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Previously ...

• Tasks
– typically I/O intensive
– perform many file operations
– program code is in the filesystem

• Memory management
– uses the disk storage to extend the 

physical memory

• Communication
– over files (mmap)

• Lab exercises
– Linux: network filesystem (Samba)
– Windows: file properties, sharing, 

network drives Hardware devicesHardware devices

System librariesSystem libraries

System processesSystem processes User processesUser processes

Device managersDevice managers LoaderLoader SchedulerScheduler

IT handlerIT handler

I/O operationsI/O operations

System call interfaceSystem call interface

Memory 
manager
Memory 
manager
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Overview

• The user perspective
– end user
– administrator
– programmer

• Internals
– filesystem APIs
– disk organization
– buffer cache
– virtual filesystems

• Storage
– devices (HDD, SSD)
– I/O scheduling
– virtualization:

• local (RAID, LVM)
• network (SAN, NAS)

– distributed...
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The end users' perspective

• Command line and GUI tools
• Organizational structure (places)
• File and directory properties
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The Admin's and Programmer's perspective

• System Administrator
– create, check and remove file systems
– mount local and networked drives
– performance tuning
– disk usage
– backup

• Programmer
– APIs

• system calls
• system libraries

– file descriptors and operations
• create, open, read, write, seek, close, delete

– file locking
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Basic concepts

• File
– logical unit for data storage
– name (extension), properties

• Directory
– logical unit for organizing files and directories
– may contain files and directories

• Volume, drive
– a set of files and directories
– typically assigned to a partition on a disk

• File system
– stores a coherent set of files and directories

• Partition
– organizational unit for disk drivers
– typically contains a file system

Logical

Physical
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Directory structures, volumes and drives

• The basic structure is a directed tree
– A directory can contain files and other directories
– The direction of the edges is determined by the containment relation
– Path: a place of a file or a directory in the tree

• Absolute: the path from the root of the tree
• Relative: the path from a specific node in the tree

– Usually the actual working directory of the user

• Some systems (e.g. Unix) use further edges
– Hard link

• linked to the same data
– Symbolic link (symlink, soft link, shortcut)

• references a file or directory entry
How can we delete the link or data?
What happens if there is directed circle in the graph?

• There might be more than one trees in a system
– There can be more volumes in the system, each one contains one tree
– On Windows, the drives are named with C, D, E, etc. letters
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Overview of the Windows 10 folder structure

• More than one folder structures (trees)
– Physical storages are assigned with logical units, drives

–

• The boot drive (usually C:) is the starting point (C:\)
– \Program Files – installed applications
– \Program Files (x86) – installed applications (32-bit)
– \ProgramData – user independent data of the applications
– \Users – user folders (files, folders, user dependent application data, …)
– \Windows – the OS files and directories

»

• Further drives (D:, E:, …)
– CD/DVD/USB drives
– Further partitions on the disk
– Network file systems

»

• Versions, trends
– In the newer Windows systems the physical storages can be assigned to folders 

also (not just to volumes), but it isn’t a widely-used feature
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Overview of the UNIX directory structure

• It is organized into a single tree (no drives)
• The root directory is the starting point ( / )

– /bin – binary files for the system
– /sbin – similar to /bin, usually programs with root permissions
– /dev – hardware devices
– /etc – system and application configuration files
– /home – user directories and files
– /lib – basic shared system libraries
– /mnt – the mount point of physical partitions
– /tmp – temporary files (for apps. and users)
– /usr – user programs and libraries, documentation, etc.
– /var – dynamic files of the system, logs, databases, …

More details: man hier

• Disk usage
df, du, xdu, baobab, kdiskstat, filelight

• File system „standards”, changes
– Filesystem Hierarchy Standard (FHS) is just a recommendation
– UsrMove: the /bin, /sbin is moved under /usr (Solaris11, Fedora)
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Overview of the Android directory structure

• Similar to the Unix structure with additional directories
– /cache – cache for applications
– /data – user programs and data
– /data/app – applications installed by the user
– /data/anr – app-not-responding: error logs
– /data/tombstones – memory dumps of the terminated apps.
– /data/dalvik-cache – optimized binary files of the apps.
– /data/misc – user configuration files
– /data/local – temporary files
– /mnt or /storage – mounted file systems, e.g. SD card
– /mnt/asec – unsecured copies of the apps. running from SD card
– /system – preinstalled apps., system libraries, configuration files

• Remarks
– File is system access is limited, root user is inaccessible by default.
– Apps. stored on the SD card are encrypted (.android_secure),

these files are mounted under the /mnt/asec directory while running



BME MIT Operating Systems 2018.

