted to the students of the Operating Systems course at BME.

Architecture and operation 1/

http://www.mit.bme.hu/~meszaros/

] BME MIT Operating Systems 2018.

Let's design an operating system!

The Operating System

IS a collection of software that
control the operation of the computer's hardware
In order to support the execution of user's tasks.

What we expect
-handles multiple tasks
-reliable

-Safe

We run software that
-solve our tasks
—came from different sources (OS. app store, sw repo. Web erc.

Architecture and operation

BME MIT Operating Systems 2018.

Can we trust the software?

Hi! I'm a friendly
cookie-delivery robot.
Would you let me in?

Surel
Come in!

— |

Thank you...

www.jpcarrascal.com

Architecture and operation

BME MIT Operating Systems 2018.

OS architecture: multitasking

LM Lo rrasxanG

Architecture and operation

BME MIT Operating Systems 2018.

OS architecture: governance

AN %64 PROCESSDR 1S SLREAMING ALONG AT BLUONS OF
CYeLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S

FRANTICALLY WORKING THROUGH AL THE FOSIX-SPECIFED
ABSTRACTION T0 CREATE THE DRRUIN SYSTEM UNDERIING
05 X, WHICH INTURN IS STRAINING 1TSELF To RUN FIREFX
AND IT5 GECKO RENDERER, WHICH CREATES A RASH CBTECT
WHICH RENDERS LDZENS OF VIDEQ FRAMES EVERY SELOND

BECALSE I WANTED TO SEE A (AT
JUMP INTD A 30X AND FALL OVER.

O I AM A GOD.

1
p—————

forras: xkcd

Architecture and operation

https://xkcd.com/676/

i i | BME MIT Operating Systems 2018.

How to implement governance?

*Can a software govern another one?

*Recap: CPU protection modes (HW Architecture)
—at least two operational modes

-Level 0. (protected)

-Level 1- (user)
*restricted access to HW, restricted instruction set

*Some part of the OS is running at Level O protected mode

-this governs all other software
—-handles their life cycle (creation, operation, termination)

* The kernel is a part of an OS software that
IS running in protected mode,
has complete control over user level programs
and grants resources for their operation.

Architecture and cueration

http://www.hit.bme.hu/~ghorvath/szgarch/index.php?page=3

§ BME MIT Operacios rendszerek 2018. tavasz

Kernel operating in protected mode

User programs

Non-protected
(user)

Control program

Kernel

Protected
(system)

Resource allocator

Hardware devices

Felépités és alapmikodés

m=zz 8 BME MIT Operating Systems 2018.

The kernel

* Controls user-mode processes
-life-cycle management (creation, operation, termination)
—event management (passes hardware and software events to processes)

—provides common services to simplify software development

*Manages resources
-set ups hardware elements

—provides functions to access them

—handles their events (e.g. interrupts)

-resolves conflicts, allows simultaneous access

*Keeps the system reliable and secure
—protects resources from programming errors and malicious requests

—-separates processes from each-other to protect them

Architecture and operation

Other OS parts

System Library is a part of the OS that
provides common user-level functions to programs.

System Programs are software tools that
solve tasks related to the operation of the OS.

System Services are system programs
that provide continuously available services.

Architecture and operation

§ BME MIT Operécios rendszerek 2018. tavasz

Main parts of an Operating System

=
9 System System User
5 __ | processes services processes
=

O n

Q2

c .

§ System libraries

Kernel

Protected
(system)

Hardware devices

Felépités és alapmikodés

4 BMEMIT Operating Systems 2018.

The main blocks of the OS and the kernel (recap)

Non-protecte éystem processes User processes
(user)
System libraries
Systemcall interface
I/O operations Communications

Prote

cted IT handler Memory manager

(syste

m) Device managers Loader Scheduler

Hardware devices

Architecture and operation 11/

@ BME MIT Operating Systems 2018.

The OS structures In detail: principles and models

*The kernel of the OS is typically a complex system

*Monolithic vs. Microkernel (see later also)

-The monolithic kernel is ONE program

*Pro: great performance, simple implementation

*Con: error sensitive, more security risks

-The microkernel is a distributed system

*Pro: more reliable and secure

*Con: more complex structure, harder to implement, slower operation
*Layered structure (from HW to user apps.)

