
BME MIT Operating Systems 2018.

File and Storage Systems 1 / 57

Operating Systems

File and Storage Systems

Tamás Mészáros
http://www.mit.bme.hu/~meszaros/

Budapest University of Technology and Economics (BME)

Department of Measurement and Information Systems (MIT)

© Tamás Mészáros. Permission to use is granted to the students of the Operating Systems course at BME.

http://www.mit.bme.hu/~meszaros/

BME MIT Operating Systems 2018.

File and Storage Systems 2 / 57

Previously ...

• Tasks
– typically I/O intensive
– perform many file operations
– program code is in the filesystem

• Memory management
– uses the disk storage to extend the

physical memory

• Communication
– over files (mmap)

• Lab exercises
– Linux: network filesystem (Samba)
– Windows: file properties, sharing,

network drives Hardware devicesHardware devices

System librariesSystem libraries

System processesSystem processes User processesUser processes

Device managersDevice managers LoaderLoader SchedulerScheduler

IT handlerIT handler

I/O operationsI/O operations

System call interfaceSystem call interface

Memory
manager
Memory
manager

CommunicationsCommunications

N
o
n
-p

ro
te

ct
e
d

(u
se

r)
P
ro

te
ct

e
d

(s
y
st

e
m

)

OS architecture

BME MIT Operating Systems 2018.

File and Storage Systems 3 / 57

Overview

• The user perspective
– end user
– administrator
– programmer

• Internals
– filesystem APIs
– disk organization
– buffer cache
– virtual filesystems

• Storage
– devices (HDD, SSD)
– I/O scheduling
– virtualization:

• local (RAID, LVM)
• network (SAN, NAS)

– distributed...

Applications (Processes)

Block I/O Layer

I/O Scheduler

SCSI Upper Layer

Request-based
device mapper targets

SCSI Mid Layer

Transport Classes

SCSI Low Layer

Physical Devices

VFS

Page
Cache

direct I/O
(O_DIRECT)

Block Based FS Network FS Pseudo FS Special
Purpose FSext2

network

network

stackable

optional stackable devices on top
of “normal” block devices - work on bios

BIOs (Block I/O)

maps bios to requests

sysfs
(transport attributes)

ext3 ext4

ifs

ocfsgfs

mdraid

cfq deadline noop

drbddevice
mapper

...

...

...

...

...

...

...ahci

HDD SSD DVD
drive

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

Fusion-io
PCIe Card

nvme
device

Micron
PCIe Card

libata

scsi_transport_fc

scsi_transport_sas

scsi_transport_...

dm-multipath

aacraid qla2xxx lpfc iscsi_tcpmegaraid sas

ata_piix

/ dev / sda / dev / sdb
/ dev / vd* / dev / fio*

virtio_blk iomemory-vsl

/ dev / fio*

/ dev / nvme#n#

nvme

iomemory-vsl
with module option

Hooked in Device Drivers
(hook in similar to stacked devices such

as mdraid/device mapper do)

mtip32xx

/ dev / rssd*

...

btrfs
smbfs

xfs
NFS coda

pipefs tmpfs

mmap
(anonymous pages)

malloc

..
.

ch
m

o
d

(2
)

re
a

d
(2

)

w
ri

te
(2

)

o
p

e
n

(2
)

st
a

t(
2

)

ramfsfutexfs

usbfs devtmpfs

proc coda

iso9660

BME MIT Operating Systems 2018.

File and Storage Systems 4 / 57

The end users' perspective

• Command line and GUI tools
• Organizational structure (places)
• File and directory properties

BME MIT Operating Systems 2018.

File and Storage Systems 5 / 57

The Admin's and Programmer's perspective

• System Administrator
– create, check and remove file systems
– mount local and networked drives
– performance tuning
– disk usage
– backup

• Programmer
– APIs

• system calls
• system libraries

– file descriptors and operations
• create, open, read, write, seek, close, delete

– file locking

BME MIT Operating Systems 2018.

File and Storage Systems 6 / 57

Basic concepts

• File
– logical unit for data storage
– name (extension), properties

• Directory
– logical unit for organizing files and directories
– may contain files and directories

• Volume, drive
– a set of files and directories
– typically assigned to a partition on a disk

• File system
– stores a coherent set of files and directories

• Partition
– organizational unit for disk drivers
– typically contains a file system

Logical

Physical

BME MIT Operating Systems 2018.

File and Storage Systems 7 / 57

Directory structures, volumes and drives

• The basic structure is a directed tree
– A directory can contain files and other directories
– The direction of the edges is determined by the containment relation
– Path: a place of a file or a directory in the tree

• Absolute: the path from the root of the tree
• Relative: the path from a specific node in the tree

– Usually the actual working directory of the user

• Some systems (e.g. Unix) use further edges
– Hard link

• linked to the same data
– Symbolic link (symlink, soft link, shortcut)

• references a file or directory entry
How can we delete the link or data?
What happens if there is directed circle in the graph?

• There might be more than one trees in a system
– There can be more volumes in the system, each one contains one tree
– On Windows, the drives are named with C, D, E, etc. letters

BME MIT Operating Systems 2018.