File and Storage Systems  11 / 57

File properties (with Unix examples)
● List the content of the actual directory (ls -la)

drwx------  6 root root   4096 Feb 23 14:20 .
drwxr-xr-x 22 root root   4096 Nov 21  2014 ..
-rw-r--r--  1 root root    570 Jan 31  2010 .bashrc
-rw-r--r--  1 vps  vps   71103 Nov  5  2013 package.xml
-rwxrwxrwx  1 root root     35 Feb 23 14:21 test.sh
lrwxrwxrwx  1 root root      8 Nov 24  2014 www -> 
/var/www

● What is in the list?
– Type of the entry: - d p l b c s
– POSIX permissions (see next slide)
– Number of links
– Owner and group
– Size
– Timestamp (ctime: change of the metadata, mtime: data modification, atime: 

access time)
– Name of the entry

● The OS also stores
– Unique identifier (for internal identification)
– Location (where the file is stored on the disk)
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The Unix permission systems

• POSIX permissions
– 3x3 bits: owner, group, others X read, write, execute
– Values: read-4, write-2, execute-1, no access-0

• E.g.: 740 = owner: RWX, group: R, others: no access
– In the case of directories, the execute means „list”
– Setting: chmod <permissions> <file/directory>

• E.g.: chmod 750 /home/me      chmod u+rwx,g+rx,o-rwx /home/me

• Special permissions: SETUID, SETGID, StickyBit
– SETUID/GID: set user ID upon execution" and "set group ID upon execution

• The executed file will have the same permission as the owner (not the user 
which executed the file)

• It is usually set to files which require root permissions
– StickyBit: only the owner (and root) can delete/rename the files or directories

drwxrwxrwt 44 root root     12288 máj    9 15:25 /var/tmp

• POSIX ACL (access control list) (extended permissions)
– flexible, can store several access control lists for an entry

setfacl -m u:student:r file
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Sysadm tasks
• Create (format)

– type (next slide)
– properties
– name (for humans), ID (for machines)
– storage (disk, network etc.)

• Mount
– physical → logical assignment
– mount point
– mounted file system covers a part of the file system tree

• Check, tune
– offline checking
– change size of storage has changed
– tune for performance, compression etc.

• Backup (see later)
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An overview of the widely used file systems

• FAT32
– Typically used on portable storage devices because the compatibility
– Originally 8+3 character file names extended to 255 characters, maximum file size: 

4GiB (!)

• NTFS
– Default file system in Windows

• UFS/ Berkeley FFS
– Traditional UNIX file system, currently rarely used

• ext2,3,4 (cased on UFS)
– Currently used file systems in Linux systems

• XFS
– Default in RedHat Linux 7

• HFS+
– Default in MacOS

• Integrated file + virtual storage systems (see later)
– ZFS: Designed for Solaris, later it become open source, popular in BSD-s also
– Linux btrfs: newer, currently under development

• Many more file systems
– CD/DVD file systems
– ISO9660 and extensions: filename and sizes are limited
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Practice in Linux 

• Basic file and directory operations
cp, mv, cd, pwd, mkdir

How to rename a file?

• File attributes: ls -la
• Managing file systems: mount, umount, df, mkfs, fsck
• Example: create a file system in a file

dd if=/dev/zero of=filesystem.img bs=1k count=1000
losetup /dev/loop0 filesystem.img
mke2fs /dev/loop0
mount /dev/loop0 /mnt

An annoying error: device is busy
while unmounting a file system
check what is used: lsof /mnt

• What’s happening in the file system?
iotop, sar, dstat, vmstat, …

sudo sysctl vm.block_dump=1
tail -f /var/log/kern.log
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Backing up and restoring data

• Multiple causes of data loss
– Uncorrectable fault in the file systems

• The error in the physical storage (disk error)
• Inconsistency caused by power failure or other HW error