-Comprehensible, flexible, extendable, less complex development

-The layers are separated by well defined interfaces (can be standardized)
-The more layers and interfaces, the more overhead -> slower operation
*Modular structure

-Different HW architectures (x86, ARM, ...), different vendors -> huge code-base (million
lines of code)

-t isn’t necessary to support all devices at once

—> Decompose the kernel into modules and only load the necessary ones
*Static (offline): at compile time, or during a system reboot

*Dynamic (online): loading and unloading during runtime

Architecture and operation 12/

Architecture and operation /

§ BME MIT Operating Systems 2018.

What's the problem with kernel structures?

*When did the TV say?

-Don’t turn me off, 220 important updates are pending

-Needs reboot, because updates were performed — while watching a movie
—Pay €400 or all of your channels will be encoded

*When can a vehicle control system crash?

—Because a dirty CD is inserted

-One of the components are changed during a maintainance
*Why do such phenomena occur when using an OS?
-Complex systems, numerous devices and functions

*Real and imaginary urges to develop more functions
-Monolithic kernels are typical

*One mistake causes the whole system to struggle or crash
*Hard to isolate and repair (debug) the problems

*Hard to maintain the integrity of the system

*A bug can cause security weaknesses (for the whole system)
-Programmers are not super humans

*1 small bug / 100 lines of code is typical

-Not only the kernels are problematic, user programs as well...

Architecture and operation 14

BME MIT Operating Systems 2018.

What can be done to amend the situation?

*|solate the sensitive parts, keeping the monolithic structure
-Most of the problems are caused by device drivers

*|solate them: sandboxing

*Armored OS: wrap the device driver functions in a protective function which
IS able to detect problems and, for example stop the driver function

* A user-mode agent managing the detected problems

-Decompose the system using virtualization (see later in this semester)
*Multiple virtualization methods

*Causing performance drop

-These techniques are often used in the current OS-s

*Throw away the monolithic structure

-Build the kernel as a distributed system (workers and communication)

. Kernel processes |
—-Only the most esse._al fi stic” = use "2rp-"me~'»

Communication infrastructure

Architecture and operation 15/

| BME MIT Operating Systems 2018.

The concept of microkernel

*Distributed system in general

—Consists of independent units (computational and storage)

-It is transparent to the user, the only differences are in the internal operation
-Can be distributed physically

*The microkernel as a distributed system

-A kernel mode task manager is necessary to perform the distributed tasks
*Tasks: memory management and scheduling

*Distributed: the workers are communicating and cooperating

*(optionally the most relevant device drivers)

-Individual programs implementing the kernel's other tasks

*Running in user mode

*Separated from each other, like every other user task

*Pros and Cons (see Tanenbaum-Torvalds debate)

—Flexibility: multiple API-s together, dynamic expansion

-Reliability: only a small section of the code has to be ,good” (may be verified by formal
methods)

—Fault tolerant: errors in the user mode programs can be handled by kernel mode section
-Using the right programming patterns are mandatory: modular coding, interfaces
-SLOW: communication is multiple times slower than system calls

Architecture and operation

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

Non-protected

(user)

Protected

(system/kernel) !

_
[eieasiareaaafital]

BME MIT Operating Systems

Microkernel

System
processes

User processes

Process manager

Filesystems

High-level device managers

Communication infrastructure

Memor
IT handler i
manager
Low—IeV(?I I/0 Loader | | scheduler
operations

Hardware devices

Architecture and operation

2018.

Non-protected

(user)

Protected

VS.

Monolithic kernel

System
processes

User processes

System libraries

Systemcall interface

|/O operations

Communications

(system/kernel)

Memor
IT handler y
manager
Device managers Loader scheduler

Hardware devices

4 BMEMIT Operating Systems 2018.

Second generation microkernels

*|PC instead of RPC

-RPC (Remote Procedure Call) are forwarded as

—-IPC (Inter Process Communication) messages

-Which are forwarded by the communication infrastructure/subsystem
-This method is really slow, compared to system calls

*The second generation microkernel improves the IPC speed

-Exokernel: minimized kernel, simple and fast system calls

-L4 microkernel: very fast IPC (may be forwarded trhough CPU registers)
-10-20 times faster than classic microkernel

-Very few kernel functions (e.g. L4 provides 7 functions)

-The protected kernel section is small (5-15K LoC)

-HW dependencies are more important

-The small kernel makes possible the formal modeling and verification
-Multiserver. more than one server are running on the same microkernel
-Hybrid kernel: monolithic kernel over a microkernel

