
© BME-MIT 2014, All Rights Reserved
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Handling of Tasks in Operating Systems
Supporting Multiprogramming

Tamás Kovácsházy, PhD
3rd topic

1. Example of simple scheduling
2. Complex scheduling algorithms and scheduling in

multiprocessor systems

Operating systems (vimia219)

© BME-MIT 2014, All Rights Reserved 2. lap

Lesson 1.

 Comparison of simple CPU scheduling algorithms

 FIFO, SJF, SRTF, RR algorithms are compared

 Deterministic analytical modeling
o Given arrival time for all tasks

o Given CPU bursts for all tasks
• For the sake of simplicity only the first CPU burst is

considered

o Overhead is considered 0ms
• Scheduling and context switch take 0ms

 Assignment: Compute the typical metrics of
scheduling algorithms

© BME-MIT 2014, All Rights Reserved 3. lap

Lesson 1., Known properties of the system

Task Arrival time (ms) CPU burst (ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

RR time slice: 4 ms

© BME-MIT 2014, All Rights Reserved 4. lap

Beware of errors

 The slides have been presented several times, but
errors may be present in them even now.

 Sometimes I make errors while presenting them,
and sometimes it is conscious to check your
attention.

 So pay attention and try to follow me while I
present the solution…

© BME-MIT 2014, All Rights Reserved 5. lap

Lesson 1., FIFO Gannt diagram (chart)

FIFO0

24

P1 P2 P3 P4

27 33 362 5

Queue content

First one is above

P1

P2

P2 P2

P3

P2

P3

P4

P3

P4

P4 -

Empty

queue

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 6. lap

Lesson 1., SJF Gannt diagram (chart)

0

P4P3

SJF

P2

3 9 12 36

P1

Queue content

P1

P2

P1

P1

P3

-

2 5

P1 P1

P4

P1 -

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 7. lap

Lesson 1., SRTF Gannt diagram (chart)

0

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

Queue content

P1

P2

P1 -P1 P1

P3

P1 -

P1

P3

2

P4 arrives, and due

to the preemptive

scheduling and the

shortest CPU burst it

is put into running

state immediately

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 8. lap

Lesson 1., RR Gannt diagram (chart)

0 RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

36

P1

P2

P2 P2

P3

P3

P1

-

2

P3

P1

P4

P1

P4

P4

P3

P3

P1

P1 ----

Queue content

5 24 28 32

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 9. lap

Lesson 1., Gannt diagram (chart)

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

© BME-MIT 2014, All Rights Reserved 10. lap

Lesson 1., CPU Utilization

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

100 %

100 %

100 %

100 %

CPU utilization

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

© BME-MIT 2014, All Rights Reserved 11. lap

Lesson 1., CPU Utilization

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

0 overhead based

computation, even

computing throughput is

meaningless

What if the overhead is

0.1 ms

The overhead is much

smaller…

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

© BME-MIT 2014, All Rights Reserved 12. lap

Lesson 1., CPU utilization

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

4 cs: 36,4-0.4/36,4 =

98.9 %

4 cs: 36,4-0.4/36,4 =

98.9 %

5 cs: 36,5-0.5/36,5 =

98.6 %

7 cs + 3 sc : 37-1/37 =

97.3 %

CPU utilization with 0.1 ms scheduling and context switch overhead

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

© BME-MIT 2014, All Rights Reserved 13. lap

Lesson 1., Turnaround time

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

(24+27+31+31)/4 = 28.25 ms

(36+3+7+7)/4 = 13.25 ms

(36+3+10+3)/4 = 13 ms

(36+7+18+13)/4 = 18,5 ms

Average turnaround time

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 14. lap

Példa 1., Waiting time

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

36

(0+24+25+28)/4 = 19.25 ms

(12+0+1+4)/4 = 4.25 ms

(12+0+4+0)/4 = 4 ms

(12+4+12+10)/4 = 9.5 ms

Average Waiting time

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 15. lap

Lesson 1., Response time

FIFO0

24

P1 P2 P3 P4

27 33 36

P4P3

SJF

P2

3 9 12 36

P1

P4P3

SRTF

P2

3 8 12 36

P1

5

P3

(0+24+25+28)/4 = 19.25 ms

(12+0+1+4)/4 = 4.25 ms

(12+0+3+0)/4 = 3.75 ms

(7+4+7+10)/4 = 7 ms

Response time

(let’s consider the maximum of continuous waiting)