– User mistakes (not rare)
• Accidental deleting of files or whole file systems, partitions

– Malwares (sadly these are also not rare)
• Deleting or encrypting data (ransomware)

• The type of data loss
– Limited (e.g.: disk error, user mistakes, …)
– Total (e.g.: SSD sudden death)

• Creating a backup
– How: automated (regular), manual (casual)
– What: files or whole file system

• A consistent state has to be backed up – problematic when the FS is in use
– Where: high capacity disks, CD/DVD, tape systems

• Restoring the system from a backup (recovery)
– Bare metal recovery: restoring the whole system
– Data recovery: only recovering specific files
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The programmer's perspective
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Programming interfaces

• Opening (and creating) files
open() system call and its arguments

– File descriptor and the opened file object (metadata)
– File opened by multiple processes?

• Read, write, seek: read(), write(), fseek()
– Sequential access: the data is accessed in the stored order
– Direct access: given sized blocks can be read in any order

• Close files: close()

• Managing directories:
opendir(), readdir(), rewinddir(), closedir()
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Locking files

• Locking files
– a file may be a shared resource
– synchronization problem: keep the file content consistent
– we may use any synchronization method
– the kernel also provides efficient and better locking methods for files
– note: deadlocks are also possible

• Advisory locking
– the OS provides tools for the tasks but they may ignore these
– tools used → locking works
– tools not user → no locking

• Mandatory locking
– locking enforced by the kernel

• The scope of locking
– whole or a part, see Windows LockFileEx(), Unix fcntl()

https://msdn.microsoft.com/en-us/library/aa365203.aspx
http://beej.us/guide/bgipc/output/html/multipage/flocking.html
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Shared access to files through memory (mmap)

• Communicate through a file
– It is problematic with the standard op.-s (read(), write(), fseek())
– Can we use a file like the shared memory?

• UNIX mmap, Windows: CreateFileMapping
– An open file object (open()) can assigned to an address: mmap(addr, size, prot, 

flags, fd, offset)
• addr: the assigned address, 0: the kernel choses
• size: the accessed data range
• prot: the mode of access: R, W, X
• flags: own or shared file, etc.
• fd: file descriptor returned by the open() system call
• offset: the start position

– Return value: the assigned virtual memory address
– Close the assignment: munmap(addr, len)
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I/O operations without waiting

• Non blocking I/O
– syscall options not to block the task
– the call returns immediately

• with the data
• or with „no data” error

– the task may/should retry the operation any time

• Asynchronous I/O
– the task initiates the I/O and sets a buffer for the data
– the asynchronous I/O is performed in the background

• the system call returns immediately
– the task can perform other instructions
– when the I/O is done, the kernel notifies the caller

• e.g.: with a signal with custom handler
– see POSIX aio, Windows I/O Completion ports
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Overview

• The user perspective
– end user
– administrator
– programmer

• Internals
– file system implementations
– disk organization
– buffer cache
– virtual file systems

• Storage
– devices (HDD, SSD)
– I/O scheduling
– virtualization:

• local (RAID, LVM)
• network (SAN, NAS)

– distributed...
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Implementation of file systems (overview)

• Operation from the user’s point of view (already discussed)
– Files, directories, tree/graph structure
– Format, mount, unmount
– Check, repair, create, modify, tune

• Organizing the file system in the storage
– The logical units are assigned to physical devices
– The data is stored in blocks
– Beside the file contents, metadata is also stored
– Managing the free (unused) blocks in the storage device

• Run-time operations
– File system descriptors (metadata of the mounted file systems)
– Descriptors (metadata) of the files

• Access to opened files
– Managing the data in the memory, buffering
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File system structure

• The stored data
– File system metadata (superblock, master file table, partition control block)
– File metadata (inode, file control block, on Windows: it is part of master file table)
– Stored data

• The file system metadata
On disk

• Type and size
• List of free blocks
• The location of the file metadata
• State
• Modification information
• …

• The file system is sensitive to metadata loss (e.g. hardware error)
– Therefore backups are made
– See: dumpe2fs /dev/sda1 | grep -i superblock

superblocksuperblock file metadatafile metadata data blocksdata blocks

In memory
•  everything that is on the disk
•  mount information
•  „dirty” bit
•  locking info
•  ...
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File metadata