*OS X XNU: Mach microkernel + BSD UNIX hybrid kernel

*Windows is containing microkernel elements, but it isn’t microkernel based

Architecture and operation 18/

http://sigops.org/sosp/sosp09/program.html#session6
https://en.wikipedia.org/wiki/XNU

8 BME MIT Operating Systems 2018.

The OS as a control program

Architecture and operation

The kernel as a control program — overview

MUEGYETEM 1782

* The Operating System
- helps solving user's tasks System processes User processes
- control program
- resource allocation

System libraries
* EXpectations

- handles multiple tasks e i -
- reliable, secure
- meets users' requirements

System call interface

I/O operations Communications
Memory
IT handler manager

Device managers ‘ Loader Schedule]

Hardware devices

MuctsraskTnG By Gestalery

Felépités és alapm(ikodés

. T EM 1782 BME MIT Operatlng SyStemS 2018

e
[T P e ST e
Ficoo oty lbider

Architecture and operation

 pE BME MIT Operating Systems ~ 2018.

What kind of tasks?

* All kinds of computers (from servers to small devices)
* . Tasks of all kinds — huge variety of software tools

Number of apps available in leading app stores as of June 2016

2,500,000

Synaptic Package Manager

L 1 2,200,000
54628 packages listed, 2019 installed, 5 000,000
; 2,000,000 "

> yum list all | we -1

L w 1,500,000
22747 g
B
Z 1,000,000
669,000
600,000
500,000
234,500
0
Google Play Apple App Store Windows Store Amazon BlackBerry
Appstore Waorld

source: statistica.com

Architecture and operation 22/

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

i} BME MIT Operating Systems ~ 2018.

Let's try to characterize tasks

*1/O-bound

-mostly waiting for I/O (reading, writing, events)
-need less CPU time

—examples: Web server, File storage, Email etc.

* CPU-bound

-the CPU is their most required resource

-need less 1/0O

—example: simulations, mathematical algorithms, machine learning etc.

* Memory-intensive

-need large amount memory

-enough memory —» CPU-bound

-not enough - 1/0O-bound (swapping)

—e.g. large matrix operations, document indexing and search, graph DB, etc.

*The are many others...

Architecture and operation

@ BME MIT Operating Systems 2018.

User's expectations

*Wait less
-waiting time
—-turnaround time
-response time

*Work efficiently
-CPU utilization
-throughput
-overhead

*Be deterministic

B Microsoft Windows @
Microsoft {R} Windows {R‘u Minaratinn Suctam ic
@08 Force Quit Applications

not responding
If an application doesn't respond for a while,

If you close the program, you migl select its name and click Force Quit.

Bamboo Dock

< Close the program & Bento
L Calendar

< Wait for the program| | # €oda
#® Collage Creator Lite
Ed pay One

& Connle Chrome

e "pgAdmin |II” is not resg

You may choose to wait a sh You can open this window by prassing

Command-Option-Escape.

Force Quit

Force Quit Wait

Architecture and operation

. R T M
S T T -y g T TR
MUEGYETEM 1782

BME MIT Operating Systems 2018.

\\\\\\

The optimal task execution system

°|deally...
—assures that all tasks are performed in time

-minimizes wait and response times
—-maximizes the resource usage
—-has no overhead

*°In practice...

-some programs run slowly or even freeze

-the OS require lot of resources

-the battery depletes fast

-sometimes event the entire OS freezes for a time
-we can't answer calls on mobile

Architecture and operation

Why is it hard to design a good OS?

*\We can't see into the future
-what tasks are to come
-what will be their characteristics

*There are many tasks running at the same time

-they have different requirements

—and different goals and optimums

-sometimes the system collapses under the heavy load

* Tasks affect each-other
—cooperation
—competition

*There are errors
—programming

Architecture and operation

i i | BME MIT Operating Systems 2018.