File and Storage Systems 8 / 57

Overview of the Windows 10 folder structure

• More than one folder structures (trees)
– Physical storages are assigned with logical units, drives

–

• The boot drive (usually C:) is the starting point (C:\)
– \Program Files – installed applications
– \Program Files (x86) – installed applications (32-bit)
– \ProgramData – user independent data of the applications
– \Users – user folders (files, folders, user dependent application data, …)
– \Windows – the OS files and directories

»

• Further drives (D:, E:, …)
– CD/DVD/USB drives
– Further partitions on the disk
– Network file systems

»

• Versions, trends
– In the newer Windows systems the physical storages can be assigned to folders

also (not just to volumes), but it isn’t a widely-used feature

BME MIT Operating Systems 2018.

File and Storage Systems 9 / 57

Overview of the UNIX directory structure

• It is organized into a single tree (no drives)
• The root directory is the starting point (/)

– /bin – binary files for the system
– /sbin – similar to /bin, usually programs with root permissions
– /dev – hardware devices
– /etc – system and application configuration files
– /home – user directories and files
– /lib – basic shared system libraries
– /mnt – the mount point of physical partitions
– /tmp – temporary files (for apps. and users)
– /usr – user programs and libraries, documentation, etc.
– /var – dynamic files of the system, logs, databases, …

More details: man hier

• Disk usage
df, du, xdu, baobab, kdiskstat, filelight

• File system „standards”, changes
– Filesystem Hierarchy Standard (FHS) is just a recommendation
– UsrMove: the /bin, /sbin is moved under /usr (Solaris11, Fedora)

BME MIT Operating Systems 2018.

File and Storage Systems 10 / 57

Overview of the Android directory structure

• Similar to the Unix structure with additional directories
– /cache – cache for applications
– /data – user programs and data
– /data/app – applications installed by the user
– /data/anr – app-not-responding: error logs
– /data/tombstones – memory dumps of the terminated apps.
– /data/dalvik-cache – optimized binary files of the apps.
– /data/misc – user configuration files
– /data/local – temporary files
– /mnt or /storage – mounted file systems, e.g. SD card
– /mnt/asec – unsecured copies of the apps. running from SD card
– /system – preinstalled apps., system libraries, configuration files

• Remarks
– File is system access is limited, root user is inaccessible by default.
– Apps. stored on the SD card are encrypted (.android_secure),

these files are mounted under the /mnt/asec directory while running

BME MIT Operating Systems 2018.

File and Storage Systems 11 / 57

File properties (with Unix examples)
● List the content of the actual directory (ls -la)

drwx------ 6 root root 4096 Feb 23 14:20 .
drwxr-xr-x 22 root root 4096 Nov 21 2014 ..
-rw-r--r-- 1 root root 570 Jan 31 2010 .bashrc
-rw-r--r-- 1 vps vps 71103 Nov 5 2013 package.xml
-rwxrwxrwx 1 root root 35 Feb 23 14:21 test.sh
lrwxrwxrwx 1 root root 8 Nov 24 2014 www ->
/var/www

● What is in the list?
– Type of the entry: - d p l b c s
– POSIX permissions (see next slide)
– Number of links
– Owner and group
– Size
– Timestamp (ctime: change of the metadata, mtime: data modification, atime:

access time)
– Name of the entry

● The OS also stores
– Unique identifier (for internal identification)
– Location (where the file is stored on the disk)

BME MIT Operating Systems 2018.

File and Storage Systems 12 / 57

The Unix permission systems

• POSIX permissions
– 3x3 bits: owner, group, others X read, write, execute
– Values: read-4, write-2, execute-1, no access-0

• E.g.: 740 = owner: RWX, group: R, others: no access
– In the case of directories, the execute means „list”
– Setting: chmod <permissions> <file/directory>

• E.g.: chmod 750 /home/me chmod u+rwx,g+rx,o-rwx /home/me

• Special permissions: SETUID, SETGID, StickyBit
– SETUID/GID: set user ID upon execution" and "set group ID upon execution

• The executed file will have the same permission as the owner (not the user
which executed the file)

• It is usually set to files which require root permissions
– StickyBit: only the owner (and root) can delete/rename the files or directories

drwxrwxrwt 44 root root 12288 máj 9 15:25 /var/tmp

• POSIX ACL (access control list) (extended permissions)
– flexible, can store several access control lists for an entry

setfacl -m u:student:r file

BME MIT Operating Systems 2018.

File and Storage Systems 13 / 57

Sysadm tasks
• Create (format)

– type (next slide)
– properties
– name (for humans), ID (for machines)
– storage (disk, network etc.)

• Mount
– physical → logical assignment
– mount point
– mounted file system covers a part of the file system tree

• Check, tune
– offline checking
– change size of storage has changed
– tune for performance, compression etc.

• Backup (see later)

BME MIT Operating Systems 2018.

File and Storage Systems 14 / 57

An overview of the widely used file systems

• FAT32
– Typically used on portable storage devices because the compatibility
– Originally 8+3 character file names extended to 255 characters, maximum file size:

4GiB (!)