• On disk
– Authentication information (UID, GID)
– Type
– Permissions
– Timestamps
– Size
– Data block locations
– Example: UNIX inode (index node), Windows Master File Table entry

• Runtime extensions (in memory)
– State (locked, modified, etc.)
– Disk/file system identifier
– Reference counter (file descriptors)
– Mounting point descriptor
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Storing data blocks (allocation methods)

• Continuously on the disk…
– simple but causes serious fragmentation over time

• Chained list (sequential access), e.g. FAT
– data is divided into in smaller chunks (blocks)
– data blocks are stored in a linked list

• the address of the first part is in the metadata
• every part contains the address of the next part

– efficient for sequential access, not good for random access
– very sensitive to errors

• Indexed storage (direct access)
– data is divided into in smaller chunks (blocks)
– the location/map of the blocks: the index (see next slide)
– block may be stored sequentially if possible
– efficient, good for random and also for sequential access
– sensitive to loosing the index (may be duplicated)
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How to determine the block size?

Source: Andrew S. Tanenbaum, Jorrit N. Herder, Herbert Bos
File size distribution on UNIX systems: then and now. Operating Systems Review 40(1): 100-104 (2006)
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Example: Multiple indexed data block address table

• Index table
– 12 direct block address
– single and double indirect block address (to cover large files)
– 4 kB block size
– 4 byte address

12 direct block address12 direct block address
Data block (4k)Data block (4k)

Data block (4k)Data block (4k)
Data block (4k)Data block (4k)12

1x indirect address1x indirect address 4k/4 direct block address4k/4 direct block address
Data block (4k)Data block (4k)

Data block (4k)Data block (4k)
Data block (4k)Data block (4k)

2x indirect address2x indirect address 4k/4 1x indirect address4k/4 1x indirect address
4k/4 direct block address4k/4 direct block address

4k/4 direct block address4k/4 direct block address
4k/4 direct block address4k/4 direct block address

Data block Data block 
Data block Data block 

Data blockData block

1024

1024

What is the maximal fle size?

1024
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Managing the free blocks

• Bitmap, bit-vector description
– Every block is represented by a bit
– 1=free, 0=used
– Simple method, easy to find a free block

• The map can be stored in the memory for smaller FS
• Typically there is a CPU instruction for getting the first non zero bit location

– It uses more memory for a larger file system

• Chained list storage
– The free blocks are marked and the address of the next free block is written there
– Only the address of the first free block has to be stored
– Simple, but not so efficient method
– It can be combined with the chained list block allocation method

• Hierarchical methods
– Managing the group of (free) blocks
– The groups can be created based on the size of the FS
– Within a group, a simpler structure can be used (e.g.: bitmap)
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Accelerating data transfers

• Disk buffering
– to accelerate the access to frequently used data
– works in coordination with virtual memory management (paging)

• data is loaded into frames by the VMM
• page replacement may also free disk buffer frames if needed

• Accelerating..
– read operations

• read ahead automatically
• may be instructed using system calls (see posix_fadvise)

– write operations (when to write the modified data to the disk)
• Write through cache

– write immediately to the storage
– slow but reliable

• Buffered write
– writes data periodically (flush, sync)
– significantly faster but may cause data loss
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Metadata consistency and journaling file systems

• When write metadata in the memory to the disk
– similar to data buffering but more complex problem due to transactions
– a write through cache may cause significant performance loss

e.g. file access times are changing rapidly

• Journaling file systems
– changes are saved to a journal, which is always stored on the disk

• file system operations are grouped into transactions
• transaction is finished when the it is stored in the journal
• the transaction data is deleted when it committed to the filesystem

– the journal is sequential access circular buffer
– What happed if the system crashes? The journal is processed during reboots.

