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Exercise 2. 

Time Domain analysis 

Required knowledge 

 Time-domain description of first- and second-order systems. 

 Measurement of phase shift between periodic signals. 

 Transmission line theory: reflection calculation, wave propagation. 

 Theory of averaging of noisy signals.  

Introduction 

Time domain investigation of signals and systems is one of the most essential tool of 
electrical engineering. When a physical phenomenon is investigated, its time domain 
behavior is one of the most important property which should be observed. In 
infocommunication often the shape of the received signal carries the information (e.g., its 
amplitude, phase, rate of change…). Even if a signal is stored or transmitted in digital form, 
most essential building blocks of digital signals (bits) are represented by analogue signals in 
the physical layer. In order to establish a high quality digital communication, the analogue 
signals must be well-conditioned: high signal-to-noise ratio should be achieved, the state 
transitions should be sharp enough, oscillation and reflections should be avoided.  

Simple first-order systems and transmission lines that will be investigated in the 
measurement are basic building blocks of several complex systems, so it is crucial to be 
familiar with the time-domain behavior and measurement technique of these systems.  

Aim of the measurement 

Students will perform the following task: (1) time- and phase measurement, (2) frequency 
dependent transfer of linear systems, investigation in time domain, (3) signal shaping in 
distributed parameter systems, (4) averaging as noise suppression. They will get acquainted 
with time domain reflectometry, and practice the time and phase measurement with 
oscilloscope, and failure diagnosis by means of investigation of time domain waveforms. 

Web links 

http://en.wikipedia.org/wiki/Lissajous_curve 

http://en.wikipedia.org/wiki/Time-domain_reflectometry 
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Measurement instruments 

Power supply Agilent E3630A 

Function generator Agilent 33220A 

Oscilloscope Agilent 54622A 

Multimeter  

Theoretical background 

Measurement of pulse parameters 

The definition of pulse parameters are given in Figure 2-1: 

 Rise-time: the time during which the signal increases from the 10% to 90% of the final 
value. Care should be taken, since the base point is at the low level of the signal. For 
example, if Ulow =1 V and Uhigh =10 V, then threshold values are: U10% = 1.9 V and 
U90% = 9.1 V.  

 Fall time: the time during which the signal decreases from 90% to 10% of the initial 
value. 90% and 10% again refers to the difference between Ulow and Uhigh. 

 Overshoot: the difference between the peak value and the final value of the signal. It is 
often given relative to the final value in percent. 

 Undershoot: the difference between the negative peak value and the final value of the 
signal at the falling edge.  

 Droop: the decrease of the amplitude of the pulse from the beginning to the end. 

 Impulse width: the time difference between the 50% threshold levels of the positive and 
negative edges. 

 Settling time (ringing time): the time during which the signal settles after the level 
transition at its input within a specified interval around the final value of the signal (and 
doesn’t leaves this interval any more). The typical values of specified interval are, e.g., 
±0.1%, ±1%, ±5% around the final value.  

These methods are based on graphical evaluation, hence the measurement of the parameters 
is sometimes not obvious and not well-defined (e.g., at wrong signal-to-noise ratio, spurious 
oscillations occur…).  
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Figure 2-1.  Definition of pulse parameters 

It is a general rule that either of the previous parameters are measured, the range (both 
time/div and volt/div) should be as tight as possible, i.e., we should zoom on the measured 
part of the signal as close as possible in order to minimize the measurement error.  

Modern digital oscilloscopes are able to measure these parameters automatically (Quick 
Measure button on the oscilloscopes used in the laboratory). However, the ranges should be 
set manually before these functionalities are used, and measurements should be verified 
visually, since these automatic measurements are based on the data which are displayed on 
the screen of the oscilloscope. For example, if rise time is measured and the time/div setting 
is too high, then the rising edge may be seen as 1-2 pixels on the screen. In this case even the 
oscilloscope can not do precise measurement. Contrary, if the time/div is too fine, and the 
steady-state high and low levels can not be seen on the screen (we zoom too close to the 
edge, and other parts of the signal can not be seen), then the oscilloscope cannot correctly 
calculate the 10% and 90% threshold levels, so the measurement will be incorrect. Quick 
Measure function is a useful tool, however, it is recommended to make some measurements 
manually, otherwise we won’t know how to set up the oscilloscope for the measurements.  