The OS as a resource allocator

Architecture and operation

§ BME MIT Operacios rendszerek 2018. tavasz

OS as a resource allocator — overview

* The Operating System
- helps solving user's tasks
- control program
- resource allocation

* EXxpectations
- handles multiple tasks
- reliable, secure
- highly utilizes resources

* Resources
- processing units (CPU, VGA)
- system memory
- storage systems
- computer peripherals
- other hardware components
- software resources

System processes User processes

System libraries

System call interface

Memory
Loader

Hardware devices

Device managers

Felépités és alapm(ikodés

*8 CPU core
-2 ,Core Complex” (CCX)
—Infinity Fabric interconnect

*Core complex
-4 CPU core (SMP)
-8MB L3 cache

*CPU core
-2 thread (SMT)
-512K L2 cache, 64K+32K L1 cache

*Many aspects for kernel programmers
-How to handle CCX

—Multithreading

Architecture and operation

Source: AMD

https://forums.anandtech.com/threads/official-amd-ryzen-benchmarks-reviews-prices-and-discussion.2499879/page-107#post-38771400

g
AMD Ryzen

*8 CPU core
-2 ,Core Complex” (CCX)
~Infinity Fabric interconnect

*Core complex
-4 CPU core (SMP)
-8MB L3 cache

*CPU core
-2 thread (SMT)
-512K L2 cache, 64K+32K L1 cache

*Many aspects for kernel programmers
-How to handle CCX

—Multithreading

Architecture and operation

Lo/L1/L2
ITLB

64K I-Cache 4 way Branch Prediction

Decode Op-Cache

Micro-op Queue
instructions micro-ops

Vertically Threaded 6 ops dispatched

POINT

Integer Rename Floating Point Rename

Schedulers Scheduler

Integer Physical Register File FP Register File

2x AGUs 4x ALUs

512K
B0 i 32K D-Cache L2 (1+D) Cache

Load Queue 8 Way 8 Way

Source: AMD

https://forums.anandtech.com/threads/official-amd-ryzen-benchmarks-reviews-prices-and-discussion.2499879/page-107#post-38771400

multi-core systems

1st
Quad-core CPU

Dual ARM Cores |

Architecture and operation

Advantages of heterogeneous architecture for gaming use cases

Heterogeneous hardware blocks and data flow

System Memory I"-I-ﬂﬂ Tl--
(DRAM)
Videdo Vibads Pl WTiL -
Decoder o

Command Procedsor
s & Texturs
Mapping Units

Shad

Adreno 430 GPU

(= T ;] [FF [50 I =T T

Multi-Core G4bit CPUs

31/

e A BME MIT Operating Systems 2018.

Assigning tasks to execution units

Advantages of heterogeneous architecture for gaming use cases

Heterogeneous hardware blocks and data flow
System Memaory Graphics Taxtures,
(DRAM) Shaders, Geometry

Toa Dasplay
Fane

& Welum FPUs

To Spaakery Video W bt P W Al
Decoder

Shaders & Textarse
Mapping Units

Graphicn Bersdeving Cormmarsa

Cornirndned P Poss i 408

Multi-Core Gibit CPUs

Architecture and operation 32/

@ BME MIT Operating Systems 2018.

How to handle memory as a resource?

* Allocation

-resource: physical memory and storage

—-requested by: user tasks and kernel

* Store tasks
—program
—data (dynamic and static)

*Provide memory for the kernel
—program
—administrative data

* Security and reliability
—-separation of users' tasks

—error detection and handling

* Support data sharing

—communication between separated programs

Architecture and operation

33/

50 HOW’'sS
THE MEMORY

THIS MEMORY -
LO3S3S THINGY ISN'T
S0 BAD...NOW WE
GET TO SLEEP WITH
A DIFFERENT PARTNER
EVERY NIGHT

http://toonpool.com/

i} BME MIT Operating Systems 2018.

File systems and storage

*User-level access
-end user
—administrator
—-programmer

*Internal operation
-various data organization
-modular structure
-internal interfaces

* Storage level

—-physical devices (HDD, SSD)
-1/O operation and scheduling
-virtualized storage systems:
*local (RAID, LVM)

*network (SAN, NAS)
—distributed storage solutions
°e.g. RADOS / Ceph

Architecture and operation

8 BME MIT Operating Systems 2018.

How an Operating System works

Architecture and operation

8 BME MIT Operating Systems 2018.

The OS boot procedure

Architecture and operation

] BVEMIT OperatingSystems 2018
The boot procedure

*The system clock signal is up and running

-The CPU starts it's operation from a fixed ROM loader address

*Level O: The ROM loader

-This is a ,flashed” system initiator program

-Itis in a fixed memory range, e.g.: ROM, EEPROM, flash, etc.

