
© BME-MIT 2014, All Rights Reserved
Budapest University of Technology and Economics
Department of Measurement and Information Systems

History and classification of

Operating Systems, HW environment

Tamás Kovácsházy, PhD

1st topic, Introduction

Operating systems (vimia219)

© BME-MIT 2014, Minden jog fenntartva 2. lap

Operating system
 Definition (Wikipedia)

o An operating system (OS) is an interface between hardware
and user which is responsible for the management and
coordination of activities and the sharing of the resources of a
computer, that acts as a host for computing applications run
on the machine.

o Operating systems offer a number of services to application
programs and users. Applications access these services through
application programming interfaces (APIs) or system calls.

 Is it a good definition?
o More or less OK for client and server operating systems.

• Practically there is no good definition: Microsoft v. USA legal proceedings

o There are new terminologies in the definition . (they will be
introduced later)

o What kind of operating systems do exist?
• Too many, let’s start with the history of operating systems…

© BME-MIT 2014, Minden jog fenntartva 3. lap

Early operating systems

 Evolution of Hardware defines the process
o Early computers had “wired” programming

• One task can be executed in a time
• Changing task was very time consuming (rewiring)

o The optimization of resource use by done by human
operators

• Selection of tasks and the order of execution (based on e.g.
priority)

• Human, machine and other resources are allocated to the
task

• Execution attempt
• Evaluation of results
• Rewiring
• Repeat the process as long as the results are OK

© BME-MIT 2014, Minden jog fenntartva 4. lap

Early BATCH systems
 Batch system:

o Programms are written on paper using early programming
languages (early Fortran dialects)

o Putting the program on punch cards
o Punch card set is submitted to the operators of the computer
o Operators run the job
o Results (and errors) are printed
o Fully on-line peripheral operation

 Jobs with similar resource use are grouped together to
reduce the number of repeated tasks

 On-line peripheral operations substituted by off-line
operations (I/O processor is introduced), faster execution
but complexity grows

 Resident monitor schedules the jobs
o One is finished the next one started automatically by the

computer

© BME-MIT 2014, Minden jog fenntartva 5. lap

Buffered processing

 I/O processors appear on the market
o Standard abstract interfaces

o Logical I/O peripherals appear

 Buffering
o To optimize the connection between I/O peripherals

and the CPU

o Input –> CPU –> Output overlap

o Finding programming errors is even hard even in this
situation

• The programmer has no on-line access to the computer

• Results and errors are receive only after program execution

© BME-MIT 2014, Minden jog fenntartva 6. lap

Spooling

 RAM memory chips appear on the market

 Capacity and speed of random access
memory (RAM) grow
oMore than one task executed virtually

oOne main program and I/O tasks are involved

oAll running virtually in a parallel manner
• Spooling (Simultaneous peripherial operation on-

line)

• Tasks can be even more interleaved.

• Results: Steps toward multiprogramming

© BME-MIT 2014, Minden jog fenntartva 7. lap

Multiprogramming

 Even bigger capacity RAMs with higher speeds makes
possible new advances

o Tasks are not necessarily processed in FIFO manner (human
scheduling more)

o Optimization possibilities

o Job pool

• The aim is to reach 100% CPU, but other factors play their
role

• CPU scheduling : Which task can run? :

– Resource utilization is an opened question (CPU, memory, permanent store,
peripherials) to be solved in real-time.

– The response of the on-line connection has mixed properties

o Tasks run as long as it does not finished or I/O occurs.

© BME-MIT 2014, Minden jog fenntartva 8. lap

The end of the 1960s

 Minicomputers appear (e.g. PDP)
o Small groups (department) have access to computers

• More people start to use computers
• Number of humans handled by a computer decreases
• Programmers have on-line access to computers

o MULTICS, and UNIX later
o C and some other modern programming languages
o First steps toward the Internet (ARPANET, information

sharing)
o Fast development cycle
o First attempts to control physical processes with

computers
• The first embedded systems are introduced to the market

© BME-MIT 2014, Minden jog fenntartva 9. lap

Time sharing systems

 Time sharing or multitasking

 On-line users need short response time
o Multiple people use the same computer (n*10-100 people

share one computer)

o The type something than wait for the output, interactive users
• The machine should not be in idle state (Utilize it!)