• NTFS
– Default file system in Windows

• UFS/ Berkeley FFS
– Traditional UNIX file system, currently rarely used

• ext2,3,4 (cased on UFS)
– Currently used file systems in Linux systems

• XFS
– Default in RedHat Linux 7

• HFS+
– Default in MacOS

• Integrated file + virtual storage systems (see later)
– ZFS: Designed for Solaris, later it become open source, popular in BSD-s also
– Linux btrfs: newer, currently under development

• Many more file systems
– CD/DVD file systems
– ISO9660 and extensions: filename and sizes are limited

BME MIT Operating Systems 2018.

File and Storage Systems 15 / 57

Practice in Linux

• Basic file and directory operations
cp, mv, cd, pwd, mkdir

How to rename a file?

• File attributes: ls -la
• Managing file systems: mount, umount, df, mkfs, fsck
• Example: create a file system in a file

dd if=/dev/zero of=filesystem.img bs=1k count=1000
losetup /dev/loop0 filesystem.img
mke2fs /dev/loop0
mount /dev/loop0 /mnt

An annoying error: device is busy
while unmounting a file system
check what is used: lsof /mnt

• What’s happening in the file system?
iotop, sar, dstat, vmstat, …

sudo sysctl vm.block_dump=1
tail -f /var/log/kern.log

BME MIT Operating Systems 2018.

File and Storage Systems 16 / 57

Backing up and restoring data

• Multiple causes of data loss
– Uncorrectable fault in the file systems

• The error in the physical storage (disk error)
• Inconsistency caused by power failure or other HW error

– User mistakes (not rare)
• Accidental deleting of files or whole file systems, partitions

– Malwares (sadly these are also not rare)
• Deleting or encrypting data (ransomware)

• The type of data loss
– Limited (e.g.: disk error, user mistakes, …)
– Total (e.g.: SSD sudden death)

• Creating a backup
– How: automated (regular), manual (casual)
– What: files or whole file system

• A consistent state has to be backed up – problematic when the FS is in use
– Where: high capacity disks, CD/DVD, tape systems

• Restoring the system from a backup (recovery)
– Bare metal recovery: restoring the whole system
– Data recovery: only recovering specific files

BME MIT Operating Systems 2018.

File and Storage Systems 17 / 57

The programmer's perspective

BME MIT Operating Systems 2018.

File and Storage Systems 18 / 57

Programming interfaces

• Opening (and creating) files
open() system call and its arguments

– File descriptor and the opened file object (metadata)
– File opened by multiple processes?

• Read, write, seek: read(), write(), fseek()
– Sequential access: the data is accessed in the stored order
– Direct access: given sized blocks can be read in any order

• Close files: close()

• Managing directories:
opendir(), readdir(), rewinddir(), closedir()

BME MIT Operating Systems 2018.

File and Storage Systems 19 / 57

Locking files

• Locking files
– a file may be a shared resource
– synchronization problem: keep the file content consistent
– we may use any synchronization method
– the kernel also provides efficient and better locking methods for files
– note: deadlocks are also possible

• Advisory locking
– the OS provides tools for the tasks but they may ignore these
– tools used → locking works
– tools not user → no locking

• Mandatory locking
– locking enforced by the kernel

• The scope of locking
– whole or a part, see Windows LockFileEx(), Unix fcntl()

https://msdn.microsoft.com/en-us/library/aa365203.aspx
http://beej.us/guide/bgipc/output/html/multipage/flocking.html

BME MIT Operating Systems 2018.

File and Storage Systems 20 / 57

Shared access to files through memory (mmap)

• Communicate through a file
– It is problematic with the standard op.-s (read(), write(), fseek())
– Can we use a file like the shared memory?

• UNIX mmap, Windows: CreateFileMapping
– An open file object (open()) can assigned to an address: mmap(addr, size, prot,

flags, fd, offset)
• addr: the assigned address, 0: the kernel choses
• size: the accessed data range
• prot: the mode of access: R, W, X
• flags: own or shared file, etc.
• fd: file descriptor returned by the open() system call
• offset: the start position

– Return value: the assigned virtual memory address
– Close the assignment: munmap(addr, len)

BME MIT Operating Systems 2018.

File and Storage Systems 21 / 57

I/O operations without waiting

• Non blocking I/O
– syscall options not to block the task
– the call returns immediately

• with the data
• or with „no data” error

– the task may/should retry the operation any time

• Asynchronous I/O
– the task initiates the I/O and sets a buffer for the data
– the asynchronous I/O is performed in the background

• the system call returns immediately
– the task can perform other instructions
– when the I/O is done, the kernel notifies the caller

• e.g.: with a signal with custom handler
– see POSIX aio, Windows I/O Completion ports

BME MIT Operating Systems 2018.

File and Storage Systems 22 / 57

Overview

• The user perspective
– end user
– administrator
– programmer

• Internals
– file system implementations
– disk organization
– buffer cache
– virtual file systems

• Storage
– devices (HDD, SSD)
– I/O scheduling
– virtualization:

• local (RAID, LVM)
• network (SAN, NAS)

– distributed...