-BIOS (in i386), bootROM (in Android)

—It detects and initiates the first boot device (e.g.: HDD)

It loads the bootloader program to the RAM, then starts it

*Level 1: The RAM loader (small program loaded from the hard drive)

-It's located in the MBR (Master Boot Record) of the hard drive

-It checks the HDD structure and loads the next stage

*Level 2: The OS loader

—-It's located in the PBR (Partition Boot Record) or VBR (Volume Boot Record)
-This part is OS specific (the OS installed it at the OS installation)

~It can optionally load further boot loaders (Windows: Bootmgr, Linux: GRUB2)
-It can have a GUI also (e.g. to select the OS to load)

—Initiates the OS, loading the kernel’s code then starts it

*The kernel is started

Architecture and operation

8 BME MIT Operating Systems 2018.

WOEGYETEM 1762
windows Boot Manager

Choose an operating system to start, or press TAB to select a tool:
(Use the arrow keys to highlight your choice, then press ENTER.)

Windows 7
Windows 7 Safe Mode

To specify an advanced option for this choice, press F8.

Tools:

wWindows Memory Diagnostic

A _lwres

ENTER=Choose

Chainload into GRUB 2

Hhen ypou hawve wverified GHUB 2 works, you cam use this command to
complete the upgrade: upgrade-from-grub-legacy

Debian GHU-Linux, kernel 2.6.28-11-generic

Debian GMU<Linux, kernel 2.6.28-11-generic (recovery wHode)
Debian GHUALinux, kermnel memtestdb+

Other operating systems:

Hindows Vista (loader)

Use the T and + keys to select which entry is highlighted.
Press enter to boot the selected 05, "e’ to edit the
comdands before booting, or "¢’ for a command-line.

Architecture and operation 38/

Booting the OS (Unix kernel)

*The kernel’s self loading process

-Starts it's operation in user mode (e.g. x86 real mode)

—-A small utility uncompresses the kernel’s code

—First initializations: memory manager, stack, interrupts, other descriptors...
-Getting system parameters from the loader

—Initializing basic devices (e.g. keyboard, video card, ...)

—-Changing into kernel mode (and to 64 bit HW mode is applicable)

*First steps in kernel mode

-Writing page descriptor tables (before this point the CPU can used a small partition of the
memory, now it can use the whole RAM)

-Setup IT vectors and handers

-Starting protected memory management

—-Creating process description table and starting the first process (thread)
-Loading the driver necessary for the system start (initrd: initial ram disk)
—-Architecture dependent init. Functions (drives, DMA, CPU, etc.)
-Starting the scheduler

-Setting up the data structures for parallel computing (context changes)
-Loading and starting the code init

*The first user level program is running (init

Architecture and operation

sgeose] BVEMIT OperangSystens 2018
Booting the OS (Windows kernel)

*The VBR finds, loads and runs the Level 2. loader (Bootmgr)

~It starts in 32-bit user mode

-Showing the boot menu if it is necessary

-Changes to 64-bit mode if it is possible and loads the next program: the OS loader
*Winload.exe — the kernel's loader

-Runs in 32/64-bit kernel mode

-Loads the Ntoskrnl.exe and it's dependencies and the device drivers necessary to the system start
-Forwards the system init. parameters to the Ntoskrnl.exe

*Ntoskrnl.exe — the kernel

-Runs in 32/64-bit kernel mode

-Phase 0 — initialization with disabled interrupts

*Initializing: boot processor, kernel data structures, lock tables, etc..

*Setup IT vectors and handers

*|nitializing: memory and process manager

-Phase 1

* Switches to a normal process with the highest priority

*Binding the physical and logical processors, setup CPU cores

*Initializing: video (progress bar), I1/0, and many other subsystems

-The kernel is up and running

Architecture and operation

Critical user processes in Windows (Booting the OS 2.)

*SMSS.exe — session manager

—-Performs special user mode tasks

*Using only low-level (core executive) system calls

—-Checking file systems integrity, attempts to repair (Autochk.exe)
-Sets up the basic environmental variables

-Sets up the pagefiles

-Builds the whole registry database (up to this point, only part of it was loaded)
—Starts the Wininit.exe program (SOInitialCommand)

-Creates the default sessions (1 typically)

-Starts the csrss.exe in every session

-Starts the login manager (Winlogon.exe)

*Wininit.exe — further user mode init. Steps (session 0)

-E.g. starts the service manager (services.exe)

*Csrss.exe — user mode part of the Win32 subsystem (session 1+)
-E.g. starts the console manager and others

*Winlogon.exe — user login (session 1+)

*The system is ready for user login

Architecture and operation

Critical user processes in UNIX (Booting the OS 2.)