• Log-structured file system: the log is the file system (e.g. BSD LFS)

• Copy-on-write file system (ZFS, btrfs)
– a different solution that works on duplicated metadata structures
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Virtual File Systems

• There are many types of file systems
– Typically under UNIX systems, multiple types used at the same time
– We can’t except that the programmers manage them separately

• VFS is an implementation independent file system abstraction
– The basis of the modern Unix file systems

• Goals
– Supporting multi type file systems running simultaneously
– Standard programming interface (after mounting)
– Provide the same interface also for special FS (e.g. network)
– Modular structure

• Abstraction
– fs (file system metadata) → vfs
– inode (file metadata) → vnode
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vnode and vfs

• vnode data fields
– Common data (type, mounting, link counter)
– v_data: file system dependent data (inode)
– v_op: table of the file methods (operations)

• vfs data fields
– Common data (FS type, mounting, vfs_next)
– vfs_data: file system dependent data
– vfs_op: table of the FS methods (operations)

• Virtual functions
– vnode: vop_open(), vop_read(), …
– vfs: vfs_mount, vfs_umount, vfs_sync, …
– These are translated to the FS dependent methods
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The connection between vfs and vnode

File_system1
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system1
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system2
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system2
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

root vfs

vnode1: VROOT
v_vfsp
v_vfsmountedhere

vnode1: VROOT
v_vfsp
v_vfsmountedhere

vnode2: boot
v_vfsp
v_vfsmountedhere

vnode2: boot
v_vfsp
v_vfsmountedhere

vnode3: VROOT
v_vfsp
v_vfsmountedhere

vnode3: VROOT
v_vfsp
v_vfsmountedhere
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Special virtual file systems (examples)

• Which file systems are supported?
cat /proc/filesystems

• devtmpfs and devfs
– accessing the HW devices trough the file system

• procfs
– accessing to the process metadata and kernel structure through the FS

• sysfs
– accessing to kernel subsystems through FS

• cgroup, cpuset
– setting resource allocation for process groups

mount | egrep “cgroup|cpuset”
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Implement your own file system using VFS

• Is not that hard...

• See

Ravi Kiran, „Writing a Simple File System”

Steve French, „Linux Filesystems 45 minutes” ODP PDF
„A Step by Step Introduction to Writing (or Understanding) a Linux Filesystem”

http://www.geocities.ws/ravikiran_uvs/articles/rkfs.html
http://us1.samba.org/samba/ftp/cifs-cvs/ols2006-fs-tutorial-smf.pdf
http://ftp.samba.org/pub/samba/cifs-cvs/ols2006-fs-tutorial-smf.pdf
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Overview
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Storage solutions

• Physical devices
– Magnetic

• HDD and tape devices
– Optical

• CD, DVD, Blu-ray
– Nonvolatile memories (solid state, integrated circuit based)

• SSD, USB drive, SD card

• Virtual storage systems
– extend (capacity, services) other storage systems

• merging
– e.g. RAID, LVM

• network access
– file or block level transfer
– e.g. NAS, SAN

• distributed system
– For reliable and scalable storage systems
– e.g. Ceph, GlusterFS

– In certain cases these are integrated with the FS
• e.g. Solaris ZFS, Linux BTRFS, …



BME MIT Operating Systems 2018.

File and Storage Systems  39 / 57

Properties of physical storage systems

• Characteristics
– capacity from bytes to petabytes
– throughput (read/write) 10 MiB/s ... 200 GiB/s
– access time: 0.5 ns ... seconds/minutes

• Reliability
– measures related to the life-time of a device (see SMART)
– Annualized failure rate (AFR)

• How many devices fail within a year?
• Typically 2-4%, but sometimes above 10%

– Mean time to failure (MTTF)
• Millions of operating hours (>100 years), according to vendors
• It is related to all of the devices averaged, not for a single device
• Bathtub curve: higher failure chance for old and new devices
• Disk failures in the real world: What does an MTTF of 1,000,000 hours mean 

to you?
– Total bytes written (TBW, for memory based devices)

• The memory pages cannot written infinite times
• The amount of bytes written, which won’t cause a failure
• It can be decades for a daily 50 GB amount of data (link)
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Performance compared to DRAM

logarithmic
scale
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Trends of physical storage systems

• In the past
– significant performance difference between CPU and disks

• The CPUs were developed faster than HDDs
• “slow I/O” was a design principle for operating systems

• Present and near future
– the size of the physical memory is greatly increased

• the size of disk cache is higher
– new methods based on fast CPU-s

• runtime data compression (ZFS, btrfs)
• deduplication

– avoiding the storage of the same data part more than one time

– memory based „disks”
• increasing speed with very low latency
• storage class memory: almost DRAM performance with large capacity
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Tape drives

