Operating systems (vimia219)

History and classification of

Operating Systems, HW environment

Tamas Kovacshazy, PhD
15t topic, Introduction

e Méréstechnika és
Informacios Rendszerek
Tanszék

Budapest University of Technology and Economics
Department of Measurement and Information Systems

© BME-MIT 2014, All Rights Reserved

Operating system

= Definition (Wikipedia)

o An operating system (OS) is an interface between hardware
and user which is responsible for the management and
coordination of activities and the sharing of the resources of a
computer, that acts as a host for computing applications run
on the machine.

o Operating systems offer a number of services to application
programs and users. Applications access these services through
application programming interfaces (APIs) or system calls.

" |sitagood definition?

o More or less OK for client and server operating systems.

* Practically there is no good definition: Microsoft v. USA legal proceedings

o There are new terminologies in the definition . (they will be
introduced later)

o What kind of operating systems do exist?
* Too many, let’s start with the history of operating systems...

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Early operating systems

= Evolution of Hardware defines the process

o Early computers had “wired” programming
* One task can be executed in a time
e Changing task was very time consuming (rewiring)
o The optimization of resource use by done by human
operators

 Selection of tasks and the order of execution (based on e.g.
priority)

* Human, machine and other resources are allocated to the
task

Execution attempt

Evaluation of results

* Rewiring

Repeat the process as long as the results are OK

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Early BATCH systems

= Batch system:

o Programms are written on paper using early programming
languages (early Fortran dialects)

o Putting the program on punch cards

o Punch card set is submitted to the operators of the computer
o Operators run the job

o Results (and errors) are printed

o Fully on-line peripheral operation

= Jobs with similar resource use are grouped together to
reduce the number of repeated tasks

" On-line peripheral operations substituted by off-line
operations (/O processor is introduced), faster execution
but complexity grows

= Resident monitor schedules the jobs

o One is finished the next one started automatically by the
computer

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Buffered processing

= |/O processors appear on the market
o Standard abstract interfaces
o Logical I/O peripherals appear

= Buffering

o To optimize the connection between |I/O peripherals
and the CPU

o Input —> CPU —> Output overlap

o Finding programming errors is even hard even in this
situation
* The programmer has no on-line access to the computer
* Results and errors are receive only after program execution

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva ITr;f:;n_éciés Rendszerek

Spooling

= RAM memory chips appear on the market

" Capacity and speed of random access
memory (RAM) grow
o More than one task executed virtually
o One main program and |/O tasks are involved

o All running virtually in a parallel manner

* Spooling (Simultaneous peripherial operation on-
line)

* Tasks can be even more interleaved.

e Results: Steps toward multiprogramming

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva it R
ansze

Multiprogramming

= Even bigger capacity RAMs with higher speeds makes
possible new advances

o Tasks are not necessarily processed in FIFO manner (human
scheduling more)

o Optimization possibilities
o Job pool
* The aim is to reach 100% CPU, but other factors play their

role

* CPU scheduling : Which task can run? :

— Resource utilization is an opened question (CPU, memory, permanent store,
peripherials) to be solved in real-time.

— The response of the on-line connection has mixed properties

o Tasks run as long as it does not finished or I/O occurs.

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

The end of the 1960s

" Minicomputers appear (e.g. PDP)

o Small groups (department) have access to computers
* More people start to use computers
* Number of humans handled by a computer decreases
* Programmers have on-line access to computers

o MULTICS, and UNIX later
o C and some other modern programming languages

o First steps toward the Internet (ARPANET, information
sharing)

o Fast development cycle

o First attempts to control physical processes with
computers

* The first embedded systems are introduced to the market

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva ITr;f:;n_éciés Rendszerek

Time sharing systems

= Time sharing or multitasking

" On-line users need short response time

o Multiple people use the same computer (n*10-100 people
share one computer)

o The type something than wait for the output, interactive users
* The machine should not be in idle state (Utilize it!)
* Response time should be acceptable (n*10 ms)

o Task run virtually in one time (parallel), in reality they get time
slices of the processor