• Response time should be acceptable (n*10 ms)

o Task run virtually in one time (parallel), in reality they get time
slices of the processor

• They run after one another, timed by a periodic timer

• The timer interrupts the running task, and runs the next one

o A batch system runs in the background
• It utilizes the remaining time slices not used by interactive tasks

 Classic UNIX OS is designed around this model

© BME-MIT 2014, Minden jog fenntartva 10. lap

Personal computers

 From the middle 1970s
o A user gets her/his own computer due to the advances

of technology
o IBM PC

• x86 CPU architecture
• memory + HDD
• Character or graphics terminal (X-windows, Windows)
• Keyboard and later mouse
• Soundcard
• Network interface cards (LAN later Internet)

 Steps towards distributed systems
 New requirement: Userfriendlines

© BME-MIT 2014, Minden jog fenntartva 11. lap

Distributed systems

 Decentralization

o Distribution of function in space

o Advantages and disadvantages: Security, resiliency ,
scalability, reliability, easy or hard developement

• It is very hard to develop such systems (complexity)

• We are moving towards it (cloud computing, etc.)

 No time to speak about it in this subject

 Next step is mobile systems, we will not have to
speak about that also

© BME-MIT 2014, Minden jog fenntartva 12. lap

Multiprocessor system
 Homogenous (identical) processors

o E.g. multiple CPU cores, multiple identical CPU, multiple CPU
and multiple CPU core in one physical CPU (AMD Opteron, Intel
Xeon)

 Heterogeneous (different) processors
o E.g. a multicore CPU plus GPGPU (CUDA, OpenCL) or FPGA based accelerator

 Manycore CPU-k (e.g. Intel experiments, PS3 Cell)
 How this monsters can be programmed efficiently?

o We do not touch these issues, other subjects may later
o It is also an active research area

© BME-MIT 2014, Minden jog fenntartva 13. lap

What kind of OSs do exist?
 Application specific approach

o Client, server, mainframe operating systems (IT infrastructure)
• Multipe execution units, may distributed, Grid, Cloud, Supercomputers

o Embedded operating systems
o Mobile operating systems

 Capability specific approach
o Generic operating systems
o Real-time operating systems (bounded response time)
o High availability operating systems (reliability, availability, redundancy)
o Configurable operating systems (functions can be selected)

 Capability and application are quite interrelated...
o E.g. Linux is everywhere
o Microsoft has products in nearly all market segments
o Large number of specialized OS manufacturers

• Wikipedia: 45 commercial OS manufacturer,nearly all of them has multiple
differentiated products, plus open source OSs

• How many Linux distributions do we have? Are they different OSs? I do not know
the correct answer, the OS kernel is the same, but the applications and
configuration are different.

© BME-MIT 2014, Minden jog fenntartva 14. lap

Client, server and mainframe OSs

 Client OS is clear for everybody…
(or at least I hope)

 Multiprocessor server/mainframe

o 8-64(256) CPU, n*10/100 Gbyte RAM

 High availability

o Redundancy

o Parts can be change while running

 Can be partitioned

 HW support for CPU, memory, and
peripherals virtualization

Sun Fire X4600

IBM System Z10

© BME-MIT 2014, Minden jog fenntartva 15. lap

Datacenters (grid, cloud, etc.)

 n*10.000 server

 n*100 TB memory

 Huge storage space

 Massively parallel tasks
(WEB search)

 Task length vary
drastically 20-50 msec or
days

 Google, Microsoft,
Facebook, YouTube

© BME-MIT 2014, Minden jog fenntartva 16. lap

Embedded system 1.

 Embedded systems are specialized computer based
systems designed for a specific task
o Most cases to do this specific task they are in an intensive

information exchange with the environment
• They sense (by sensors) certain parameters of the environment

and they influence the environment by actuators

• There is a machine-environment interface: Sensors, Actuators,
Communication interface

• User interface for human operators is also present

 PCs can be used in embedded systems
o It must have a dedicated task, it is not HW or SW specific

property, but application specific
o We may also use Windows or Linux in embedded systems!

• They are not designed for that…

• In non-demanding applications they may be a cheap and easy
solution.

