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Operating system
 Definition (Wikipedia)

o An operating system (OS) is an interface between hardware 
and user which is responsible for the management and 
coordination of activities and the sharing of the resources of a 
computer, that acts as a host for computing applications run 
on the machine.

o Operating systems offer a number of services to application 
programs and users. Applications access these services through 
application programming interfaces (APIs) or system calls.

 Is it a good definition?
o More or less OK for client and server operating systems.

• Practically there is no good definition: Microsoft v. USA legal proceedings

o There are new terminologies in the definition . (they will be 
introduced later)

o What kind of operating systems do exist?
• Too many, let’s start with the history of operating systems…
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Early operating systems

 Evolution of Hardware defines the process
o Early computers had “wired” programming

• One task can be executed in a time
• Changing task was very time consuming (rewiring)

o The optimization of resource use by done by human 
operators

• Selection of tasks and the order of execution (based on e.g. 
priority)

• Human, machine and other resources are allocated to the 
task

• Execution attempt
• Evaluation of results
• Rewiring
• Repeat the process as long as the results are OK
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Early BATCH systems
 Batch system:

o Programms are written on paper using early programming 
languages (early Fortran dialects)

o Putting the program on punch cards
o Punch card set is submitted to the operators of the computer
o Operators run the job
o Results (and errors) are printed
o Fully on-line peripheral operation

 Jobs with similar resource use are grouped together to 
reduce the number of repeated tasks

 On-line peripheral operations substituted by off-line 
operations (I/O processor is introduced), faster execution 
but complexity grows

 Resident monitor schedules the jobs
o One is finished the next one started automatically by the 

computer
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Buffered processing

 I/O processors appear on the market
o Standard abstract interfaces

o Logical I/O peripherals appear

 Buffering
o To optimize the connection between I/O peripherals 

and the CPU

o Input –> CPU –> Output overlap

o Finding programming errors is even hard even in this 
situation

• The programmer has no on-line access to the computer

• Results and errors are receive only after program execution
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Spooling

 RAM memory chips appear on the market

 Capacity and speed of random access 
memory (RAM) grow
oMore than one task executed virtually

oOne main program and I/O tasks are involved

oAll running virtually in a parallel manner
• Spooling (Simultaneous peripherial operation on-

line)

• Tasks can be even more interleaved.

• Results: Steps toward multiprogramming
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Multiprogramming

 Even bigger capacity RAMs with higher speeds makes 
possible new advances

o Tasks are not necessarily processed in FIFO manner (human 
scheduling more)

o Optimization possibilities

o Job pool

• The aim is to reach 100% CPU, but other factors play their 
role

• CPU scheduling : Which task can run? :

– Resource utilization is an opened question (CPU, memory, permanent store, 
peripherials) to be solved in real-time. 

– The response of the on-line  connection has mixed properties

o Tasks run as long as it does not finished or I/O occurs.
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The end of the 1960s

 Minicomputers appear (e.g. PDP)
o Small groups (department) have access to computers

• More people start to use computers
• Number of humans handled by a computer decreases
• Programmers have on-line access to computers

o MULTICS, and UNIX later
o C and some other modern programming languages
o First steps toward the Internet (ARPANET, information 

sharing)
o Fast development cycle
o First attempts to control physical processes with 

computers
• The first embedded systems are introduced to the market
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Time sharing systems

 Time sharing or multitasking

 On-line users need short response time
o Multiple people use the same computer (n*10-100 people 

share one computer)

o The type something than wait for the output, interactive users
• The machine should not be in idle state (Utilize it!)

• Response time should be acceptable (n*10 ms)

o Task run virtually in one time (parallel), in reality they get time
slices of the processor

• They run after one another, timed by a periodic timer

• The timer interrupts the running task, and runs the next one

o A batch system runs in the background
• It utilizes the remaining time slices not used by interactive tasks

 Classic UNIX OS is designed around this model 
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Personal computers

 From the middle 1970s
o A user gets her/his own computer due to the advances 

of technology
o IBM PC 

• x86 CPU architecture
• memory + HDD
• Character or graphics terminal (X-windows, Windows)
• Keyboard and later mouse
• Soundcard
• Network interface cards (LAN later Internet)

 Steps towards distributed systems
 New requirement: Userfriendlines
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Distributed systems

 Decentralization

o Distribution of function in space

o Advantages and disadvantages: Security, resiliency , 
scalability, reliability, easy or hard developement

• It is very hard to develop such systems (complexity)

• We are moving towards it (cloud computing, etc.)