* They run after one another, timed by a periodic timer
* The timer interrupts the running task, and runs the next one

o A batch system runs in the background
* It utilizes the remaining time slices not used by interactive tasks

= Classic UNIX OS is designhed around this model

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Personal computers

= From the middle 1970s

o A user gets her/his own computer due to the advances
of technology

o IBM PC
e x86 CPU architecture

* memory + HDD

e Character or graphics terminal (X-windows, Windows)
* Keyboard and later mouse
* Soundcard

* Network interface cards (LAN later Internet)
= Steps towards distributed systems

= New requirement: Userfriendlines

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva ITr;f:;méciés Rendszerek

Distributed systems

= Decentralization
o Distribution of function in space

o Advantages and disadvantages: Security, resiliency,
scalability, reliability, easy or hard developement
* It is very hard to develop such systems (complexity)
* We are moving towards it (cloud computing, etc.)

= No time to speak about it in this subject

= Next step is mobile systems, we will not have to
speak about that also

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva ITr;f:;n_éciés Rendszerek

Multiprocessor system

* Homogenous (identical) processors

o E.g. multiple CPU cores, multiple identical CPU, multiple CPU
and multiple CPU core in one physical CPU (AMD Opteron, Intel
Xeon)

"= Heterogeneous (different) processors
o E.g.a multicore CPU plus GPGPU (CUDA, OpenCL) or FPGA based accelerator

= Manycore CPU-k (e.g. Intel experiments, PS3 Cell)
= How this monsters can be programmed efficiently?

o We do not touch these issues, other subjects may later
o Itis also an active research area

s | Méréstechnika és

© BME-MIT 2014, Minden jog fenntartva rh.l} Informacios Rendszerek

Tanszék

What kind of OSs do exist?

= Application specific approach

o Client, server, mainframe operating systems (IT infrastructure)
* Multipe execution units, may distributed, Grid, Cloud, Supercomputers
o Embedded operating systems

o Mobile operating systems
= Capability specific approach
o Generic operating systems
o Real-time operating systems (bounded response time)
o High availability operating systems (reliability, availability, redundancy)
o Configurable operating systems (functions can be selected)

= Capability and application are quite interrelated...
o E.g.Linuxis everywhere
o Microsoft has products in nearly all market segments

o Large number of specialized OS manufacturers

* Wikipedia: 45 commercial OS manufacturer,nearly all of them has multiple
differentiated products, plus open source OSs

* How many Linux distributions do we have? Are they different OSs? | do not know
the correct answer, the OS kernel is the same, but the applications and
configuration are different.

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Client, server and mainframe OSs

= Client OS is clear for everybody...
(or at least | hope)

= Multiprocessor server/mainframe
o 8-64(256) CPU, n*10/100 Gbyte RAM

= High availability IBM System Z10

o Redundancy
o Parts can be change while running

= Can be partitioned

= HW support for CPU, memory, and
peripherals virtualization

© BME-MIT 2014, Minden jog fenntartva

Datacenters (grid, cloud, etc.)

= n*10.000 server

" n*100 TB memory

Google container data center tour

= Huge storage space

= Massively parallel tasks
(WEB search)

= Task length vary
drastically 20-50 msec or
days

" Google, Microsoft,
Facebook, YouTube

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Embedded system 1.

= Embedded systems are specialized computer based
systems designed for a specific task

o Most cases to do this specific task they are in an intensive
information exchange with the environment

- They sense (by sensors) certain parameters of the environment
and they influence the environment by actuators

* There is a machine-environment interface: Sensors, Actuators,
Communication interface

* User interface for human operators is also present
"= PCs can be used in embedded systems
o It must have a dedicated task, it is not HW or SW specific
property, but application specific
o We may also use Windows or Linux in embedded systems!

* They are not designed for that...

* In non-demanding applications they may be a cheap and easy
solution.

Tanszék

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Embedded system 2.

" Many embedded systems operate in a safety
critical environment!
" |In case of a system failure:
o People may be injured or die
o Wide scale property damage is possible
o Non acceptable risk

* We need to avoid it, design and implement the
system very carefully

* There i1s no 100% safety or security

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva !I[]af:sr;idé eeeeeeeeeee

Embedded applications 1.