© BME-MIT 2014, Minden jog fenntartva 17. lap

Embedded system 2.

 Many embedded systems operate in a safety
critical environment!

 In case of a system failure:

oPeople may be injured or die

oWide scale property damage is possible

oNon acceptable risk

• We need to avoid it, design and implement the
system very carefully

• There is no 100% safety or security

© BME-MIT 2014, Minden jog fenntartva 18. lap

Embedded applications 1.

Special certificates may be
required:
o Road vehicles

o Railways

o Aerospace applications

o Military

o Health

o Industry and energy sector

o Etc.

 Real-time operation

 Reliability, security, availability

 No single OS can do all in one
product

INTEGRITY-178B

uC/OS BitCloud

© BME-MIT 2014, Minden jog fenntartva 19. lap

Embedded applications 2., Mobile OS
 Mobile embedded systems

 It is blurred with client operating
systems

 Requirements
o Special GUI, multitouch, sensor

integration, etc.

o Battery optimization

o Limited resources

o Partially real-time applications
(communication related)

o Heterogeneous HW architecture
• User CPU

• Communication DSP

• Graphics accelerator

• Multimedia coder/decoder

Smartphone market
share 2010 Q3
Forrás: Canalys

© BME-MIT 2014, Minden jog fenntartva 20. lap

Embedded applications 2., Mobile OS
 Mobile embedded systems

 It is blurred with client operating
systems

 Requirements
o Special GUI, multitouch, sensor

integration, etc.

o Battery optimization

o Limited resources

o Partially real-time applications
(communication related)

o Heterogeneous HW architecture
• User CPU

• Communication DSP

• Graphics accelerator

• Multimedia coder/decoder

© BME-MIT 2014, Minden jog fenntartva 21. lap

Real-time systems
 A real-time systems reacts to outside events reaching the system in

a given, application specific time, if this deadline is not met, the
answer can be considered erroneous
o E.g. Quiz in TV

 Real-time system types:
o Soft real-time: Deadline is met with a probability < 1, but the probability is

> N.
• There are no catastrophic consequences, but …
• The system may be late sometimes
• Service Level Agreement
• Not necessarily priority based!

o Hard real-time: Deadline is met with a probability = 1
• If it does not meet the deadline, the system fails...
• There are catastrophic consequences not meeting the deadline
• „The system cannot be late!”

 How we prove it?

© BME-MIT 2014, Minden jog fenntartva 22. lap

Real-time system 2.
 The definition does not say about the length of

the deadline!
o The deadline is application specific

• Think about a slow chemical/biological process, such as
fermentation (n*60s deadline) or a car ESP or ABS (i.e. ms
deadline)

 Real-time operating systems:
o By architectural design it can execute certain functions

of it in real-time (with strict deadlines).
• For example, the interrupt latency has un upper bound
• The applications must be designed for real-time operation,

the real-time OS is a requirement, but not a guarantee for
real-time operation of the whole system

• Linux and Windows are not real-time
– There are real-time extensions for them(RTLinux, Windows: eg.

Ardence RTX)

© BME-MIT 2014, Minden jog fenntartva 23. lap

HW architectures

 There are lot of them, even for the x86 PC architecture…

 The operating system hides the differences:

o A well-written application can run on a P3 PC (from approx.
2000), and on the newest multicore Core i7 PC

• In the worst case it does not utilize more than one core.

o Furthermore, after recompiling, it can run on ARM hardware on
the same operating system.

• If there is some HW specific in it, that must be changed, for example,
some inline assembly code

o However, we must know what happens inside the operating
system and hardware

© BME-MIT 2014, Minden jog fenntartva

Computer architectures

 The internal operation of the OS depends on:

o The number and connection of processors in the system

o The organization of memory in the system

o The organization of other hardware in the system
• How peripherals are connected?

 We will address only homogeneous multiprocessor
system

o There are identical processors in the system

 Types of systems we will talk about

o Single CPU (Uniprocessor)

o Symmetric multiprocessing (SMP)

o Non-Uniform Memory Access (NUMA)

24. lap

© BME-MIT 2014, Minden jog fenntartva 25. lap

Single CPU (Uniprocessor)

 Single CPU
o It was the typical architecture for long time
o In embedded systems it is the typical even now!