• Traditional tool for backups
– High capacity
– Long lifetime
– slow operation
– manual / robotized cassette change

• Recent developments
– high sequential read speed

• Tape – 300 MB/s, SSD – 500 MB/s
– larger caches

• Almost every data is there
• Filled with sequential read

– see log-structured file systems
• sequential read/write

– good as a general storage?
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Magnetic (mechanical) disk drives

• The location of the superblock, inode list, data blocks on the disk
– Goals: performance, reliability

• Cylinder block
– Tracks assigned to the same head position
– The data can be accessed

without head movement
– Collective damage is possible

when a head-disk collision happens

• Allocation principles
– The superblock is stored in every cylinder block
– inode list and free blocks are in a separate c.block
– Small files in the same c.block
– Larger files are distributed between c.blocks
– The new files will be on a less used c.block
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Scheduling of disk operations

• Scheduling increases the performance
– especially on mechanical drivers with slow access times

• E.g. Linux I/O Schedulers
– Noop: simple FIFO

• may concatenate adjacent requests
• small overhead
• recommended if the storage system has internal scheduling (RAID, NCQ, 

VMs)
• best for CPU intensive systems (low load on disks)

– Deadline: tries to perform requests before a deadline
• requests are ordered by the block address in read and write batches
• recommended for I/O intensive systems with many parallel requests

– CFQ (Completely Fair Queuing): equal service for every request
• has queues for every process and assigns a time-slice to them
• estimates the load for each queue
• scheduling depends on this estimation and the priority of the queues
• recommended for general usage (usually this is the default)
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Reliability of hard disk drives

• Statistics for 56K disks of the Backblaze data center

(HGST is the former Hitachi Global Storage Technologies)
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SSD
reliability

Source: http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

50GB / day
 →   > 40 years lifetime

http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment
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Virtual storage systems
• Overcoming the limits of physical storage solutions

– capacity, performance, reliability
– better management
– better error recovery
– unifying physical storage devices

• Virtual storage
– implements a software storage layer that

• is backed by other storage devices (physical or virtual)
• unifies the underlying storage into a coherent system

– examples: RAID, LVM (Linux), LDM (Windows)
– they are also part of certain file system implementations (e.g. btrfs)
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Virtual storage: Logical Volume Management

• An allocation system beyond the boundaries of the physical devices
– more flexible management than partitions
– logical volumes can be created from partitions, disks and other resources
– e.g. Windows: Logical Disk Manager, Linux: Logical Volume Manager

• Parts of the LVM
– Physical volumes:

disks, partitions, ...
– Logical volumes

virtual partitions
– Volume group:

a set of LVs – virtual
storage

– Allocation units
• Physical extents:

parts of the PV-s
• Logical extents:

LE-s are assigned to PE-s (1-N)
• Usually N=1  1 logical unit is stored by 1 physical unit

• RAID may use it differently (see later)
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Virtual storage systems: RAID

• Redundant Array of Inexpensive Disks
– „cheap” (smaller capacity) disks merged together

• recently: “I” means Independent, RAID disks aren't cheap
– goal: improve redundancy (reliability) and performance
– HW and SW implementations

• mainboard RAID implemented in software (cheap)
• RAID boards: HW solution (expensive)

• Reliability
– more disks mean more failures

• 1 disk MTTF: 100 000 hours, 100 disk MTTF: 1000 hours (41 days)
• how can we increase the reliability?

– introducing redundancy
• storing error correcting data
• simple example: mirroring – storing the data twice
• better: a parity bit can also detect a single error and correct it
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RAID levels: 0 - 1

• RAID level: the mode of merging the physical devices
– How the data is distributed on the N disks

• RAID 0 (stripe): the data is distributed on the N disks
– Goal: improve performance
– It can increase the throughput and the latency also
– The disks capacities are combined
– Failure of 1 disk  data loss

• RAID 1 (mirror): the same data are stored on multiple disks
– Goal: improve reliability
– The combined capacity is the size of a single disk
– Slower write operations, read can be faster

• Hybrid (nested) RAID solutions
– RAID 01 (0+1): mirror of stripes

• Rather a theoretical possibility, not used in practice
– RAID 10 (1+0): stripe of mirrors

• Great performance, improved reliability
• Recommended for I/O intensive systems
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Widely used RAID levels