*The first user-mode program started: init

-This is the parent of all the other processes

—Running constantly

—It's task to reach a given system state and maintain it
-The configuration of init defines the runlevel of the system

*Runlevel

-A complex state description which defines:

*The operating mode of the system (maintenance, multiuser, graphical, etc.)
*The tasks (services) of the OS to perform

*|It is marked with a number (e.g. 0-6), or sometimes with a single letter
*The meaning is different in different Linux distributions, but typically:

=0: full shutdown

-1 or S: single-user administrator mode

-~2-5: multi-user mode, with or without GUI

-6: reboot

*The system admin. may change the mode: telinit, init, shutdown, halt, reboot
*Query the actual state: who -r

Architecture and operation 42/

Critical user processes in UNIX (Booting the OS 3.)

*The configured system state is set up by init to the corresponding runlevel
-To do this it checks the files in /etc/rc?.d, where ? is the runlevel

-The init performs the scripts in these folders

-These are running in a predefined order (by special naming conventions)
-These set up the system

* Mounting drives and file systems

* Starting services (user login, GUI, webserver, etc...

*The system is ready after init commands

*The system administrator can specify the active system services
-The services can be managed manually:

*service <service-name> <start|stop|restart]|...>

*The service names are listed in /etc/init.d/

-The services assigned to a specific runlevel can be modified
*ntsysy, tksysv, chkconfig, bum

Architecture and operation

Alternatives of sysinit

* Problems with init

-Dependencies between scripts (order)
—Cannot run in multiple threads -> slower
-Error handling is not sophisticated

* Systemd (RedHat, CentOS, Ubuntu 15.04+, Arch Linux, Debian etc)
—-Declarative description of the services, precise dependency trees
—-Parallel and scheduled starting of the services (lowers booting time)
-Detecting and managing errors

-Changed command set:

systemctl <start|stop|restart|...> <service-name>
-Instead of
service <service-name> <start|stop|restart]|...>

-Many unhappy Debian/Ubuntu user...

Architecture and operation

=8 BMEMIT Operating Systems 2018.

How the kernel works

Architecture and operation

| BME MIT Operating Systems 2018.

The kernel is a very complex software

*Examples:
-Windows XP: 45 million LOC (the entire OS)
-Linux kernel: 20 million LOC

*See
—http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
—http://www.pabr.org/kernel3d/kernel3d.html
—http://www.jukie.net/bart/blog/linux-kernel-walkthroughs
—http://en.wikiversity.org/wiki/Reading_the Linux_Kernel Sources
-Linux vs. Windows kernel (vided, Mark Russinovich)

Architecture and operation

https://www.facebook.com/windows/posts/155741344475532
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.pabr.org/kernel3d/kernel3d.html
http://www.jukie.net/bart/blog/linux-kernel-walkthroughs
http://en.wikiversity.org/wiki/Reading_the_Linux_Kernel_Sources
https://www.youtube.com/watch?v=Nz-vWYM-2Gw

| BME MIT Operating Systems 2018.

How to design such a big software

*Layered architecture
-with (standardized) interfaces

* The system call interface is a programming interface that
separates the protected and user mode operation
and provides common functions for user mode programs

* Monolithic design
-the kernel has a single, large address space

—eases the tasks of kernel programmers
Today's OSes: modular and monolithic

* Modular design Linux: vmlinux
~avoids loading the entire kernel into the memory Windows: ntoskrnl.exe

—compile time / configurable / runtime

*Distributed
-the kernel is composed of multiple, separated address spaces

Architecture and operation

The syscall interface

* The system call is NOT like a conventional function call
- it changes the CPU mode (user — protected)

- using a special CPU instruction
trap, syscall, sysenter

- the kernel's interrupt handler
* recognizes the interrupt (that it is a syscall)
* performs the syscall
* and returns from the interrupt (CPU: iret, sysexit)

System processes User processes

System libraries

System call interface

Kernel

Hardware devices

Felépités és alapmikodés

System calls under UNIX

*Performing the system call (e.g. read(), write(),...)
—-it is similar to a standard function call
-implemented by a system library (libc), that repares the arguments

*The libc performs the SYSCALL instruction (generating an IT)
-the interrupt changes the CPU-mode (to protected)
-the kernel's SYSCALL interrupt hander function is invoked

*The SYSCALL handler prepares the system call
—collects and checks the arguments (usually from CPU registers)

*The system call is performed
—-the return values are also stored in CPU registers

*The kernel returns from the interrupt (sysexit)
-the CPU changes back to user mode
-the processing returns to the utility function of libc, which sets the return values

Architecture and operation

Architecture and operation

i BME MIT Operating Systems 2018.

