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Implementation of the concept of task...

 From the point of view of 
implementation the concept of 
process is quite close to the 
concept of task

 The process is a program under 
execution
o From the same program multiple 

processes can be created
o It has its own code, data, heap, 

stack, and free memory
o It is protected from other 

processes
• Separation, virtual machine, 

sandbox
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Separation of processes

 They run on their own virtual machine:
o The virtual machine is created by the OS

o They cannot have access to other processes and to the 
operating system (to the CPU states and memory areas)

o There is a context switch if another process gets to run

 They have their own virtual memory (details will be 
given later).
o Processes cannot have access to the virtual memory of 

other processes and to the physical memory directly

o The MMU of the CPU provides this functionality
• It is a possibility of sharing memory areas with “READ” privileges 

(e.g. shared library code memory).

• Modern MMUs provide more detailed sharing capabilities (e.g. 
Write, No Execute, etc.)...
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Creation of Processes

 OS specific system call (e.g. CreateProcess() in Windows, 
fork() in UNIX)

 Parent/child relationship between creator/created 
processes

o Process tree

o The child may have access to the resources of the parent in a 
configurable way (everything – nothing).

o The parent may wait for the termination of the child (luckily life 
is different…)

o The parent can pass parameters to the child (command line). 

 UNIX fork() is going to be introduced later in detail

 Requires lot of administration and resources
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Communication of processes
 Processes must interoperate (the actual solutions are 

going to be detailed later)
o For that, they need to communicate

 Arbitrary two processes cannot communication through 
memory
o The main task of the MMU and the virtual memory is to 

separate processes from this aspect
o They can communicate only through system calls, which is 

resource hungry

 The  process is efficient from the point of view of 
protection/separation

 The process is en inefficient way of solving parallel, 
strongly interrelated problems
o E.g. GUI and some CPU intensive computation in the 

background (WORD „typesetting” after some edit)
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Termination of processes

 OS specific system call (e.g. TerminateProcess() on 
Windows, exit() on UNIX)

 The opened, previously used resources must be closed

o E.g. opened files or TCP/IP sockets, etc.

 The parent may get a return value (most cases an 
integer), it informs it about the status of termination

 What if the parent terminates before the child?

o OS specific implementation, typical solutions are:
• The child is assigned a default parent (e.g. UNIX: init process).

• Automatic termination of all childs (cascading termination).

 Requires lot of administration and resources
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Evaluation of the concept of process
 From the point of view of protection and separation it is 

good solution, but it requires lot of resources
o Creation and termination of processes
o Communication and resource sharing between processes

 Solution: Introduction of the thread
o The thread the default unit of CPU utilization, it is a sequential 

code
o It has its own virtual CPU and stack
o The code, data, heap and other resources are shared with other 

threads running in the context of a process
o The process is a memory container, the thread is a CPU 

container

 Process = heavyweight process
 Thread = lightweight process
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Processes and threads on a figure

Single thread OS supporting only 

processes, e.g. traditional UNIX

Thread based operating system,

e.g. Windows NT and later, modern UNIX
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Support of threads

 Modern operating systems support threads in a 
native way

 Windows:
o Program or service = process and under the process 

multiple threads

o The scheduler schedules threads

 Modern UNIX, Linux:
o Program or daemon = process and under processes 

multiple threads

o The scheduler schedules tasks, and a task can be a 
process (legacy programs from traditional UNIX) or a 
thread (new programs)
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User space threads

 Under UNIX (even Linux in earlier times).
o green threads

 The OS knows only processes
 Threads are needed, support is coming, 

programmers want to use it
o User space thread libraries...

 The OS can only schedule processes, so if the 
process runs, its user space thread library can run 
its own thread level scheduler
o Multiple threads form a scheduling unit!

• Only one of those threads or the user space thread 
scheduler can run

• Cannot utilize multiple execution units
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Thread support (Creation)

 E.g. Win32 API, Pthreads, JAVA thread

 Win32: CreateThread() with complex parameters

 Pthreads: POSIX threads e.g. Linux and other UNIX 
variants, it supports kernel and user space threads also

 JAVA (VM is the process, inside the VM you can have 
threads): 
o If the class is inherited from the Thread class

o If the Runnable interface is implemented

o JAVA implements threads in a platform specific way
• Nativ OS specific threads (one-to-one, today it is the typical solution).

• JAVA specific threads mapping all JAVA threads to one native OS thread 
(many-to-one, if the OS does not support threads)

• many-to-many mapping (may require less resources the one-to-one, but 
allows parallel execution not supported by many-to-one).