Applications (Processes)

Block I/O Layer

I/O Scheduler

SCSI Upper Layer

Request-based
device mapper targets

SCSI Mid Layer

Transport Classes

SCSI Low Layer

Physical Devices

VFS

Page
Cache

direct I/O
(O_DIRECT)

Block Based FS Network FS Pseudo FS Special
Purpose FSext2

network

network

stackable

optional stackable devices on top
of “normal” block devices - work on bios

BIOs (Block I/O)

maps bios to requests

sysfs
(transport attributes)

ext3 ext4

ifs

ocfsgfs

mdraid

cfq deadline noop

drbddevice
mapper

...

...

...

...

...

...

...ahci

HDD SSD DVD
drive

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

Fusion-io
PCIe Card

nvme
device

Micron
PCIe Card

libata

scsi_transport_fc

scsi_transport_sas

scsi_transport_...

dm-multipath

aacraid qla2xxx lpfc iscsi_tcpmegaraid sas

ata_piix

/ dev / sda / dev / sdb
/ dev / vd* / dev / fio*

virtio_blk iomemory-vsl

/ dev / fio*

/ dev / nvme#n#

nvme

iomemory-vsl
with module option

Hooked in Device Drivers
(hook in similar to stacked devices such

as mdraid/device mapper do)

mtip32xx

/ dev / rssd*

...

btrfs
smbfs

xfs
NFS coda

pipefs tmpfs

mmap
(anonymous pages)

malloc

..
.

ch
m

o
d

(2
)

re
a

d
(2

)

w
ri

te
(2

)

o
p

e
n

(2
)

st
a

t(
2

)

ramfsfutexfs

usbfs devtmpfs

proc coda

iso9660

BME MIT Operating Systems 2018.

File and Storage Systems 23 / 57

Implementation of file systems (overview)

• Operation from the user’s point of view (already discussed)
– Files, directories, tree/graph structure
– Format, mount, unmount
– Check, repair, create, modify, tune

• Organizing the file system in the storage
– The logical units are assigned to physical devices
– The data is stored in blocks
– Beside the file contents, metadata is also stored
– Managing the free (unused) blocks in the storage device

• Run-time operations
– File system descriptors (metadata of the mounted file systems)
– Descriptors (metadata) of the files

• Access to opened files
– Managing the data in the memory, buffering

BME MIT Operating Systems 2018.

File and Storage Systems 24 / 57

File system structure

• The stored data
– File system metadata (superblock, master file table, partition control block)
– File metadata (inode, file control block, on Windows: it is part of master file table)
– Stored data

• The file system metadata
On disk

• Type and size
• List of free blocks
• The location of the file metadata
• State
• Modification information
• …

• The file system is sensitive to metadata loss (e.g. hardware error)
– Therefore backups are made
– See: dumpe2fs /dev/sda1 | grep -i superblock

superblocksuperblock file metadatafile metadata data blocksdata blocks

In memory
• everything that is on the disk
• mount information
• „dirty” bit
• locking info
• ...

BME MIT Operating Systems 2018.

File and Storage Systems 25 / 57

File metadata

• On disk
– Authentication information (UID, GID)
– Type
– Permissions
– Timestamps
– Size
– Data block locations
– Example: UNIX inode (index node), Windows Master File Table entry

• Runtime extensions (in memory)
– State (locked, modified, etc.)
– Disk/file system identifier
– Reference counter (file descriptors)
– Mounting point descriptor

BME MIT Operating Systems 2018.

File and Storage Systems 26 / 57

Storing data blocks (allocation methods)

• Continuously on the disk…
– simple but causes serious fragmentation over time

• Chained list (sequential access), e.g. FAT
– data is divided into in smaller chunks (blocks)
– data blocks are stored in a linked list

• the address of the first part is in the metadata
• every part contains the address of the next part

– efficient for sequential access, not good for random access
– very sensitive to errors

• Indexed storage (direct access)
– data is divided into in smaller chunks (blocks)
– the location/map of the blocks: the index (see next slide)
– block may be stored sequentially if possible
– efficient, good for random and also for sequential access
– sensitive to loosing the index (may be duplicated)

BME MIT Operating Systems 2018.

File and Storage Systems 27 / 57

How to determine the block size?

Source: Andrew S. Tanenbaum, Jorrit N. Herder, Herbert Bos
File size distribution on UNIX systems: then and now. Operating Systems Review 40(1): 100-104 (2006)

BME MIT Operating Systems 2018.

File and Storage Systems 28 / 57

Example: Multiple indexed data block address table

• Index table
– 12 direct block address
– single and double indirect block address (to cover large files)
– 4 kB block size
– 4 byte address

12 direct block address12 direct block address
Data block (4k)Data block (4k)

Data block (4k)Data block (4k)
Data block (4k)Data block (4k)12

1x indirect address1x indirect address 4k/4 direct block address4k/4 direct block address
Data block (4k)Data block (4k)

Data block (4k)Data block (4k)
Data block (4k)Data block (4k)

2x indirect address2x indirect address 4k/4 1x indirect address4k/4 1x indirect address
4k/4 direct block address4k/4 direct block address

4k/4 direct block address4k/4 direct block address
4k/4 direct block address4k/4 direct block address

Data block Data block
Data block Data block

Data blockData block

1024

1024

What is the maximal fle size?