 

First-order RC circuits 

During the course of laboratory measurement first-order, low- and high-pass filters will be 
investigated. One of the simplest measurement method is the measurement of the step 
response of the systems which can be performed with a simple square wave generator. The 
analytical form of the step responses of general first-order, low- and high-pass systems are: 

 )1()(LP





t

eAtv ,                                   



t

Aetv )(HP , (2-1) 

where A is the amplitude gain and τ stands for the time constant of the system. In the 
laboratory, first-order RC filters will be investigated whose schematic diagrams are shown 
below: 
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Figure 2-2. Schematic diagrams of first-order, low- and high-pass RC networks.  

The time constant of such systems is τ = RC, and their gain is unity: A = 1. The responses of 
these systems on a step function of amplitude Upeak are:  

 )1()( peakRCLP,
RC

t

eUtv


 ,                                   RC

t

eUtv


 peakRCHP, )( , (2-2) 

Step response of the first order RC networks are shown in the figures below: 
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Figure 2-3. Step responses of first-order, low- and high-pass RC networks. Time constant is: 
τ =1/ω0=RC=1 msec. 

Measurement of time constant of first-order systems 

The time constant of the systems will be measured using square wave input signals. If the 
half of the period of the square wave used as excitation signal is considerably longer (at least 
5 or 10 times) than the time constant of the system to be measured, the square wave can be 
regarded as a periodic step function, and the output of the system can be regarded as the step 
response of the system. The measurement arrangement is found in the figure below. First-
order RC circuits contain only passive components so they do not require supply voltage.  

R 

C Uin Uout 

C 

Uin Uout R 
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Figure 2-4. Block diagram of the step response and time constant measurement.  

In the figure, Rg denotes the output impedance of the function generator (Rg = 50 Ω). This 
resistance has practical significance if the input impedance of the DUT is not considerably 
higher than Rg. In this case, the input signal can be less than the value set on the function 
generator since the input impedance of the DUT and Rg form a voltage divider. Rg can also 
influence the time constant of the system, since it is added to the resistance of the RC 
network.  

Rg 

Square wave generator 

Ug 

Device under 
test 

Uin Uout 

ch1 ch2 

oscilloscope 

Power supply 

(if required) 



Laboratory exercises 1. 

 

  

6 

Three methods will be introduced to measure the time constant based on the step response. 
These methods are summarized in the figures below: 
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Figure 2-5. Illustrations of time constant measurement methods based on step response. Left 
column: low-pass filter; right column: high-pass filter. First row: tangent at zero point; 

second row: measurement at the 63.2% and 36.8% of the maximum value; last row: 
measurement at the 50% of the maximum. The time constant in this example is τ = 1 ms. 

In the examples, the half of the square wave is more than five times the time constant so the 
system’s response achieves the steady state before each new edge of the excitation signal.  

The methods of time constant measurement are: 

1. Time constant measurement based on tangent at zero point:  

o At the falling edge: draw the tangential of the step response at the beginning 
of the falling edge. The tangential crosses the time axis at the time constant.  
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o At the rising edge: draw the tangential of the step response at the beginning 
of the rising edge. The tangential reaches the final value of the step response 
at the time constant. 

2. Measurement at the 63.2% and 36.8% of the maximum value:  

o low-pass filter: the step function reaches the 63.2% of the final value after 
rising edge, and it reaches the 36.8% of the initial value at the falling edge 
after the time constant. Note that 63.2% = 1–1/e and 36.8% = 1/e.  

o high-pass filter: the step function reaches the 36.8% of the initial value after 
the time constant (i.e., it decreases to the e-th part during the time constant). 

3. Measurement at the 50% of the maximum value: the step function reaches its 50% 
after 0.6931 times the time constant. Note that 0.6931 = –log(1–1/2).  

All of these methods can be proved according to the step response of first-order systems 
given in equation (2-1).  

To prove the first method, the derivative of the step response should be calculated, that is 





 

 A
e

A
tv

t

)0('LP  for low-pass filter. Since 0)0(LP tv , the tangential reaches the 

amplitude A after at t = τ. Proof is similar for high-pass filter (it should be solved as 
homework). 