Virtual system calls

* Syscalls are frequent and they have overhead
-software IT

-CPU mode change

-handling the IT

—passing arguments to and from kernel address space

*How to cut down the overhead?
-idea: avoid mode change
—only works for a few system calls but worth to try

*Virtual system calls (Linux)

—a part of the kernel address space is mapped into the user space
-some safe system calls are implemented using this technique

-they work as a simple function call without mode change and interrupt
-no changes necessary to the user programs (the syscall is the same)

Architecture and operation

=8 BMEMIT Operating Systems 2018.

Advanced topics

Architecture and operation

i i | BME MIT Operating Systems 2018.

What's the problem with kernel structures?

*When did the TV said?
-Don’t turn me off, 220 important updates are pending

-Needs reboot, because updates are underway — during watching a
movie
-Pay €400 or all of your channels will be encoded

*When did a vehicle control system crashed?
-Because a dirty CD is inserted
-One of the components are changed during a service

*Why do we accept such things from computers?

Architecture and operation

BME MIT Operating Systems 2018.

What is the main problem with today's OS kernels?

* A huge code base written by humans
-10 — 100 programming errors in every 1000 LOC (source)

-20 million LOC

torr faults and malicious software

Source: Linux.com (2016)

Architecture and operation 54/

https://www.youtube.com/watch?v=5iFnzr73XXk&feature=youtu.be
https://www.mayerdan.com/ruby/2012/11/11/bugs-per-line-of-code-ratio
https://www.linux.com/NEWS/LINUX-KERNEL-DEVELOPERS-25-YEARS-LINUX

i BME MIT Operating Systems 2018.

What can we do?

*Kernel sandboxing armored OS
—-create a wrapper around susceptible calls (error detection)
—-provide a kernel component to detect and recover from such errors

* OS/app sandboxingKVVM/vmware, Docker, MirageOS, Drawbridge
-smaller attack surfaces, more control and governance
*virtualization: one more level of control

*containers: completely separated subsystems on the same kernel
*unikernel: mini kernel, application + library OS Critical review

*Change the kernel design from monolithic to distributed

—distributed system
-only necessary functions are implemented in protected mode

Architecture and operation

http://ieeexplore.ieee.org/document/1631939/
http://dl.acm.org/citation.cfm?id=945466
https://virtualizationreview.com/articles/2016/07/19/the-real-threat-to-vmware-is-kvm.aspx
https://virtualizationreview.com/articles/2016/07/19/the-real-threat-to-vmware-is-kvm.aspx
https://docs.docker.com/engine/understanding-docker/
https://mirage.io/
https://www.microsoft.com/en-us/research/project/drawbridge/
http://www.infoworld.com/article/3109238/linux/linux-at-25-containers-and-unikernels-prove-less-is-more.html
https://www.joyent.com/blog/unikernels-are-unfit-for-production

MUEGYETEM 1782

BME MIT Operating Systems

Windows Library OS and pProcess (Drawbridge)

picoprocess

application .exe

application DLLs

e

.-
W Win32 calls e
=
~ o
-

N

300+ 2

| paL 45 ! |
calls

Architecture and operation

picoprocess

isolated
address space

== ABl T bhoundary =s===

ﬂuﬁ

—

calls

- ———
|
10 |
|3 !
I_.;_. i
I E
[I 1

Forras: microsoft.com

https://www.microsoft.com/en-us/research/project/drawbridge/
https://www.microsoft.com/en-us/research/project/drawbridge/

i} BME MIT Operating Systems 2018.

Microkernel
* The microkernel is an OS kernel that

contains only a minimally required control program and
a communication infrastructure for loosely coupled user-mode tasks.