1024

BME MIT Operating Systems 2018.

File and Storage Systems 29 / 57

Managing the free blocks

• Bitmap, bit-vector description
– Every block is represented by a bit
– 1=free, 0=used
– Simple method, easy to find a free block

• The map can be stored in the memory for smaller FS
• Typically there is a CPU instruction for getting the first non zero bit location

– It uses more memory for a larger file system

• Chained list storage
– The free blocks are marked and the address of the next free block is written there
– Only the address of the first free block has to be stored
– Simple, but not so efficient method
– It can be combined with the chained list block allocation method

• Hierarchical methods
– Managing the group of (free) blocks
– The groups can be created based on the size of the FS
– Within a group, a simpler structure can be used (e.g.: bitmap)

BME MIT Operating Systems 2018.

File and Storage Systems 30 / 57

Accelerating data transfers

• Disk buffering
– to accelerate the access to frequently used data
– works in coordination with virtual memory management (paging)

• data is loaded into frames by the VMM
• page replacement may also free disk buffer frames if needed

• Accelerating..
– read operations

• read ahead automatically
• may be instructed using system calls (see posix_fadvise)

– write operations (when to write the modified data to the disk)
• Write through cache

– write immediately to the storage
– slow but reliable

• Buffered write
– writes data periodically (flush, sync)
– significantly faster but may cause data loss

BME MIT Operating Systems 2018.

File and Storage Systems 31 / 57

Metadata consistency and journaling file systems

• When write metadata in the memory to the disk
– similar to data buffering but more complex problem due to transactions
– a write through cache may cause significant performance loss

e.g. file access times are changing rapidly

• Journaling file systems
– changes are saved to a journal, which is always stored on the disk

• file system operations are grouped into transactions
• transaction is finished when the it is stored in the journal
• the transaction data is deleted when it committed to the filesystem

– the journal is sequential access circular buffer
– What happed if the system crashes? The journal is processed during reboots.

• Log-structured file system: the log is the file system (e.g. BSD LFS)

• Copy-on-write file system (ZFS, btrfs)
– a different solution that works on duplicated metadata structures

BME MIT Operating Systems 2018.

File and Storage Systems 32 / 57

Virtual File Systems

• There are many types of file systems
– Typically under UNIX systems, multiple types used at the same time
– We can’t except that the programmers manage them separately

• VFS is an implementation independent file system abstraction
– The basis of the modern Unix file systems

• Goals
– Supporting multi type file systems running simultaneously
– Standard programming interface (after mounting)
– Provide the same interface also for special FS (e.g. network)
– Modular structure

• Abstraction
– fs (file system metadata) → vfs
– inode (file metadata) → vnode

BME MIT Operating Systems 2018.

File and Storage Systems 33 / 57

vnode and vfs

• vnode data fields
– Common data (type, mounting, link counter)
– v_data: file system dependent data (inode)
– v_op: table of the file methods (operations)

• vfs data fields
– Common data (FS type, mounting, vfs_next)
– vfs_data: file system dependent data
– vfs_op: table of the FS methods (operations)

• Virtual functions
– vnode: vop_open(), vop_read(), …
– vfs: vfs_mount, vfs_umount, vfs_sync, …
– These are translated to the FS dependent methods

BME MIT Operating Systems 2018.

File and Storage Systems 34 / 57

The connection between vfs and vnode

File_system1
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system1
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system2
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

File_system2
vfs_next
vfs_op
vfs_nodecovered
vfs_fstype

root vfs

vnode1: VROOT
v_vfsp
v_vfsmountedhere

vnode1: VROOT
v_vfsp
v_vfsmountedhere

vnode2: boot
v_vfsp
v_vfsmountedhere

vnode2: boot
v_vfsp
v_vfsmountedhere

vnode3: VROOT
v_vfsp
v_vfsmountedhere

vnode3: VROOT
v_vfsp
v_vfsmountedhere

BME MIT Operating Systems 2018.

File and Storage Systems 35 / 57

Special virtual file systems (examples)

• Which file systems are supported?
cat /proc/filesystems

• devtmpfs and devfs
– accessing the HW devices trough the file system

• procfs
– accessing to the process metadata and kernel structure through the FS

• sysfs
– accessing to kernel subsystems through FS

• cgroup, cpuset
– setting resource allocation for process groups

mount | egrep “cgroup|cpuset”

BME MIT Operating Systems 2018.

File and Storage Systems 36 / 57

Implement your own file system using VFS

• Is not that hard...

• See

Ravi Kiran, „Writing a Simple File System”

Steve French, „Linux Filesystems 45 minutes” ODP PDF
„A Step by Step Introduction to Writing (or Understanding) a Linux Filesystem”

http://www.geocities.ws/ravikiran_uvs/articles/rkfs.html
http://us1.samba.org/samba/ftp/cifs-cvs/ols2006-fs-tutorial-smf.pdf
http://ftp.samba.org/pub/samba/cifs-cvs/ols2006-fs-tutorial-smf.pdf

BME MIT Operating Systems 2018.