The proof the second and third method differs only in the last step. The final value of the 
step response of low-pass filter is A. In order to calculate how many time it takes to reach a 

value aA, we should solve the equation aAeAtv
t

 


)1()(LP . One obtains that it is true 
for t = –τ∙ln(1–a). For a = 63.2% = 1–1/e one obtains t = –τ∙ln(1–(1–1/e)) = τ, and for 
a = 50% = 0.5 one obtains t = –τ∙ln(1–0.5) = 0.6931∙τ. Proof is similar for high-pass filter (it 
should be solved as homework). 

 

Measurement of the transfer function 

It is well known that a linear time-invariant system can change only the phase and amplitude 
of a sine wave applied to its input. Hence, the system can be characterized at each frequency 
by a complex number (complex gain) whose phase is the phase shift of the system, and its 
magnitude is the gain of the system. The transfer function is the complex gain of the linear 
system as function of frequency.  

Several methods are known which allow the measurement of the transfer function of linear 
systems. In the following, some of these methods are summarized (the emphasis is put on the 
measurement of magnitude characteristics).  

Measurement of amplitude characteristics with stepped sine 

A well-known method of measurement of amplitude characteristics is performed using a sine 
wave generator and an AC multimeter (Figure 2–6). The measurement doesn’t require 
expensive special instruments if high precision is not crucial. Its disadvantage is that the 
measurement is relatively time consuming, since the amplitude characteristics should be 
measured point-by-point along the whole frequency range. The frequency resolution of the 
measurement is determined by the frequency resolution of the sine wave generator. When 
only the bandwidth is to be measured, it can be done by setting the frequency to the center 
frequency where the gain is nominal, and then the frequency should be changed until the 
output signal decreases by 3 dB. The multimeter can often be exchanged with an 
oscilloscope, but the precision of an oscilloscope is generally worse than that of a 
multimeter. 
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Figure 2–6. Measurement of transfer function with sine wave generator and multimeter 

The amplitude reference point has to be set before beginning the measurement. Every 
subsequent measurement result is compared to this reference point. The reference point is set 
according to the type of the amplitude characteristics (e.g., high-pass, low-pass, band-
pass…). For example, if a system has low-pass characteristics as shown in the figure below, 
the reference point should be set at low frequency, at least one or two decades below the 
cutoff (corner) frequency. If the multimeter has fixed 0 dB point, it is recommended to set 
the input signal such that 0 dB appears at the output. Some of the modern multimeters allow 
us to set the 0 dB point to an arbitrary value. In this case, the input signal should be set as 
high as possible in order to ensure good signal-to-noise ratio. Care should be taken when 
setting the level of input signal! A common mistake is that the output signal becomes 
distorted, e.g., due to saturation, or the measured values are out of the range of the 
instruments. Except of some special cases, neither the input nor the output signals can 
exceed the supply voltage. If a passive circuit is measured (e.g., first-order RC network), no 
power supply is required. The level of input signal shouldn’t be changed during the whole 
measurement. It is generally recommended to check the shapes of the signals with an 
oscilloscope during the measurement.  

 [dB]H
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Figure 2–7. Transfer function of a low-pass filter 

During the course of the measurement, the frequency is often changed logarithmically (see 
Figure 2–7), e.g., with steps 1-2-5-10-..., but it is recommended to measure with finer steps 
in the vicinity of the cutoff frequency. The cutoff frequency is often defined as the frequency 
where the amplitude characteristics decreases by 3 dB below the nominal value. (E.g., if the 
nominal gain is 9 dB, the gain is 6 dB at the cutoff frequency.) 

The stepped sine wave method has the advantage that it offers a good signal-to-noise ratio. 
However, the measurement of the whole amplitude characteristics requires considerable 

20 dB/decade 
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time, since the frequency should be changed after each measurement, and we should wait 
until the transient vanishes after each time the frequency is changed.  