• Microcontrollers (MCU) are single CPU typically today
• They can reach higher performance by architectural changes and higher

clocks

 DMA (Direct Memory Access) handles memory in parallel
with the CPU!
o Race condition between the DMA controller and the CPU

• Input: DMA transfer  IT  CPU handles data
• Output: DMA transfer, Peripheral handles data, IT, CPU removes data from

memory

o CACHE coherency problems may arise! Solutions:
• The whole CACHE is invalidate if DMA transfer occur

– Simple, but has catastrophic effects on performance

• Memory locations handled by DMA not cached (CACHE controller, MMU)
• CACHE coherent DMA (HW support required)

CPU

CACHE

Mem. controller

Memory

© BME-MIT 2014, Minden jog fenntartva 26. lap

 Symmetric multiprocessing
o Multiple, identical CPUs

• Multiple CPUs or multiple CPU cores
• Example: AMD Phenom, Intel C2D/C2Q, iX

o Most cases with an architecture specific CACHE hierarchy
is present

• SMP is CACHE coherent most cases
o Memory is connected to a controller

• The whole memory is accessed with identical properties
(bandwidth, latency, etc.) by all CPUs or cores

o Muticore MCU
• ARM15, ARM11 MPCore, ARM Cortex-A9 MPCore
• The CPU core is cheap (small portion of the chip surface)
• More and more SMP appears in embedded systems

o To utilize multiple CPUs in the OS, the OS must support
the SMP HW properly

• Otherwise only one CPU is seen by the OS

SMP CPU CPU

CACHE CACHE

Mem. controller

Memory

© BME-MIT 2014, Minden jog fenntartva 27. lap

Non-Uniform Memory Access
o Memory speed depends on the relative

location of CPU core and memory location
o The physical memory is unified

• Single and identical address space for all CPUs

o Cache coherency
• CACHE coherent (ccNUMA)
• No CACHE coherent

o Memory controllers are connected by a special
communication interface

• QPI for Intel, Hypertransport for AMD

o For example, multiple CPU AMD Opteron or Intel Core i7
based Xeon CPUs utilze ccNUMA architecture

• Inside one chip the architecture SMP

o To utilize multiple CPUs in the OS, the OS must support the
SMP HW properly

• Otherwise only one CPU is seen by the OS

NUMA CPU CPU

CACHE CACHE

M. cont. M. cont.

Memory Memory

© BME-MIT 2014, Minden jog fenntartva 28. lap

The operating system and its environment

 It must be emphasized that:
o The user and the application programs cannot be in direct contact

o HW and the application programs cannot be in direct contact

 Everything happens through the OS
o For performance reasons there are some exceptions (Graphics), but OS

control is there even in this case

o There are some exceptions in embedded operating systems also

Operating

system

HW

Application

Programs
Users

HW intrerface

API(G)UI

© BME-MIT 2014, Minden jog fenntartva 29. lap

The operating system and its environment 2.

Operating

system

HW

Application

programs

User

HW

interface

API

(G)UI Other

computers

NET

© BME-MIT 2014, Minden jog fenntartva 30. lap

Layered structure of operating systems

 Layered structure
o Structure (design time efficiency) and run-time efficiency must

be balanced
• Layered approach is a must for extendibility also

o A virtual machine is realized by the layers (upper interface)
• High level function, virtual instruction set

o On the lowest layer the real CPU and peripherals implement the
real machine

© BME-MIT 2014, Minden jog fenntartva 31. lap

Typical layers in OSs

 Layers
o Kernel (implements the fundamental functionalities of the

operating system)
• Task and memory handling, security

o Hardware specific layer (HAL and drivers, typically in a well-
defined hierarchy)

• HAL (Hardware Abstraction Layer) is a bridge between HW and the kernel

• Handling of keyboard, mouse, graphics, sound, storage, network, etc.

o System programs (subsystems to implement other
functionalities of the OS)

• Filesystem, high level network handling (TCP/IP), command shell, stb.