File and Storage Systems 37 / 57

Overview

• The user perspective
– end user
– administrator
– programmer

• Internals
– filesystem APIs
– disk organization
– buffer cache
– virtual filesystems

• Storage
– devices (HDD, SSD)
– I/O scheduling
– virtualization:

• local (RAID, LVM)
• network (SAN, NAS)

– distributed...

Applications (Processes)

Block I/O Layer

I/O Scheduler

SCSI Upper Layer

Request-based
device mapper targets

SCSI Mid Layer

Transport Classes

SCSI Low Layer

Physical Devices

VFS

Page
Cache

direct I/O
(O_DIRECT)

Block Based FS Network FS Pseudo FS Special
Purpose FSext2

network

network

stackable

optional stackable devices on top
of “normal” block devices - work on bios

BIOs (Block I/O)

maps bios to requests

sysfs
(transport attributes)

ext3 ext4

ifs

ocfsgfs

mdraid

cfq deadline noop

drbddevice
mapper

...

...

...

...

...

...

...ahci

HDD SSD DVD
drive

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

Fusion-io
PCIe Card

nvme
device

Micron
PCIe Card

libata

scsi_transport_fc

scsi_transport_sas

scsi_transport_...

dm-multipath

aacraid qla2xxx lpfc iscsi_tcpmegaraid sas

ata_piix

/ dev / sda / dev / sdb
/ dev / vd* / dev / fio*

virtio_blk iomemory-vsl

/ dev / fio*

/ dev / nvme#n#

nvme

iomemory-vsl
with module option

Hooked in Device Drivers
(hook in similar to stacked devices such

as mdraid/device mapper do)

mtip32xx

/ dev / rssd*

...

btrfs
smbfs

xfs
NFS coda

pipefs tmpfs

mmap
(anonymous pages)

malloc

..
.

ch
m

o
d

(2
)

re
a

d
(2

)

w
ri

te
(2

)

o
p

e
n

(2
)

st
a

t(
2

)

ramfsfutexfs

usbfs devtmpfs

proc coda

iso9660

BME MIT Operating Systems 2018.

File and Storage Systems 38 / 57

Storage solutions

• Physical devices
– Magnetic

• HDD and tape devices
– Optical

• CD, DVD, Blu-ray
– Nonvolatile memories (solid state, integrated circuit based)

• SSD, USB drive, SD card

• Virtual storage systems
– extend (capacity, services) other storage systems

• merging
– e.g. RAID, LVM

• network access
– file or block level transfer
– e.g. NAS, SAN

• distributed system
– For reliable and scalable storage systems
– e.g. Ceph, GlusterFS

– In certain cases these are integrated with the FS
• e.g. Solaris ZFS, Linux BTRFS, …

BME MIT Operating Systems 2018.

File and Storage Systems 39 / 57

Properties of physical storage systems

• Characteristics
– capacity from bytes to petabytes
– throughput (read/write) 10 MiB/s ... 200 GiB/s
– access time: 0.5 ns ... seconds/minutes

• Reliability
– measures related to the life-time of a device (see SMART)
– Annualized failure rate (AFR)

• How many devices fail within a year?
• Typically 2-4%, but sometimes above 10%

– Mean time to failure (MTTF)
• Millions of operating hours (>100 years), according to vendors
• It is related to all of the devices averaged, not for a single device
• Bathtub curve: higher failure chance for old and new devices
• Disk failures in the real world: What does an MTTF of 1,000,000 hours mean

to you?
– Total bytes written (TBW, for memory based devices)

• The memory pages cannot written infinite times
• The amount of bytes written, which won’t cause a failure
• It can be decades for a daily 50 GB amount of data (link)

BME MIT Operating Systems 2018.

File and Storage Systems 40 / 57

Performance compared to DRAM

logarithmic
scale

BME MIT Operating Systems 2018.

File and Storage Systems 41 / 57

Trends of physical storage systems

• In the past
– significant performance difference between CPU and disks

• The CPUs were developed faster than HDDs
• “slow I/O” was a design principle for operating systems

• Present and near future
– the size of the physical memory is greatly increased

• the size of disk cache is higher
– new methods based on fast CPU-s

• runtime data compression (ZFS, btrfs)
• deduplication

– avoiding the storage of the same data part more than one time

– memory based „disks”
• increasing speed with very low latency
• storage class memory: almost DRAM performance with large capacity

BME MIT Operating Systems 2018.

File and Storage Systems 42 / 57

Tape drives

• Traditional tool for backups
– High capacity
– Long lifetime
– slow operation
– manual / robotized cassette change

• Recent developments
– high sequential read speed

• Tape – 300 MB/s, SSD – 500 MB/s
– larger caches

• Almost every data is there
• Filled with sequential read

– see log-structured file systems
• sequential read/write

– good as a general storage?

BME MIT Operating Systems 2018.

File and Storage Systems 43 / 57

Magnetic (mechanical) disk drives

• The location of the superblock, inode list, data blocks on the disk
– Goals: performance, reliability

• Cylinder block
– Tracks assigned to the same head position
– The data can be accessed

without head movement
– Collective damage is possible

when a head-disk collision happens

• Allocation principles
– The superblock is stored in every cylinder block
– inode list and free blocks are in a separate c.block
– Small files in the same c.block
– Larger files are distributed between c.blocks
– The new files will be on a less used c.block

BME MIT Operating Systems 2018.