 No time to speak about it in this subject

 Next step is mobile systems, we will not have to 
speak about that also
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Multiprocessor system
 Homogenous (identical) processors

o E.g. multiple CPU cores, multiple identical CPU, multiple CPU 
and multiple CPU core in one physical CPU (AMD Opteron, Intel 
Xeon)

 Heterogeneous (different) processors
o E.g. a multicore CPU plus GPGPU (CUDA, OpenCL) or FPGA based accelerator

 Manycore CPU-k (e.g. Intel experiments, PS3 Cell)
 How this monsters can be programmed efficiently?

o We do not touch these issues, other subjects may later
o It is also an active research area
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What kind of OSs do exist?
 Application specific approach

o Client, server, mainframe operating systems (IT infrastructure)
• Multipe execution units, may distributed, Grid, Cloud, Supercomputers

o Embedded operating systems
o Mobile operating systems

 Capability specific approach
o Generic operating systems
o Real-time operating systems (bounded response time)
o High availability operating systems (reliability, availability, redundancy)
o Configurable operating systems (functions can be selected)

 Capability and application are quite interrelated...
o E.g. Linux is everywhere
o Microsoft has products in nearly all market segments
o Large number of specialized OS manufacturers

• Wikipedia: 45 commercial OS manufacturer,nearly all of them has multiple 
differentiated products, plus open source OSs

• How many Linux distributions do we have? Are they different OSs? I do not know 
the correct answer, the OS kernel is the same, but the applications and 
configuration are different.
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Client, server and mainframe OSs

 Client OS is clear for everybody…
(or at least I hope)

 Multiprocessor server/mainframe

o 8-64(256) CPU, n*10/100 Gbyte RAM

 High availability

o Redundancy

o Parts can be change while running

 Can be partitioned

 HW support for CPU, memory, and 
peripherals virtualization

Sun Fire X4600

IBM System Z10
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Datacenters (grid, cloud, etc.)

 n*10.000 server

 n*100 TB memory

 Huge storage space

 Massively parallel tasks 
(WEB search)

 Task length vary 
drastically 20-50 msec or 
days

 Google, Microsoft, 
Facebook, YouTube
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Embedded system 1.

 Embedded systems are specialized computer based 
systems designed for a specific task
o Most cases to do this specific task they are in an intensive 

information exchange with the environment
• They sense (by sensors) certain parameters of the environment 

and they influence the environment by actuators

• There is a machine-environment interface: Sensors, Actuators, 
Communication interface

• User interface for human operators is also present

 PCs can be used in embedded systems
o It must have a dedicated task, it is not HW or SW specific 

property, but application specific
o We may also use Windows or Linux in embedded systems!

• They are not designed for that…

• In non-demanding applications they may be a cheap and easy 
solution.
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Embedded system 2.

 Many embedded systems operate in a safety 
critical environment!

 In case of a system failure:

oPeople may be injured or die

oWide scale property damage is possible

oNon acceptable risk

• We need to avoid it, design and implement the 
system very carefully

• There is no 100% safety or security
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Embedded applications 1.

Special certificates may be 
required:
o Road vehicles

o Railways

o Aerospace applications

o Military

o Health

o Industry and energy sector

o Etc.

 Real-time operation

 Reliability, security, availability

 No single OS can do all in one 
product

INTEGRITY-178B

uC/OS BitCloud 
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Embedded applications 2., Mobile OS
 Mobile embedded systems

 It is blurred with client operating 
systems

 Requirements
o Special GUI, multitouch, sensor 

integration, etc.

o Battery optimization

o Limited resources

o Partially real-time applications 
(communication related)

o Heterogeneous HW architecture
• User CPU

• Communication DSP

• Graphics accelerator

• Multimedia coder/decoder

Smartphone market 
share 2010 Q3
Forrás: Canalys
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Real-time systems
 A real-time systems reacts to outside events reaching the system in 

a given, application specific time, if this deadline is not met, the 
answer can be considered erroneous
o E.g. Quiz in TV

 Real-time system types:
o Soft real-time: Deadline is met with a probability  < 1, but the probability is 

> N.
• There are no catastrophic consequences,  but …
• The system may be late sometimes
• Service Level Agreement
• Not necessarily priority based!

o Hard real-time: Deadline is met with a probability  = 1
• If it does not meet the deadline, the system fails...
• There are catastrophic consequences not meeting the deadline
• „The system cannot be late!”