Measurement of phase difference 

The method used in this measurement is traced back to the measurement of ratio of time 
intervals, more precisely on the ratio of the time delay between two signals and the period of 
the signal. The method is illustrated in Figure 2-8. The two signals are fed to the two 
different channels of the oscilloscope. Then we should search the same reference points on 
the two signals. Practically, the positive or negative zero crossing points are used as 
reference points. Let t  denote the time delay between these two reference points. 
Furthermore, let T denote the period which can be measured as the time difference between 
two consecutive positive or negative zero crossing of the signal. The phase difference can be 

calculated as 


 360
T

t . The advantage of the method is that it is not sensitive to the 

time base error of the oscilloscope, only the linearity of the time base is required. However, 
it is true only until the time/div setting remains the same when t  and T are measured. If 

t  is considerably smaller than T, then t  should be measured with smaller time/div 
setting (finer time resolution). In this case the error of time base can not be neglected when 
measurement error is calculated. It depends on the specification of the oscilloscope whether 

t  and T should be measured with the same or different time base setup. 

 

Figure 2-8. Phase difference measurement based on time interval measurement 

The oscilloscope used in the laboratories have built-in phase shift measurement functionality 
which is based on the previous method. This tool works properly only when at least one 
whole period of the observed signal can be seen on the display of the oscilloscope. This 
constraint limits the accuracy when small phase difference is measured, since in this case we 
can not zoom into the time difference ( t ) between the signals which would required to 
make a precise measurement. This example shows that it is highly recommended to be able 
to perform manual measurement since automatic functionalities may fail in some cases.  

Transfer function of first-order systems 

The transfer function of the first-order low-pass (WLP) and high-pass (WHP) filters of Figure 
2-2. can be written as: 
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In electrical engineering, the piecewise linear approximations of Bode plots are also often 
used. These plots are given for first-order systems in figures below: 

 

Figure 2–9. Piecewise linear approximation of Bode plots of first-order, low-and high-pass 
systems.  

The precise transfer functions calculated by MATLAB are: 
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Figure 2–10. Transfer functions of first-order, low- and high-pass RC networks. Cutoff 
frequency is in this example: ω0=1/RC=1000 rad/sec.  
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Important properties of these networks are: 

 

property low-pass RC network high-pass RC network 

Cutoff frequency / time constant ω0 = 1/τ = 1/RC ω0 = 1/τ = 1/RC 

DC gain 0 dB (1) -∞ dB (0) 

gain at cutoff frequency  -3 dB (1/ 2 ) -3 dB (1/ 2 ) 

gain at ω→∞ -∞ dB (0) 0 dB (1) 

slope of W  below cutoff frequency 0 dB/decade 20 dB/decade 

slope of W  above cutoff frequency -20 dB/decade 0 dB/decade 

DC phase shift 0○  90○ 

phase shift at cutoff frequency 45○ 45○ 

phase shift at ω→∞ 90○ 0○ 

 

The knowledge of basic behavior of low- and high-pass networks is also important when 
instruments are characterized. For example, when an oscilloscope is used with AC coupling, 
its input stage behaves like a high-pass filter. The cutoff frequency of AC coupling of the 
oscilloscope Agilent 54622 is 3.5 Hz by specification.  

For high-frequency signals an instrument (oscilloscope, mulimeter…) behaves like a low-
pass filter. Care should be taken, since not only the fundamental, but higher order harmonic 
components can be modified by the instrument. For example, if the bandwidth of an 
oscilloscope is 100 MHz, and a periodic square wave of 10 MHz is measured, the effect of 
the oscilloscope’s bandwidth even on the 10-th (and higher order) harmonic components can 
not be neglected. It will result in the phenomenon similar as if the square wave would be 
composed of only harmonic components up to the order of ten, hence sharp edges will 
disappear. The bandwidth of some oscilloscopes can also be decreased intentionally to 
improve signal-to-noise ratio when low frequency signals are measured.  

 

Time-domain reflectometry (TDR) 

Transmission lines are often used in micro-wave circuits, impulse technique and high-speed 
digital systems. Every conductor can be regarded as transmission line if its length is at least 
approximately the tenth of the wavelength of the signal to be transmitted. If high frequency 
signal is transmitted through a conductor, the nature of the propagation of electromagnetic 
waves in transmission lines should be considered.  