RR

P1 P2 P3 P4

4 7 11 15

P1

18

P3

20

P1

362 5 24 28 32

Task Arrival
time
(ms)

CPU
burst
(ms)

P1 0 24

P2 0 3

P3 2 6

P4 5 3

© BME-MIT 2014, All Rights Reserved 16. lap

Lesson 1., Conclusions

 The task pool defines the results
o This task pool has demonstrated the convoy effect and the fine

differences in between the SJF and SRTF schedulers

o SRTF is the best, the SJF follows it closely, but in real life
situations we cannot use them because we do not know future
CPU bursts

o The operation of the RR algorithm can be presented also, it
parameters are better than the FIFO, and it does not require
unavailable run-time information

 Homework (as preparation for the midterm?):
o 4 identical, 9 ms CPU burst task arriving at 0 ms

o 4 identical, 9 ms CPU burst tasks arriving at 0, 3, 6, 11 ms

© BME-MIT 2014, All Rights Reserved 17. lap

Multilevel queue
 For all priority levels we have a ready queue

o It does not say anything determining the priorities...

o It does not say anything about the scheduling
algorithms used on a priority level (typically FIFO, RR)

• It depends on implementation

o How many priority levels are needed?

• Definitely not too much (8-16-32).

• In case of too many priority levels it transforms itself to the
simple priority based scheduler (1 task on a level)

• Because it is required to have a queue for all priority levels
by increasing the number of priorities the complexity of
implementation grows

© BME-MIT 2014, All Rights Reserved 18. lap

Multilevel queue 1.

Pmax-1 queue

Highest priority (Pmax) queue

Pmiddle queue

Queue is

picked based

on priority

Pmin+1 queue

Lowest priority (Pmin) queue

Task is picked

based

on queue

. . .

. . .

Goes to

Run state
Goes to

Ready state

© BME-MIT 2014, All Rights Reserved 19. lap

Multilevel queue 1.

Pmax-1 queue

Highest priority (Pmax) queue

Pmiddle queue

Queue is

picked based

on priority

Pmin+1 queue

Lowest priority (Pmin) queue

Task is picked

based

on queue

. . .

. . .

Goes to

Run state
Goes to

Ready state

The incoming

task is put into

the queue

according to its

priority

© BME-MIT 2014, All Rights Reserved 20. lap

Multilevel queue 1.

Pmax-1 queue

Highest priority (Pmax) queue

Pmiddle queue

Queue is

picked based

on priority

Pmin+1 queue

Lowest priority (Pmin) queue

Task is picked

based

on queue

. . .

. . .

Goes to

Run state
Goes to

Ready state

The queue with

the highest

priority having

task in it is

used to pick

the new

Running task

© BME-MIT 2014, All Rights Reserved 21. lap

Assignment of priorities

 Most cases priority is determined based on the
task, e.g.:

o Batch tasks have low priority

o On-line (interactive) tasks have medium priority

o Some system tasks have high priority

o Real-time tasks have highest priority

 Typically RR scheduling is used for the queues

o Maybe FIFO is used for the batch tasks

© BME-MIT 2014, All Rights Reserved 22. lap

Multilevel queue 2.

System task queue

Real-time queue

Interactive user queue

Queue is

picked based

on priority

Batch queue

Idle task

Task is picked

based

on queue

. . .

. . .