 How we prove it?



© BME-MIT 2014, Minden jog fenntartva 22. lap

Real-time system 2.
 The definition does not say about the length of 

the deadline!
o The deadline is application specific

• Think about a slow chemical/biological process, such as 
fermentation (n*60s deadline) or a car ESP or ABS (i.e. ms 
deadline)

 Real-time operating systems:
o By architectural design it can execute certain functions 

of it in real-time (with strict deadlines).
• For example, the interrupt latency has un upper bound
• The applications must be designed for real-time operation, 

the real-time OS is a requirement, but not a guarantee for 
real-time  operation of the whole system

• Linux and Windows are not real-time
– There are real-time extensions for them(RTLinux, Windows: eg. 

Ardence RTX)
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HW architectures

 There are lot of them, even for the x86 PC architecture…

 The operating system hides the differences:

o A well-written application can run on a P3 PC (from approx. 
2000), and on the newest multicore Core i7 PC

• In the worst case it does not utilize more than one core.

o Furthermore, after recompiling, it can run on ARM hardware on 
the same operating system.

• If there is some HW specific in it, that must be changed, for example, 
some inline assembly code

o However, we must know what happens inside the operating 
system and hardware
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Computer architectures

 The internal operation of the OS depends on:

o The number and connection of processors in the system

o The organization of memory in the system

o The organization of other hardware in the system 
• How peripherals are connected?

 We will address only homogeneous multiprocessor 
system

o There are identical processors in the system

 Types of systems we will talk about

o Single CPU (Uniprocessor)

o Symmetric multiprocessing (SMP)

o Non-Uniform Memory Access (NUMA)

24. lap
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Single CPU (Uniprocessor)

 Single CPU
o It was the typical architecture for long time
o In embedded systems it is the typical even now!

• Microcontrollers (MCU) are single CPU typically today
• They can reach higher performance by architectural changes and higher 

clocks

 DMA (Direct Memory Access) handles memory in parallel 
with the CPU!
o Race condition between the DMA controller and the CPU

• Input: DMA transfer  IT  CPU handles data
• Output: DMA transfer, Peripheral handles data, IT, CPU removes data from 

memory

o CACHE coherency problems may arise! Solutions:
• The whole CACHE is invalidate if DMA transfer occur

– Simple, but has catastrophic effects on performance

• Memory locations handled by DMA not cached (CACHE controller, MMU)
• CACHE coherent DMA (HW support required)

CPU

CACHE

Mem. controller

Memory
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 Symmetric multiprocessing
o Multiple, identical CPUs

• Multiple CPUs or multiple CPU cores
• Example: AMD Phenom, Intel C2D/C2Q, iX

o Most cases with an architecture specific CACHE hierarchy 
is present

• SMP is CACHE coherent most cases
o Memory is connected to a controller

• The whole memory is accessed with identical properties 
(bandwidth, latency, etc.) by all CPUs or cores

o Muticore MCU
• ARM15, ARM11 MPCore, ARM Cortex-A9 MPCore
• The CPU core is cheap (small portion of the chip surface)
• More and more SMP appears in embedded systems

o To utilize multiple CPUs in the OS, the OS must support 
the SMP HW properly

• Otherwise only one CPU is seen by the OS

SMP CPU CPU

CACHE CACHE

Mem. controller

Memory
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Non-Uniform Memory Access
o Memory speed depends on the relative

location of CPU core and memory location
o The physical memory is unified

• Single and identical address space for all CPUs

o Cache coherency
• CACHE coherent (ccNUMA)
• No CACHE coherent

o Memory controllers are connected by a special 
communication interface

• QPI for Intel, Hypertransport for AMD

o For example, multiple CPU AMD Opteron or Intel Core i7 
based Xeon CPUs utilze ccNUMA architecture

• Inside one chip the architecture SMP

o To utilize multiple CPUs in the OS, the OS must support the 
SMP HW properly

• Otherwise only one CPU is seen by the OS

NUMA CPU CPU

CACHE CACHE

M. cont. M. cont.

Memory Memory
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The operating system and its environment

 It must be emphasized that:
o The user and the application programs cannot be in direct contact

o HW and the application programs cannot be in direct contact

 Everything happens through the OS
o For performance reasons there are some exceptions (Graphics), but OS 

control is there even in this case

o There are some exceptions in embedded operating systems also

Operating

system

HW

Application

Programs
Users

HW intrerface

API(G)UI
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The operating system and its environment 2.