Special certificates may be

required: INTEGRITY-178B
o Road vehicles ‘

Railways

Aerospace applications

Military

Health

Industry and energy sector

o Etc.

O O O O O

= Real-time operation
= Reliability, security, availability

= Nosingle OS can do all in one
product

uc/oOS BitCloud

u | Méréstechnika és
Informaciés Rendszerek
Tanszék

© BME-MIT 2014, Minden jog fenntartva

Embedded applications 2., Mobile OS

Mobile embedded systems

It is blurred with client operating
systems

Requirements

o Special GUI, multitouch, sensor
integration, etc.

o Battery optimization o dv
o Limited resources - ~
o Partially real-time applications e—
(communication related)
o Heterogeneous HW architecture
* User CPU
* Communication DSP
e Graphics accelerator

* Multimedia coder/decoder

share 2010 Q3
Forras: Canalys

© BME-MIT 2014, Minden jog fenntartva

Smartphone market

@ Wedows Mobie @ Othee

u | Méréstechnika és
Informaciés Rendszerek

Embedded applications 2., Mobile OS

Mobile embedded systems

It is bl

systenso
Requit,, .

O

Spe
inte””

Bat sox= -

Lim
Par
(col

40% -

30%

Het o -

10% -

® 0% -4

World-Wide Smartphone Sales (%)

Android

i0S

Symbian

—— RN
Bada

2007 Q1 |
2007 Q2

2007 Q3
2007 Q4

2008 Q1

2008 Q2 ‘

2008 Q3
2008 Q4

2009 Q1 |
2009 Q2

Windows Phone

Windows Mobile
Other

2009 Q3
2009 Q4

ddddddddddddddd

u | Méréstechnika és
Informaciés Rendszerek
Tanszék

© BME-MIT 2014, Minden jog fenntartva

Real-time systems

= A real-time systems reacts to outside events reaching the system in
a given, application specific time, if this deadline is not met, the
answer can be considered erroneous

o E.g.QuizinTV
= Real-time system types:

o Soft real-time: Deadline is met with a probability < 1, but the probability is
> N.

* There are no catastrophic consequences, but ...
* The system may be late sometimes
e Service Level Agreement
* Not necessarily priority based!
o Hard real-time: Deadline is met with a probability =1
* If it does not meet the deadline, the system fails...
* There are catastrophic consequences not meeting the deadline
e ,The system cannot be late!”

= How we prove it?

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Real-time system 2.

"= The definition does not say about the length of
the deadline!

o The deadline is application specific

* Think about a slow chemical/biological process, such as
fermentation (n*60s deadline) or a car ESP or ABS (i.e. ms
deadline)

= Real-time operating systems:

o By architectural design it can execute certain functions
of it in real-time (with strict deadlines).
* For example, the interrupt latency has un upper bound

* The applications must be designed for real-time operation,
the real-time OS is a requirement, but not a guarantee for
real-time operation of the whole system

* Linux and Windows are not real-time

— There are real-time extensions for them(RTLinux, Windows: eg.
Ardence RTX)

s | Méréstechnika és

© BME-MIT 2014, Minden jog fenntartva rh.l} Informacios Rendszerek

Tanszék

HW architectures

= There are lot of them, even for the x86 PC architecture...
" The operating system hides the differences:

o A well-written application can run on a P3 PC (from approx.
2000), and on the newest multicore Core i7 PC

* |n the worst case it does not utilize more than one core.
o Furthermore, after recompiling, it can run on ARM hardware on
the same operating system.

* If there is some HW specific in it, that must be changed, for example,
some inline assembly code

o However, we must know what happens inside the operating
system and hardware

s | Méréstechnika és

© BME-MIT 2014, Minden jog fenntartva rh.l} Informacios Rendszerek

Tanszék

Computer architectures

" The internal operation of the OS depends on:
o The number and connection of processors in the system
o The organization of memory in the system
o The organization of other hardware in the system

* How peripherals are connected?