• RAID 5
– block-level striping with distributed parity
– N+1 disk fault tolerance
– a parity block is assigned to a group of data
– this block is distributed among the disks
– the performance is close to RAID0
– the capacity is smaller with a size of 1 disk

Main problem: silent error

• RAID 6
– block-level striping with double distributed parity
– N+2 disk fault tolerance
– extension of RAID5 with an additional parity block
– no significant performance degradation
– the capacity is smaller with a size of 2 disks
– handles silent errors
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The limits of RAID systems

• How long does it take to correct an error (off-line)?
– In the case of 4+1 disks (RAID5)

• 150 GB disks: ~10 hours
• 6 TB disks: ~80 hours

– Spending days with error recovery is not acceptable
• hot spares and RAID6 may improve the situation

• RAID needs the same type of disks
– the replacement can be difficult

• RAID is a bonded structure, not flexible
– cannot upgrade a RAID5 system to RAID6
– transition takes a long time (off-line)

• Limited combined storage capacity
– 6-8 disks at maximum

• RAID only protects against disk errors
– What happens if the motherboard, CPU, RAM, power supply has an error?
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Network and distributed file systems

• Goal: access to files stored in remote machines, sharing files
• Client-server based storage systems

– Server: provides access to the local storage system
– Client: connects to the server and grants access to the remote data
– Network Attached Storage (NAS)

• High-level, file oriented transmission
• NFS (Network File System), see next slide
• SMB/CIFS (Common Internet File System) – Network file system of Windows

– Block level network storage: SAN (Storage Area Network)
• Low level data transmission
• iSCSI (internet SCSI): for transmitting SCSI commands over IP

• Distributed file system
– Operates as a distributed system
– The data storage is distributed amongst the nodes of the system
– Examples:

• Ceph (RedHat, SUSE), Google GFS, RedHat GlusterFS,
• Windows DFS, PVFS, Orange FS

• Challenges: latency, network errors, consistency
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A simple implementation of NFS using VFS and RPC

process 
open()

process 
open()

VFS (vfs_open)VFS (vfs_open)

NFS client
nfs_open()

NFS client
nfs_open()

machine_1

NFS server 
open()

NFS server 
open()

VFS (vfs_open)VFS (vfs_open)

ext2 FS
ext2_open()

ext2 FS
ext2_open()

machine_2

RP
C
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Challenges of network file systems

• Location: where is the data stored?
– Location transparency

• The name/path of the files are not referring the location
– Location independency

• The names and paths don’t change when the data is moved

• Question of network copies
– The requests are served by remote services

• Every operation should be performed on a single instance of the data
• The network introduce latency and possible errors
• The order of the operations are critical

– The requests are served with the help of temporary local storages
• the local machine maintain a copy of the data
• Size is limited by the local machine
• Multiple instances  consistency problems

• Operation of the network server
– stateful: the file operations have a state (faster)
– stateless: slower, but more reliable
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Scalable, distributed storage systems: Ceph
• Universal, virtual storage systems (SW implementation)

– Block based system (SAN)
– File based system (NAS)
– Object store (OSD)

• Scalable, fault tolerant
– no single point of failure
– Every component is replaceable  at runtime (disc, machine)
– Dynamic configuration (level of replication)

• Further advantages
– PB capacity
– Significantly faster error recovery than RAID
– No special HW
– Hot spares are not required (see RAID spare disk)
– Cooperates with other virtualization systems (OpenStack, Amazon S3)
– Open source
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Further development of storage systems

• Integrated file and storage systems
– Integrating the file systems with the solutions of RAID and LVM
– e.g. zfs, btrfs

• Scalability
– dynamic change of storage capacity (runtime)

• Reliability
– large capacity  many disks  high possibility of errors 

– The error correction time should be eliminated

• Memory based storages
– The SSD’s speed is reaching the speed of the physical memory  new principles of 

development

• Data deduplication (e.g. zfs, btrfs)

• Further reading
– Microsoft ReFS (Resilient File System)
– Solaris ZFS (Z File System)
– Linux Btrfs (B-Tree File System, „butter F S”)
– F2FS (Flash-Friendly File System, Samsung)
– GPUfs (file access on GPU-s, see heterogenous multiprocessor systems)
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