Operating

system

HW

Application

programs

User

HW

interface

API

(G)UI Other

computers

NET
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Layered structure of operating systems

 Layered structure
o Structure (design time efficiency) and run-time efficiency must 

be balanced
• Layered approach is a must for extendibility also

o A virtual machine is realized by the layers (upper interface)
• High level function, virtual instruction set

o On the lowest layer the real CPU and peripherals implement the 
real machine
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Typical layers in OSs

 Layers
o Kernel (implements the fundamental functionalities of the 

operating system)
• Task and memory handling, security

o Hardware specific layer (HAL and drivers, typically in a well-
defined hierarchy)

• HAL (Hardware Abstraction Layer) is a bridge between HW and the kernel

• Handling of keyboard, mouse, graphics, sound, storage, network, etc.

o System programs (subsystems to implement other 
functionalities of the OS)

• Filesystem, high level network handling (TCP/IP), command shell, stb.

o System call handler managing system calls coming from 
application programs

• An API on various target languages compiled into the applications
• This API maps API calls to system call
• Changes privilege level to the kernel, and system call handler is executed 

there
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Operating system architectures
 The OS is a complex software, its has its own architecture
 Monolithic kernel

o All functionalities are compiled into a large executable (the OS)
o Inflexible, any changes in HW or functionality can be added by recompiling 

the kernel
o A failure of one component results the failure of the whole kernel
o It is common in embedded systems (The HW does not change there)

 Modular kernel
o Minimalistic kernel extended (or cut back) by loadable modules run-time
o Flexible, can be adapted to changes in the HW or requirements
o A failure of one component results the failure of the whole kernel 
o Linux kernel since version 2.x, Windows

 Microkernel
o A kernel with minimalistic functions, services and drivers are attached to it 

using the client-server architecture
• It uses 3 privilege levels (kernel, services and drivers, applications)

o Needs more resources due to complex communication among components
o Failure of a service, driver, or application program cannot influence the 

operation of the kernel
o Mac OS X
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Examples

 Linux

o The basic architecture is a monolithic small kernel and loadable 
kernel modules

• Modul handling commands: modprobe, insmod, lsmod, rmmod

o Monolithic kernel can be built also
• All services and drivers are compiled into the kernel

– Module handling can be left out of the kernel

• Inflexible, but in some applications flexibility is not required

– No hardware or service changes required

– Has some advantages in embedded systems (small size, faster)

 Apple OS X

o Darwin
• Mach 3.0 mikrokernel + FreeBSD (Berkeley Software Distribution) UNIX

• Object-oriented framework

33. lap
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Accessing hardware
 Special CPU registers (CPU config)
 I/O ports accessed by I/O instructions
 Memory mapped I/O

o Available bandwidth and latency can be drastically different compared to 
real memory

 DMA (Direct Memory Access)
o DMA controller (HW specific), needs to be programmed
o Can move information between peripherals and memory without the CPU
o Faster but has some disadvantages (race condition in the CACHE)

 Interrupt
o Interrupt controller (HW specific)
o Can be disabled and enable
o If the interrupt is enabled and the interrupt signal comes in, the CPU 

transfers the execution to the interrupt handler code
o The details are HW specific
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CPU privilege levels
 Hierarchic CPU privilege levels

o First introduced in the middle of the 1960s (to support Multics and later  
UNIX)

o The CPU needs to change in between them, it is done by executing a system 
call

 Nearly all modern generic processors support this functionality
o Controls the access to CPU resources 

• Executable instructions
• Access to CPU configuration registers
• The possibility of I/O instruction execution is disabled
• Access to memory locations may be restricted

o E.g. x86  since 286/386, ARM Cortex Ax line, etc.
o Microcontrollers do not support or have very limited support of privilege 

levels, e.g., Atmel AVR, ARM Cortex Mx line, stb.