= We will address only homogeneous multiprocessor
system

o There are identical processors in the system
= Types of systems we will talk about

o Single CPU (Uniprocessor)
o Symmetric multiprocessing (SMP)

o Non-Uniform Memory Access (NUMA)

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Si ngle CPU (Uniprocessor)

= Single CPU =ACHE

o It was the typical architecture for long time Mem. controller

o In embedded systems it is the typical even now! Mer|nory
* Microcontrollers (MCU) are single CPU typically today
* They can reach higher performance by architectural changes and higher
clocks

= DMA (Direct Memory Access) handles memory in parallel
with the CPU!

o Race condition between the DMA controller and the CPU
* Input: DMA transfer = IT ® CPU handles data

e Qutput: DMA transfer, Peripheral handles data, IT, CPU removes data from
memory

o CACHE coherency problems may arise! Solutions:
* The whole CACHE is invalidate if DMA transfer occur

— Simple, but has catastrophic effects on performance

* Memory locations handled by DMA not cached (CACHE controller, MMU)
e CACHE coherent DMA (HW support required)

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

= Symmetric multiprocessing CACHE CACHE

o Multiple, identical CPUs Mem. controller
e Multiple CPUs or multiple CPU cores M '
, emory
e Example: AMD Phenom, Intel C2D/C2Q, iX
o Most cases with an architecture specific CACHE hierarchy
is present
* SMP is CACHE coherent most cases

o Memory is connected to a controller

* The whole memory is accessed with identical properties
(bandwidth, latency, etc.) by all CPUs or cores

o Muticore MCU

* ARM15, ARM11 MPCore, ARM Cortex-A9 MPCore
* The CPU core is cheap (small portion of the chip surface)
* More and more SMP appears in embedded systems

o To utilize multiple CPUs in the OS, the OS must support
the SMP HW properly

e Otherwise only one CPU is seen by the OS

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Non-Uniform Memory Access CAGHE CACHE

o Memory speed depends on the relative M. cont. — M. cont.
location of CPU core and memory location | |
: : e Memory | | Memory
o The physical memory is unified
» Single and identical address space for all CPUs

o Cache coherency
e CACHE coherent (ccNUMA)
* No CACHE coherent
o Memory controllers are connected by a special
communication interface
* QPI for Intel, Hypertransport for AMD

o For example, multiple CPU AMD Opteron or Intel Core i7
based Xeon CPUs utilze ccNUMA architecture

* Inside one chip the architecture SMP

o To utilize multiple CPUs in the OS, the OS must support the
SMP HW properly

* Otherwise only one CPU is seen by the OS

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva . Informaciés Rendszerek

Tanszék

The operating system and its environment

(G)UL Operating API‘ Application

system | | Programs

A

Users

A

HW intrerface

A 4

HW

" [t must be emphasized that:
o The user and the application programs cannot be in direct contact
o HW and the application programs cannot be in direct contact

= Everything happens through the OS

o For performance reasons there are some exceptions (Graphics), but OS
control is there even in this case

o There are some exceptions in embedded operating systems also

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

The operating system and its environment 2.

Application
programs

A

API

A 4

Operating
system

A

HW
interface

A 4

< (G)UI > HW NET R Other

A
A

User
computers

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

Layered structure of operating systems

= Layered structure

o Structure (design time efficiency) and run-time efficiency must
be balanced

* Layered approach is a must for extendibility also

o Avirtual machine is realized by the layers (upper interface)
* High level function, virtual instruction set

o On the lowest layer the real CPU and peripherals implement the
real machine

u | Méréstechnika és

© BME-MIT 2014, Minden jog fenntartva |.I'u} Informacios Rendszerek

Tanszék

Typical layers in OSs

= |Layers

o Kernel (implements the fundamental functionalities of the
operating system)
e Task and memory handling, security

o Hardware specific layer (HAL and drivers, typically in a well-
defined hierarchy)

* HAL (Hardware Abstraction Layer) is a bridge between HW and the kernel
* Handling of keyboard, mouse, graphics, sound, storage, network, etc.

o System programs (subsystems to implement other
functionalities of the OS)