o System call handler managing system calls coming from
application programs

• An API on various target languages compiled into the applications
• This API maps API calls to system call
• Changes privilege level to the kernel, and system call handler is executed

there

© BME-MIT 2014, Minden jog fenntartva 32. lap

Operating system architectures
 The OS is a complex software, its has its own architecture
 Monolithic kernel

o All functionalities are compiled into a large executable (the OS)
o Inflexible, any changes in HW or functionality can be added by recompiling

the kernel
o A failure of one component results the failure of the whole kernel
o It is common in embedded systems (The HW does not change there)

 Modular kernel
o Minimalistic kernel extended (or cut back) by loadable modules run-time
o Flexible, can be adapted to changes in the HW or requirements
o A failure of one component results the failure of the whole kernel
o Linux kernel since version 2.x, Windows

 Microkernel
o A kernel with minimalistic functions, services and drivers are attached to it

using the client-server architecture
• It uses 3 privilege levels (kernel, services and drivers, applications)

o Needs more resources due to complex communication among components
o Failure of a service, driver, or application program cannot influence the

operation of the kernel
o Mac OS X

© BME-MIT 2014, Minden jog fenntartva

Examples

 Linux

o The basic architecture is a monolithic small kernel and loadable
kernel modules

• Modul handling commands: modprobe, insmod, lsmod, rmmod

o Monolithic kernel can be built also
• All services and drivers are compiled into the kernel

– Module handling can be left out of the kernel

• Inflexible, but in some applications flexibility is not required

– No hardware or service changes required

– Has some advantages in embedded systems (small size, faster)

 Apple OS X

o Darwin
• Mach 3.0 mikrokernel + FreeBSD (Berkeley Software Distribution) UNIX

• Object-oriented framework

33. lap

© BME-MIT 2014, Minden jog fenntartva 34. lap

Accessing hardware
 Special CPU registers (CPU config)
 I/O ports accessed by I/O instructions
 Memory mapped I/O

o Available bandwidth and latency can be drastically different compared to
real memory

 DMA (Direct Memory Access)
o DMA controller (HW specific), needs to be programmed
o Can move information between peripherals and memory without the CPU
o Faster but has some disadvantages (race condition in the CACHE)

 Interrupt
o Interrupt controller (HW specific)
o Can be disabled and enable
o If the interrupt is enabled and the interrupt signal comes in, the CPU

transfers the execution to the interrupt handler code
o The details are HW specific

© BME-MIT 2014, Minden jog fenntartva 35. lap

CPU privilege levels
 Hierarchic CPU privilege levels

o First introduced in the middle of the 1960s (to support Multics and later
UNIX)

o The CPU needs to change in between them, it is done by executing a system
call

 Nearly all modern generic processors support this functionality
o Controls the access to CPU resources

• Executable instructions
• Access to CPU configuration registers
• The possibility of I/O instruction execution is disabled
• Access to memory locations may be restricted

o E.g. x86 since 286/386, ARM Cortex Ax line, etc.
o Microcontrollers do not support or have very limited support of privilege

levels, e.g., Atmel AVR, ARM Cortex Mx line, stb.

 2 or 4 privilege levels are implemented in modern processors
o Typically 2 is used

• User mode (real mode) –restricted access
• Kernel mode (protected mode) – full access
• In case of a microkernel a 3rd level may be also used for driver and services

– It has limited access, more the in user mode, but less than in kernel mode

© BME-MIT 2014, Minden jog fenntartva 36. lap

Memory Management Unit (MMU)
 Special HW in the CPU

 The functions of the MMU (all will be detailed later)
o Maintaining the state of the memory

• ID of the task that uses the memory

• Access Control List (ACL)

• CACHE control (e.g. DMA)

o Mapping virtual memory to physical memory
• Speeding up mapping (Translation lookaside buffer, TLB)

• MMU state have some part which are task/context dependent

• Pagefile or SWAP (HDD)

o Protection of memory
• Prohibited access to memory must be denied or at list signaled to the CPU

• General Protection Fault (GPF) in older version of Windows

 We will talk about the MMU and memory handling later

 Linux, Windows, Windows CE (Windows Phone) requires a
functional MMU for running these OSs

© BME-MIT 2014, Minden jog fenntartva 37. lap

Interrupt

 Interrupt (IT) types
o Hardware IT: a peripheral request handling from the CPU

• External event influences the CPU

• A peripheral may request services for multiple reasons

o Exception: The CPU or the MMU has identified an event which
needs specific software to run on the CPU

• E.g., page fault, numeric overflow, divide by zero, privilege violation, etc.