*Distributed system
—a minimal execution environment: memory management and scheduling

-low-level hardware device management
—communication infrastructure
—everything else is in user mode

*Pros and cons (see Tanenbaum-Torvalds debate)

—flexible

-more secure and reliable (easier to handle user mode errors)
—good programming concepts

-slooooooow

—harder to implement for most programmers

Architecture and operation

http://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
http://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

§ BME MIT Operécios rendszerek 2018. tavasz

Microkernel VS. Monolithic kernel

System processes User processes

Process manager Filesystems

System processes User processes

Non-protected
(user)

High-level device managers
g g System libraries

Communication infrastructure System call interface

Memory O = .
IT handler U & I/O operations Communications
manager D o
JART
Low-level I/O o A Memory
: Loader |Scheduler < O
operations o~ IT handler manager
T sy iz iz Device managers Loader |Scheduler

Hardware devices

Felépités és alapmikodés

camm ol BME MIT Operating Systems 2018.

Microkernel variants

*| 4 microkernel; faster and more reliable

—faster IPC (10-20 x)
-only 7 API calls
-5 — 15 thousand LOC

—its operation can be described and verified formally

*Hybrid kernels
—mix micro and monolithic kernels
-0OS X XNU (Apple), Mach microkernel + BSD Unix hybrid kernel

-there are similar L4 microkernel experiments, see Lee & Gray, 2006

Architecture and operation

http://sigops.org/sosp/sosp09/program.html#session6
https://en.wikipedia.org/wiki/XNU
http://ssrg.nicta.com.au/publications/papers/Lee_Gray_06.pdf

e
L4 family tree

) OKL4 Microvisor

L4/MIPS ~ OKL4 pKernel

L4/Alpha Codezero

Hazelnut Pistachio

Fiasco Fiasco.OC

UNSWI/NICTA

GMD/IBM/Karlsruhe

Dresden "OK Labs

P4 — PikeOS

Commercial Clone

93 194 195 196 197 198 199 190101 102103 V04 Vo5 1oe!o71os1oo 100111112113

Figure 1: The L4 family tree (simplified). Black arrows indicate code, green arrows ABI inheritance. Box
colours indicate origin as per key at the bottom left.

Forras: Kevin Elphinstone , Gernot Heiser, From L3 to seL4 what have we learnt in 20 years of L4 microkernels?
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, November 03-06, 2013, Farminton, Pennsylvania

Architecture and operation 60/

. _“ BME MIT Operating Systems 2018.

Summary

*The kernel is a complex piece of software
-layered, modular, monolithic or microkernel design
—has many issues (a good place for improvement)

*The boot process is also quite complex
-ROM, RAM, OS and kernel loaders

*The basic operation of an OS
—-system services and programs
-user programs

-system calls

—-kernel internals

*Try this at home

-the boot process

—-system services (turn off and on)
-init or systemd management

ArcinieGlLie ang cperatidls

	Operating Systems Basic architecture and operation
	Let's design an operating system!
	Can we trust the software?
	OS architecture: multitasking
	OS architecture: governance
	How to implement governance?
	Slide10
	The kernel
	Other OS parts
	Slide11
	The main blocks of the OS and the kernel (recap)
	The OS structures in detail: principles and models
	Slide 13
	What’s the problem with kernel structures?
	What can be done to amend the situation?
	The concept of microkernel
	Microkernel vs. Monolithic kernel
	Second generation microkernels
	page12
	Slide13
	How to handle tasks?
	What kind of tasks?
	Let's try to characterize tasks
	User's expectations
	The optimal task execution system
	Why is it hard to design a good OS?
	page20
	Slide21
	AMD Ryzen
	AMD Ryzen (2)
	Heterogeneous multi-core systems
	Assigning tasks to execution units
	How to handle memory as a resource?
	File systems and storage
	page27
	page28
	The boot procedure (2)
	page30
	Booting the OS (Unix kernel)
	Booting the OS (Windows kernel) (2)
	Critical user processes in Windows (Booting the OS 2.) (2)
	Critical user processes in UNIX (Booting the OS 2.) (2)
	Critical user processes in UNIX (Booting the OS 3.) (2)
	Alternatives of sysinit
	page37
	The kernel is a very complex software
	How to design such a big software
	Slide40
	System calls under UNIX (2)
	page42
	Virtual system calls
	page44
	What’s the problem with kernel structures? (3)
	What is the main problem with today's OS kernels?
	What can we do?
	Windows Library OS and pProcess (Drawbridge)
	Microkernel
	Slide50
	Microkernel variants
	L4 family tree
	Summary