* Filesystem, high level network handling (TCP/IP), command shell, stb.

o System call handler managing system calls coming from
application programs
* An APl on various target languages compiled into the applications
* This APl maps API calls to system call

* Changes privilege level to the kernel, and system call handler is executed
there

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

Operating system architectures

= The OS is a complex software, its has its own architecture
= Monolithic kernel

o All functionalities are compiled into a large executable (the OS)

o Inflexible, any changes in HW or functionality can be added by recompiling
the kernel

o A failure of one component results the failure of the whole kernel
o Itis common in embedded systems (The HW does not change there)

= Modular kernel

o Minimalistic kernel extended (or cut back) by loadable modules run-time
o Flexible, can be adapted to changes in the HW or requirements

o A failure of one component results the failure of the whole kernel

o Linux kernel since version 2.x, Windows

= Microkernel

o A kernel with minimalistic functions, services and drivers are attached to it
using the client-server architecture

* |t uses 3 privilege levels (kernel, services and drivers, applications)
o Needs more resources due to complex communication among components

o Failure of a service, driver, or application program cannot influence the
operation of the kernel

o Mac OS X

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

=" Linux
o The basic architecture is a monolithic small kernel and loadable
kernel modules

* Modul handling commands: modprobe, insmod, Ismod, rmmod

o Monolithic kernel can be built also
e All services and drivers are compiled into the kernel
— Module handling can be left out of the kernel

* Inflexible, but in some applications flexibility is not required
— No hardware or service changes required

— Has some advantages in embedded systems (small size, faster)

= Apple OS X

o Darwin
* Mach 3.0 mikrokernel + FreeBSD (Berkeley Software Distribution) UNIX
* Object-oriented framework

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

Accessing hardware

Special CPU registers (CPU config)
|/O ports accessed by |/O instructions
Memory mapped |/O

o Available bandwidth and latency can be drastically different compared to
real memory

DMA (Direct Memory Access)
o DMA controller (HW specific), needs to be programmed
o Can move information between peripherals and memory without the CPU
o Faster but has some disadvantages (race condition in the CACHE)

Interrupt
o Interrupt controller (HW specific)
o Can be disabled and enable

o If the interrupt is enabled and the interrupt signal comes in, the CPU
transfers the execution to the interrupt handler code

o The details are HW specific

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

CPU privilege levels

= Hierarchic CPU privilege levels

o First introduced in the middle of the 1960s (to support Multics and later
UNIX)

o The CPU needs to change in between them, it is done by executing a system
call

= Nearly all modern generic processors support this functionality

o Controls the access to CPU resources
* Executable instructions
* Access to CPU configuration registers
* The possibility of I/O instruction execution is disabled
e Access to memory locations may be restricted

o E.g.x86 since 286/386, ARM Cortex Ax line, etc.

o Microcontrollers do not support or have very limited support of privilege
levels, e.g., Atmel AVR, ARM Cortex Mx line, stb.

= 2 or 4 privilege levels are implemented in modern processors

o Typically 2 is used
* User mode (real mode) —restricted access
e Kernel mode (protected mode) — full access

* In case of a microkernel a 37 level may be also used for driver and services
— It has limited access, more the in user mode, but less than in kernel mode

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Memory Management Unit (MMU)

= Special HW in the CPU

= The functions of the MMU (all will be detailed later)

o Maintaining the state of the memory
* |D of the task that uses the memory
* Access Control List (ACL)
e CACHE control (e.g. DMA)
o Mapping virtual memory to physical memory
* Speeding up mapping (Translation lookaside buffer, TLB)
* MMU state have some part which are task/context dependent
* Pagefile or SWAP (HDD)
o Protection of memory
* Prohibited access to memory must be denied or at list signaled to the CPU
* General Protection Fault (GPF) in older version of Windows

= We will talk about the MMU and memory handling later

= Linux, Windows, Windows CE (Windows Phone) requires a
functional MMU for running these OSs

Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informéciés Rendszerek

Interrupt

" |nterrupt (IT) types

o Hardware IT: a peripheral request handling from the CPU
* External event influences the CPU
* A peripheral may request services for multiple reasons
o Exception: The CPU or the MMU has identified an event which
needs specific software to run on the CPU
* E.g., page fault, numeric overflow, divide by zero, privilege violation, etc.
* A hardware signaled even, which comes from the CPU
o Software IT: system call by executing a special instruction

* A software influences the operation of the CPU through the IT
mechanism

" Modern operating systems are interrupt driven.

u | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Hardware interrupt example

= An external hardware requires immediate service

" Clock interrupt (exceptionally important)

o ML1 (Who can remember it? The exchange students cannot.)
* Fix frequency oscillator producing impulses
* Programmable counter
* After a predefined number of impulses its request a HW interrupt

o This interrupt periodically runs the OS (scheduler)
o The system clock is also derived from this source

o Periodic or oneshot operation
* The period is 1-20ms, typically 10 ms

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

System call

= What a “system call” is?
o Starting point: The CPU runs an application program

o The system call by the application program interrupts the CPU
by a software interrupt, transfers the execution to the OS

o A context switch happens
o The OS does it work

o Transfers the execution back to an application program (with a
context switch)

= How a “system call” is executed?
o Implementation specific...

= Consequences of the system call

o It has a large overhead, consumes CPU time
* The context must be save and restored 2 times

o The number of system calls must be minimized
o During the system call the CPU changes privilege levels 2 times

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

What the context is?

= CPU registers
o PC, Status, Work, Segment, etc. registers

o E.g. Linux does not save floating point registers while entering

kernel mode
* Consequence: Floating point arithmetics cannot be used in the kernel!

= MMU settings

o Access to the memory of the running application program must
be guaranteed

= Other application specific HW settings

= The most delicate task of is to determine what is needed
to be saved and what is not necessary to be saved.

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva ITr;f:;néiciés Rendszerek

System call for programmers

" The programmer calls an API call from the application
program
o For example in case of C language (most OSs are written in C or
C++), the APl is:
* Windows: windows.h
* Linux: glibc
o The APl hides the details of the systems call from the
programmer
* Itis a high level C wrapper around the system calls
o The APl implementation is compiled into the application (or

bound to it run-time), runs in user mode, and executes the
system call

o The OS consists the system call handler, and the system call
transfer the execution to it in kernel mode

o There will be examples later...

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

1/O instructions

= Application programs cannot execute I/O instructions themselves
(user mode)

= They initiate the execution of I/O operations by issuing system calls

= By issuing a system call the application program waits for finishing
the system call

= Other programs may run during this (efficiency)

= The kernel executes the real low-level |/O instructions in kernel
mode

= The peripheral signals the HW the by interrupt when the I/O is
ready

= Due to the interrupt the system transfers to the OS, and the OS
makes the decision what to do (e.g. it may run the application
program waiting for the 1/0)

= After the I/O the line of execution returns to the application
program

s | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Startup of an OS 1.

= Bootstrap process

= PC and servers
o Init/RESET vector (CPU)

o BIOS/EFI (firmware)
* POST (Power on self test)
e Search for HW and HW initialization
* Determination of Boot the boot media

o BOOQOT sector (HDD type storage)
o 2" |evel boot loader (GRUB, LILO, NTLDR)

o OS is loaded into memory
* HW reprogramming (device driver replaces the BIOS/EFI)
* Privilege level change (transfer to kernel mode)

* |nitialization of other functions in kernel mode

u | Méréstechnika és
© BME-MIT 2014, Minden jog fenntartva Informaciés Rendszerek

Tanszék

Startup of OS 2.

= Bootstrap process

o Embedded system (PC does it on BIOS/EFI level)

e OS image in ROM (ROM or flash, maybe compressed)
e Can be run from ROM (Harvard architecture can do it only)

e Can be copied to RAM (after decompression) and executed
from there

= Stopping the machine (power off or hibernate,
not standby, that is another issue)
o Safe stopping must be done

* Controlled saving of state during the process
 Stopping or sleeping HW (low power mode)

o Non-volatile storage must be left in a consistent state

© BME-MIT 2014, Minden jog fenntartva