 2 or 4 privilege levels are implemented in modern processors
o Typically  2 is used

• User mode (real mode) –restricted access
• Kernel mode (protected mode) – full access
• In case of a microkernel a 3rd level may be also used for driver and services

– It has limited access, more the in user mode, but less than in kernel mode
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Memory Management Unit (MMU) 
 Special HW in the CPU

 The functions of the MMU (all will be detailed later)
o Maintaining the state of the memory

• ID of the task that uses the memory

• Access Control List (ACL)

• CACHE control (e.g. DMA)

o Mapping virtual memory to physical memory
• Speeding up mapping  (Translation lookaside buffer, TLB)

• MMU state have some part which are task/context dependent

• Pagefile or SWAP (HDD)

o Protection of memory
• Prohibited access to memory must be denied or at list signaled to the CPU

• General Protection Fault (GPF) in older version of Windows

 We will talk about the MMU and memory handling later

 Linux, Windows, Windows CE (Windows Phone) requires a 
functional MMU for running these OSs



© BME-MIT 2014, Minden jog fenntartva 37. lap

Interrupt

 Interrupt (IT) types
o Hardware IT: a peripheral request handling from the CPU

• External event influences the CPU

• A peripheral may request services for multiple reasons

o Exception: The CPU or the MMU has identified an event which 
needs specific software to run on the CPU

• E.g., page fault, numeric overflow, divide by zero, privilege violation, etc. 

• A hardware signaled even, which comes from the CPU

o Software IT: system call by executing a special instruction
• A software influences the operation of the CPU through the IT 

mechanism

 Modern operating systems are interrupt driven.
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Hardware interrupt example
 An external hardware requires immediate service
 Clock interrupt (exceptionally important)

o ML1 (Who can remember it? The exchange students cannot.)
• Fix frequency oscillator producing impulses
• Programmable counter 
• After a predefined number of impulses its request a HW interrupt

o This interrupt periodically runs the OS (scheduler)
o The system clock is also derived from this source
o Periodic or oneshot operation

• The period is 1-20ms, typically 10 ms
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System call
 What a “system call” is?

o Starting point: The CPU runs an application program
o The system call by the application program interrupts the CPU 

by a software interrupt, transfers the execution to the OS
o A context switch happens
o The OS does it work
o Transfers the execution back to an application program (with a 

context switch)

 How a “system call” is executed?
o Implementation specific...

 Consequences of the system call
o It has a large overhead, consumes CPU time

• The context must be save and restored 2 times

o The number of system calls must be minimized
o During the system call the CPU changes privilege levels 2 times
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What the context is?

 CPU registers

o PC, Status, Work, Segment, etc. registers

o E.g. Linux does not save floating point registers while entering 
kernel mode

• Consequence: Floating point arithmetics cannot be used in the kernel!

 MMU settings

o Access to the memory of the running application program must 
be guaranteed

 Other application specific HW settings

 The most delicate task of is to determine what is needed 
to be saved and what is not necessary to be saved.

40. lap
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System call for programmers

 The programmer calls an API call from the application 
program
o For example in case of C language (most OSs are written in C or 

C++), the API is:
• Windows: windows.h

• Linux: glibc

o The API hides the details of the systems call from the 
programmer

• It is a high level C wrapper around the system calls

o The API implementation is compiled into the application (or 
bound to it run-time), runs in user mode, and executes the 
system call

o The OS consists the system call handler, and the system call 
transfer the execution to it in kernel mode

o There will  be examples later…

41. lap
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I/O instructions
 Application programs cannot execute I/O instructions themselves

(user mode)

 They initiate the execution of I/O operations by issuing system calls

 By issuing a system call the application program waits for finishing 
the system call

 Other programs may run during this (efficiency)

 The kernel executes the real low-level I/O instructions in kernel 
mode

 The peripheral signals the HW the by interrupt when the I/O is 
ready

 Due to the interrupt the system transfers to the OS, and the OS 
makes the decision what to do (e.g. it may run the application 
program waiting for the I/O)

 After the I/O the line of execution returns to the application 
program
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Startup of an OS 1.

 Bootstrap process

 PC and servers

o Init/RESET vector (CPU)

o BIOS/EFI (firmware)
• POST (Power on self test)

• Search for HW and HW initialization

• Determination of Boot the boot media

o BOOT sector (HDD type storage)

o 2nd level boot loader (GRUB, LILO, NTLDR)

o OS is loaded into memory
• HW reprogramming (device driver replaces the BIOS/EFI)

• Privilege level change (transfer to kernel mode)

• Initialization of other functions in kernel mode
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Startup of OS  2.

 Bootstrap process
o Embedded system (PC does it on BIOS/EFI level)

• OS image in ROM (ROM or flash, maybe compressed)

• Can be run from ROM (Harvard architecture can do it only)

• Can be copied to RAM (after decompression) and executed 
from there

 Stopping the machine (power off or hibernate, 
not standby, that is another issue)
o Safe stopping must be done

• Controlled saving of state during the process

• Stopping or sleeping HW (low power mode)

o Non-volatile storage must be left in a consistent state 
(HDD)