Goes to

Run state

Goes to

Ready state

Priority determined based on tasks

© BME-MIT 2014, All Rights Reserved 23. lap

Problems of priority based systems

 Low priority tasks may starve in priority based systems
o Too many task on higher priority levels running for long period

of time

o It is an overload situation, the system has insufficient resources
to run all the tasks

 Time sharing among priority levels (fairness, no
starvation)
o A given % of time is assigned to priorities

• If there are tasks Ready on that level they get the CPU time available

• They get more only if there is no lower priority level task Ready

o Requires more complex administration
• Time must be measured and distributed for priority level?

o Weighted fair queuing, Weighted Round-robin scheduling

© BME-MIT 2014, All Rights Reserved 24. lap

Time sharing among priority levels

Pmax-1 queue

Pmax queue

Queue is

picked based

on priority

Pmin+1 queue

Pmin queue (idle)

. . .

Goes to

Ready state

...

Run-time

accounting

Goes to

Run state

Run state

with run time

measurement

Task is picked

based

on queue

Max

Max

Max

© BME-MIT 2014, All Rights Reserved 25. lap

Time sharing among priority levels

Pmax-1 queue

Pmax queue

Queue is

picked based

on priority

Pmin+1 queue

Pmin queue (idle)

. . .

Goes to

Ready state

...

Run-time

accounting

Goes to

Run state

Run state

with run time

measurement

Task is picked

based

on queue

Max

Max

Max

Idle priority

tasks may

starve

© BME-MIT 2014, All Rights Reserved 26. lap

Time sharing among priority levels

Pmax-1 queue

Pmax queue

Queue is

picked based

on priority

Pmin+1 queue

Pmin queue (idle)

. . .

Goes to

Ready state

...

Run-time

accounting

Goes to

Run state

Run state

with run time

measurement

Task is picked

based

on queue

Max

Max

Max

Used up time

in the time

period

© BME-MIT 2014, All Rights Reserved 27. lap

Time sharing among priority levels

Pmax-1 queue

Pmax queue

Queue is

picked based

on priority

Pmin+1 queue

Pmin queue (idle)

. . .

Goes to

Ready state

...

Run-time

accounting

Goes to

Run state

Run state

with run time

measurement

Task is picked

based

on queue

Max

Max

Max

Maximum time
for the priority
level in a time

period

© BME-MIT 2014, All Rights Reserved 28. lap

Time sharing among priority levels

Pmax-1 queue

Pmax queue

Queue is

picked based

on priority

Pmin+1 queue

Pmin queue (idle)

. . .

Goes to

Ready state

...

Run-time

accounting

Goes to

Run state

Run state

with run time

measurement

Task is picked

based

on queue

Max

Max

Max

These fields are
zeroed after the

time period
ellapsed

© BME-MIT 2014, All Rights Reserved 29. lap

Determining the time period

 It is a design decision in which time period we

need to make sure that all priority levels get

some CPU time

oHow long they can tolerate starving?

oReminder: RR time slice is typically10-20 ms

o Starving may be allowed for much longer periods

of time, it can be seconds.

© BME-MIT 2014, All Rights Reserved 30. lap

Multilevel Feedback Queues (MFQ)

 Tasks are moved in-between queues based on actually
executed CPU bursts
o Short CPU burst tasks are preferred

• They stay in the high priority queue with short RR time slice

o Longer CPU burst tasks will get longer time slice but lower
priority

o Tasks are reevaluated dynamically
• If the actually executed CPU burst decreases it may go back to a higher

priority shorter time slice queue

o Tasks waiting long times may get increased priority (ageing)

 Can be combined with other scheduling algorithms
o E.g. interactive tasks are scheduled with multilevel feedback

queue scheduler
o For other tasks (RT, system, batch, idle, stb.) multilevel queue

scheduler

© BME-MIT 2014, All Rights Reserved 31. lap

Multilevel Feedback Queues figure 1.

 3 queues, task coming from the normal time slice

queue.

Normal time slice (t)

Increased time slice (2t)

FIFO/FCFS

Priority based

decision
Run

(preemptív)

Highest priority

Lowest priority

Normal time slice, time slice is used up

New task

Normal time slice, time slice is not used up

© BME-MIT 2014, All Rights Reserved 32. lap

Multilevel Feedback Queues figure 2.