The following figure shows a block diagram where time-domain reflections in transmission 
lines can be investigated. A voltage generator is used which is able to provide a step function 
at its output (in practice a square wave generator is used with long period such that steady 
state is achieved between level transitions). The output impedance of the generator equals to 
the wave impedance of the transmission line, i.e. Zg = Zo (matched termination on the input). 
The voltage ex(t) is measured with an oscilloscope at the output of the generator that is 
connected to the input of the transmission line. The transmission line is terminated with a 
real valued load with impedance of value ZL. 
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Figure 2-11. Time domain reflectometry: Block diagram and time-domain signals for a step 
function input 

Let us estimate the signal shapes with simple physical considerations. The system is in idle 
state before time instant t = 0. When the step function appears at the input, the transmission 
line shows a wave impedance of Zo independently on the load impedance. The reason is that 
the signal has finite propagation speed, so the signal “doesn’t know” when it is appeared on 
the input what are the load conditions; it “sees” only the wave impedance of the cable. 
Hence, a voltage divider is formed from the generator impedance Zg and wave impedance Zo, 
and a step wave of amplitude Ei propagates towards the end of the end of the cable. When 
the wave reaches the load impedance (after a time Tk), a reflection occurs. The reflection 
coefficient (γ) depends on the load impedance and wave impedance of the cable as the 
following equation:  
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E

L

L
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


 . (2-4) 

The reflected wave is γ times of the incident wave, i.e., it is Er = γEi. The voltage on the load 
is zero until a wave reaches this point (until time instant Tk), and after the time instant Tk the 
sum of the incident and the reflected voltage (Ei+γEi) is measured. The voltage observed on 
the input remains Ei until the reflected wave arrives back to the input, and than it becomes 
(Ei+γEi). Since we investigate the case when Zg = Zo, so no more reflection occurs on the 
input, hence the steady state has been achieved.  

The propagation time from the input to the end of the cable is denoted by Tk. The round-trip 
delay during which the first reflection (Er) arrives at the input of the cable is 2Tk. If the input 
is matched, i.e., Zg = Zo, then the steady state has been achieved, and the steady-state input 
voltage is Uss = Ei+γEi. Substituting γ into this equation, and using that Zg = Zo, one obtains: 

 
gL

L
ss 2

ZZ

Z
EU i 

 , (2-5) 

which means that the steady-state voltage can be calculated as if the load impedance were 
directly connected to the generator (note that the amplitude of the input signal is 2Ei).  

The above described measurement is called TDR (Time-Domain Reflectometry). This kind 
of measurement can be used to detect whether a cable is terminated correctly (no reflection 
occurs.  

Zg 

2Ei 
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Some important case is illustrated in the following figure:   
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Figure 2-12. Waveforms as a response to step function input, measured at the input of the 
transmission line for different loads: (a) open circuit, (b) short circuit, (c) matched load 

Case (b) is important when short pulses have to be generated, since the pulse duration can be 
tuned with the length of the cable. 

Note that if the generator impedance isn’t matched (Zg ≠ Zo) too, reflection happens also on 
the input, and all of the previously described rules can be applied to calculate reflection on 
the input.   

If the load impedance is not real-valued, then the waveforms are more complex. The 
waveforms in initial state (t = 0) can be approximated by substituting ZC  0 ; ZL  , and 
in steady state (t = ) conditions ZL  0 ; ZC   can be used. In the intermediate states the 
waveforms are exponential depending on the nature of the load.  
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If we can generate a very narrow pulse (the generator used in the lab can do this), we can get 
an even clearer picture of signal propagation. If the length of the pulse is shorter than the 
back and forth propagation time on the cable, the incident and reflected components do not 
add up as in the case of the step response, but are well separated. Some special cases are 
illustrated in the following figure. 
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Figure 2-13.  Reflected signal waveforms for pulse excitation with (a) open-circuit, (b) short-
circuit and (c) matched load, measured at the input of the transmission line. 

TDR is used to investigate long cables. Any kind of damage influences the wave impedance 
of the cable, which causes reflection at the position of the damage. To perform a TDR 
measurement, we need to access only one end of the cable. The waveforms allow us to 
predict the type of damage (short circuit: ZL  0, break ZL  ). Timing values allow us to 
predict the location of the damage. By multiplying the half of the round-trip delay (Tk) by the 
propagation speed of the wave (v), one obtains the location of damage: l = v∙Tk. The 

propagation speed of the wave depends on the dielectric constant 
r

c
v


 , where c is the 

speed of light in vacuum and r  is the relative dielectric constant of the material.  