• A hardware signaled even, which comes from the CPU

o Software IT: system call by executing a special instruction
• A software influences the operation of the CPU through the IT

mechanism

 Modern operating systems are interrupt driven.

© BME-MIT 2014, Minden jog fenntartva 38. lap

Hardware interrupt example
 An external hardware requires immediate service
 Clock interrupt (exceptionally important)

o ML1 (Who can remember it? The exchange students cannot.)
• Fix frequency oscillator producing impulses
• Programmable counter
• After a predefined number of impulses its request a HW interrupt

o This interrupt periodically runs the OS (scheduler)
o The system clock is also derived from this source
o Periodic or oneshot operation

• The period is 1-20ms, typically 10 ms

© BME-MIT 2014, Minden jog fenntartva 39. lap

System call
 What a “system call” is?

o Starting point: The CPU runs an application program
o The system call by the application program interrupts the CPU

by a software interrupt, transfers the execution to the OS
o A context switch happens
o The OS does it work
o Transfers the execution back to an application program (with a

context switch)

 How a “system call” is executed?
o Implementation specific...

 Consequences of the system call
o It has a large overhead, consumes CPU time

• The context must be save and restored 2 times

o The number of system calls must be minimized
o During the system call the CPU changes privilege levels 2 times

© BME-MIT 2014, Minden jog fenntartva

What the context is?

 CPU registers

o PC, Status, Work, Segment, etc. registers

o E.g. Linux does not save floating point registers while entering
kernel mode

• Consequence: Floating point arithmetics cannot be used in the kernel!

 MMU settings

o Access to the memory of the running application program must
be guaranteed

 Other application specific HW settings

 The most delicate task of is to determine what is needed
to be saved and what is not necessary to be saved.

40. lap

© BME-MIT 2014, Minden jog fenntartva

System call for programmers

 The programmer calls an API call from the application
program
o For example in case of C language (most OSs are written in C or

C++), the API is:
• Windows: windows.h

• Linux: glibc

o The API hides the details of the systems call from the
programmer

• It is a high level C wrapper around the system calls

o The API implementation is compiled into the application (or
bound to it run-time), runs in user mode, and executes the
system call

o The OS consists the system call handler, and the system call
transfer the execution to it in kernel mode

o There will be examples later…

41. lap

© BME-MIT 2014, Minden jog fenntartva 42. lap

I/O instructions
 Application programs cannot execute I/O instructions themselves

(user mode)

 They initiate the execution of I/O operations by issuing system calls

 By issuing a system call the application program waits for finishing
the system call

 Other programs may run during this (efficiency)

 The kernel executes the real low-level I/O instructions in kernel
mode

 The peripheral signals the HW the by interrupt when the I/O is
ready

 Due to the interrupt the system transfers to the OS, and the OS
makes the decision what to do (e.g. it may run the application
program waiting for the I/O)

 After the I/O the line of execution returns to the application
program

© BME-MIT 2014, Minden jog fenntartva 43. lap

Startup of an OS 1.

 Bootstrap process

 PC and servers

o Init/RESET vector (CPU)

o BIOS/EFI (firmware)
• POST (Power on self test)

• Search for HW and HW initialization

• Determination of Boot the boot media

o BOOT sector (HDD type storage)

o 2nd level boot loader (GRUB, LILO, NTLDR)

o OS is loaded into memory
• HW reprogramming (device driver replaces the BIOS/EFI)

• Privilege level change (transfer to kernel mode)

• Initialization of other functions in kernel mode

© BME-MIT 2014, Minden jog fenntartva 44. lap

Startup of OS 2.

 Bootstrap process
o Embedded system (PC does it on BIOS/EFI level)

• OS image in ROM (ROM or flash, maybe compressed)

• Can be run from ROM (Harvard architecture can do it only)

• Can be copied to RAM (after decompression) and executed
from there

 Stopping the machine (power off or hibernate,
not standby, that is another issue)
o Safe stopping must be done

• Controlled saving of state during the process

• Stopping or sleeping HW (low power mode)

o Non-volatile storage must be left in a consistent state
(HDD)