 3 queues, task coming from the increased time slice

queue

Normal time slice (t)

Increased time slice (2t)

FIFO/FCFS

Priority based

decisons
Run

(preemptív)

Highest priority

Lowest priority

New taks

Even the normal time slice is not used up

Increased time slice, time slice is used up

Increased time slice, time slice is not used up

© BME-MIT 2014, All Rights Reserved 33. lap

Multilevel Feedback Queues figure 3.

 3 queues, task is coming from the FIFO/FCS queue

Normal time slice (t)

Increased time slice (2t)

FIFO/FCFS

Priority based

decision
Run

(preemptív)

Highest priority

Lowest priority

The incresed time slice is not used up

New task

Even the increased time slice is used up

© BME-MIT 2014, All Rights Reserved 34. lap

Multilevel Feedback Queues

 It is widely used with some extensions in generic
operating systems

o The scheduler of Windows, Linux, etc., show some
quite similar internal operation as we detailed here

© BME-MIT 2014, All Rights Reserved 35. lap

Multiple-processor scheduling

 Homogeneous multiprocessor system

o SMP or NUMA architecture (or the mixture of that).

o I/O peripherals are assigned to a physical processor

o Solutions used:

• Master and slaves (one CPU distributes tasks to the others)

• Self-scheduling / peering (all CPUs have their own scheduler)

© BME-MIT 2014, All Rights Reserved 36. lap

Processor Affinity
 The cache holds some parts of the instructions and data of

the running task
o The cache content of processors or processor cores are different (the

difference depends on the architecture and the running tasks).
o Cache coherency is for data in more than one cache, it is not

reasonable to store the same data in all caches (they run different
tasks with different instructions and data)

o If the task is put on another execution unit, its performance may be
reduced drastically (its data cannot be found the cache of the new
execution unit)

• The new execution unit builds its cache content while running the task…

 Aim: Keep the task on the same execution unit if possible
 Soft or hard processor affinity.

o Soft: The OS tries to keep task on the same execution unit but no
guarantee is given

o Hard: The task is assigned to an execution unit, it cannot be moved to
another execution unit

o Affinity can be set by a system call

© BME-MIT 2014, All Rights Reserved 37. lap

Processor Affinity
 The cache holds some parts of the instructions and data of

the running task
o The cache content of processors or processor cores are different (the

difference depends on the architecture and the running tasks).
o Cache coherency is for data in more than one cache, it is not

reasonable to store the same data in all caches (they run different
tasks with different instructions and data)

o If the task is put on another execution unit, its performance may be
reduced drastically (its data cannot be found the cache of the new
execution unit)

• The new execution unit builds its cache content while running the task…

 Aim: Keep the task on the same execution unit if possible
 Soft or hard processor affinity.

o Soft: The OS tries to keep task on the same execution unit but no
guarantee is given

o Hard: The task is assigned to an execution unit, it cannot be moved to
another execution unit

o Affinity can be set by a system call

Demonstration using Task Manager:

Intel Core i3-2350 (2 core + HT)

© BME-MIT 2014, All Rights Reserved 38. lap

SMP v. NUMA

 In case of SMP only cache matters
from the point of view of affinity
o Sometimes marginal difference is observed

 In case of NUMA the location of the
task memory and execution unit
matter lot more

o If possible, task should run from
memory local to the execution unit

o Remote memory use should be
minimzed

o Complexity of scheduling grows…

CPU CPU

CACHE CACHE

Mem. controller

Memory

CPU CPU

CACHE CACHE

M. cont. M. cont.

Memory Memory

SMP

NUMA

© BME-MIT 2014, All Rights Reserved 39. lap

Load balancing

 Global Ready queue or CPU local Ready queue?

 CPU local Ready queue
o Push and/or Pull

o Push: OS kernel task moves the tasks in between CPUs to
balance Ready queues

o Pull: In idle state any processor tries to get tasks from
overloaded CPUs

o The combination of the two can be also used

 Optimization of interdependent , parallel running tasks pl.

o Gang scheduler

o In case of large number of tasks and CPUs close to linear scaling
can be provided