File and Storage Systems 44 / 57

Scheduling of disk operations

• Scheduling increases the performance
– especially on mechanical drivers with slow access times

• E.g. Linux I/O Schedulers
– Noop: simple FIFO

• may concatenate adjacent requests
• small overhead
• recommended if the storage system has internal scheduling (RAID, NCQ,

VMs)
• best for CPU intensive systems (low load on disks)

– Deadline: tries to perform requests before a deadline
• requests are ordered by the block address in read and write batches
• recommended for I/O intensive systems with many parallel requests

– CFQ (Completely Fair Queuing): equal service for every request
• has queues for every process and assigns a time-slice to them
• estimates the load for each queue
• scheduling depends on this estimation and the priority of the queues
• recommended for general usage (usually this is the default)

BME MIT Operating Systems 2018.

File and Storage Systems 45 / 57

Reliability of hard disk drives

• Statistics for 56K disks of the Backblaze data center

(HGST is the former Hitachi Global Storage Technologies)

BME MIT Operating Systems 2018.

File and Storage Systems 46 / 57

SSD
reliability

Source: http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

50GB / day
 → > 40 years lifetime

http://techreport.com/review/24841/introducing-the-ssd-endurance-experiment

BME MIT Operating Systems 2018.

File and Storage Systems 47 / 57

Virtual storage systems
• Overcoming the limits of physical storage solutions

– capacity, performance, reliability
– better management
– better error recovery
– unifying physical storage devices

• Virtual storage
– implements a software storage layer that

• is backed by other storage devices (physical or virtual)
• unifies the underlying storage into a coherent system

– examples: RAID, LVM (Linux), LDM (Windows)
– they are also part of certain file system implementations (e.g. btrfs)

BME MIT Operating Systems 2018.

File and Storage Systems 48 / 57

Virtual storage: Logical Volume Management

• An allocation system beyond the boundaries of the physical devices
– more flexible management than partitions
– logical volumes can be created from partitions, disks and other resources
– e.g. Windows: Logical Disk Manager, Linux: Logical Volume Manager

• Parts of the LVM
– Physical volumes:

disks, partitions, ...
– Logical volumes

virtual partitions
– Volume group:

a set of LVs – virtual
storage

– Allocation units
• Physical extents:

parts of the PV-s
• Logical extents:

LE-s are assigned to PE-s (1-N)
• Usually N=1 1 logical unit is stored by 1 physical unit

• RAID may use it differently (see later)

BME MIT Operating Systems 2018.

File and Storage Systems 49 / 57

Virtual storage systems: RAID

• Redundant Array of Inexpensive Disks
– „cheap” (smaller capacity) disks merged together

• recently: “I” means Independent, RAID disks aren't cheap
– goal: improve redundancy (reliability) and performance
– HW and SW implementations

• mainboard RAID implemented in software (cheap)
• RAID boards: HW solution (expensive)

• Reliability
– more disks mean more failures

• 1 disk MTTF: 100 000 hours, 100 disk MTTF: 1000 hours (41 days)
• how can we increase the reliability?

– introducing redundancy
• storing error correcting data
• simple example: mirroring – storing the data twice
• better: a parity bit can also detect a single error and correct it

BME MIT Operating Systems 2018.

File and Storage Systems 50 / 57

RAID levels: 0 - 1

• RAID level: the mode of merging the physical devices
– How the data is distributed on the N disks

• RAID 0 (stripe): the data is distributed on the N disks
– Goal: improve performance
– It can increase the throughput and the latency also
– The disks capacities are combined
– Failure of 1 disk data loss

• RAID 1 (mirror): the same data are stored on multiple disks
– Goal: improve reliability
– The combined capacity is the size of a single disk
– Slower write operations, read can be faster

• Hybrid (nested) RAID solutions
– RAID 01 (0+1): mirror of stripes

• Rather a theoretical possibility, not used in practice
– RAID 10 (1+0): stripe of mirrors

• Great performance, improved reliability
• Recommended for I/O intensive systems

BME MIT Operating Systems 2018.

File and Storage Systems 51 / 57

Widely used RAID levels

• RAID 5
– block-level striping with distributed parity
– N+1 disk fault tolerance
– a parity block is assigned to a group of data
– this block is distributed among the disks
– the performance is close to RAID0
– the capacity is smaller with a size of 1 disk

Main problem: silent error

• RAID 6
– block-level striping with double distributed parity
– N+2 disk fault tolerance
– extension of RAID5 with an additional parity block
– no significant performance degradation
– the capacity is smaller with a size of 2 disks
– handles silent errors

BME MIT Operating Systems 2018.

File and Storage Systems 52 / 57

The limits of RAID systems

• How long does it take to correct an error (off-line)?
– In the case of 4+1 disks (RAID5)

• 150 GB disks: ~10 hours
• 6 TB disks: ~80 hours

– Spending days with error recovery is not acceptable
• hot spares and RAID6 may improve the situation

• RAID needs the same type of disks
– the replacement can be difficult

• RAID is a bonded structure, not flexible
– cannot upgrade a RAID5 system to RAID6
– transition takes a long time (off-line)

• Limited combined storage capacity
– 6-8 disks at maximum

• RAID only protects against disk errors
– What happens if the motherboard, CPU, RAM, power supply has an error?

BME MIT Operating Systems 2018.

File and Storage Systems 53 / 57

Network and distributed file systems

• Goal: access to files stored in remote machines, sharing files
• Client-server based storage systems

– Server: provides access to the local storage system
– Client: connects to the server and grants access to the remote data
– Network Attached Storage (NAS)

• High-level, file oriented transmission
• NFS (Network File System), see next slide
• SMB/CIFS (Common Internet File System) – Network file system of Windows

– Block level network storage: SAN (Storage Area Network)
• Low level data transmission
• iSCSI (internet SCSI): for transmitting SCSI commands over IP

• Distributed file system
– Operates as a distributed system
– The data storage is distributed amongst the nodes of the system
– Examples:

• Ceph (RedHat, SUSE), Google GFS, RedHat GlusterFS,
• Windows DFS, PVFS, Orange FS

• Challenges: latency, network errors, consistency

BME MIT Operating Systems 2018.

File and Storage Systems 54 / 57

A simple implementation of NFS using VFS and RPC

process
open()

process
open()

VFS (vfs_open)VFS (vfs_open)

NFS client
nfs_open()

NFS client
nfs_open()

machine_1

NFS server
open()

NFS server
open()

VFS (vfs_open)VFS (vfs_open)

ext2 FS
ext2_open()

ext2 FS
ext2_open()

machine_2

RP
C

BME MIT Operating Systems 2018.

File and Storage Systems 55 / 57

Challenges of network file systems

• Location: where is the data stored?
– Location transparency

• The name/path of the files are not referring the location
– Location independency

• The names and paths don’t change when the data is moved

• Question of network copies
– The requests are served by remote services

• Every operation should be performed on a single instance of the data
• The network introduce latency and possible errors
• The order of the operations are critical

– The requests are served with the help of temporary local storages
• the local machine maintain a copy of the data
• Size is limited by the local machine
• Multiple instances consistency problems

• Operation of the network server
– stateful: the file operations have a state (faster)
– stateless: slower, but more reliable

BME MIT Operating Systems 2018.

File and Storage Systems 56 / 57

Scalable, distributed storage systems: Ceph
• Universal, virtual storage systems (SW implementation)

– Block based system (SAN)
– File based system (NAS)
– Object store (OSD)

• Scalable, fault tolerant
– no single point of failure
– Every component is replaceable at runtime (disc, machine)
– Dynamic configuration (level of replication)

• Further advantages
– PB capacity
– Significantly faster error recovery than RAID
– No special HW
– Hot spares are not required (see RAID spare disk)
– Cooperates with other virtualization systems (OpenStack, Amazon S3)
– Open source

BME MIT Operating Systems 2018.

File and Storage Systems 57 / 57

Further development of storage systems

• Integrated file and storage systems
– Integrating the file systems with the solutions of RAID and LVM
– e.g. zfs, btrfs

• Scalability
– dynamic change of storage capacity (runtime)

• Reliability
– large capacity many disks high possibility of errors 

– The error correction time should be eliminated

• Memory based storages
– The SSD’s speed is reaching the speed of the physical memory new principles of 

development

• Data deduplication (e.g. zfs, btrfs)

• Further reading
– Microsoft ReFS (Resilient File System)
– Solaris ZFS (Z File System)
– Linux Btrfs (B-Tree File System, „butter F S”)
– F2FS (Flash-Friendly File System, Samsung)
– GPUfs (file access on GPU-s, see heterogenous multiprocessor systems)

	Bevezetés
	Slide 2
	Slide 3
	Slide 4
	A fájlrendszer felhasználói szemmel
	Slide 6
	Directory structures, volumes and drives
	Overview of the Windows 10 folder structure
	Overview of the UNIX directory structure
	Overview of the Android directory structure
	File properties (with UNIX examples)
	The UNIX permission systems
	Slide 13
	An overview of the widely used file systems
	Practice in Linux
	Backing up and restoring data
	Slide 17
	Programming interfaces
	Locking files
	Shared access to files through memory (mmap)
	I/O operations without waiting
	Slide 22
	Implementation of file systems (overview)
	Organization of the file systems on the disk
	Location of the file metadata
	Storing data blocks (allocation methods)
	How to determine the block size?
	Example: Multiple indexed data block address table
	Managing the free blocks
	Accelerating data access
	Consistency of metadata and journaling file systems
	The Virtual File System ()
	vnode and vfs
	The connection between vfs and vnode
	Special virtual file systems (examples)
	Slide 36
	Slide 37
	Physical storage solutions behind file systems
	Properties of physical storage systems
	Slide 40
	Trends of storage systems
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Virtual storage systems: Logical Volume Management (LVM)
	Virtual storage systems: RAID
	RAID levels: 0 - 1
	Widely used RAID levels
	The limits of RAID (drawbacks)
	Network and distributed file systems
	A simple implementation of NFS
	Challenges of network file systems
	Scalable, distributed storage systems:
	Further development of storage systems