© BME-MIT 2014, All Rights Reserved 12. lap

Advantages of using threads

 Low amount of resources are needed to create and 
terminate them
o Some estimates it is 1/10 of the processes.

 Multiple running thread in an application
o The GUI responsive of the application does some 

computation in the background

 Fast communication in-between threads running in 
the context of a process
o They run in the same virtual memory
o Stack is thread specific, but also shared as memory

• Lot of problems may be caused by this

 Scalability
o Multiple execution unit can be utilizes in one application
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Consequences of using threads

 Communication using shared memory is 
dangerous

o The consistency of data structures used for 
communication may be violated by multiple threads 
accessing them

o We are going to deal with this problem later in at least 
two lectures

o Threads running in the context of different processes 
must use system calls for communication

• It is needed less frequently, because closely interrelated 
functionalities can be implemented using thread in a process
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HW support
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Coroutine or fiber

 Cooperative multitasking

o Inside a process or a thread

• OS support or programming language level implementation

• On the OS level the process or thread is scheduled

• The scheduling of coroutines or fibers are in the hand of the 
programmer (cooperative scheduling).

o Coroutine: programming language level construct

• Haskell, JavaScript, Modula-2, Perl, Python, Ruby, etc.

o Fiber: system (OS) level solution

• Win32 API (ConvertThreadToFiber and CreateFiber).

• Symbian
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Coroutine

 Generalization of the Subroutine

o Subroutine:

• LIFO (Last In/called, First Out/returns).

• Single entry point, multiple exit points (return/exit)

• The stack is used to pass parameters and return value

o Coroutine:

• First entry point is the same as in case of the subroutine

• After that its entry point is after the last exit point!

• Transfer is with the „yield to Coroutine_id” call.

• Cannot use stack, it never returns!
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Coroutine example, 1st call
var q := new queue

coroutine produce

loop while q is not full

create some new items

add the items to q

yield to consume

coroutine consume

loop while q is not empty

remove some items from q

use the items

yield to produce
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Coroutine example, all other calls
var q := new queue

coroutine produce

loop while q is not full

create some new items

add the items to q

yield to consume

coroutine consume

loop while q is not empty

remove some items from q

use the items

yield to produce
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Evaluation of coroutine and fiber

 For problems solvable with cooperative multitasking

 For stack based environments (e.g. C/C++) 
implementation is hard if not done on the system level 
(fiber)

 No resource sharing is required

o No specific OS calls for resource sharing

o Less overhead

 The OS schedules them in a thread, they cannot utilize 
multiple execution units
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Some other approaches…

 Android is based on Linux

o Based on the process and thread support it builds an 
interesting framework for supporting mobile 
applications

 Let’s see it in details…

21. lap
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Android

22. lap
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Android and Linux
 Application Security Sandbox
 Android applications run in an application specific instance of Dalvik

Virtual Machine (VM)
o The Dalvik VM runs in a UNIX process

• Thread and virtual memory support of Linux are used

o Dalvik is developed for mobile/embedded use
• Low memory usage
• Register based, not stack based VM

 Every running Android application gets its own Linux User ID (UID), to 
deny access to other applications
o By default it can access only files created by the application
o Principle of least privilege

 Properties of the application is described in the Manifest File
 An application can be terminated by the OS any time in case of low 

resource availability
o It is done by the OS automatically
o There are “Task managers” on the Android Market to do this
o No “Exit/Quit” button in most of the Android Apps (not needed)

23. lap
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Android application components 1.
 Relevant from the point of view of task implementation
 Activity

o A screen with user interface
o Multiple one in an application
o In an application activities are independent entities, but they 

interoperate while the user accesses the application
o It can be 3 states:

• Resumed (active screen), the user can “tap” on it
• Paused (inactive, visible, part of covered by the active screen),
• Stopped (inactive and not visible screen)
• Only activities visible on the screen are executed, all the others are 

stored with their state (resource optimization)
• Lifecycle callbacks to inform the application on activity state changes

o Other applications may start an activity in the application If that 
is allowed by the application

24. lap
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Android application components 2.
 Service

o It runs in the background without any user interface
• For background tasks running continuously, such as the MP3 playing 

component of an MP3 player
• It does not create a thread for itself, if it is CPU intensive, a thread must 

be created for it for better user experience

o Started service
• It runs as long as it finishes its task, the application has minimal control 

over it
• It can run longer than the application starting it
• Example: Downloading a big file

o Bound service
• Its lifecycle bound to the application
• It provides a well-defined interface to the application
• Example: Background MP3 player service controlled from an application 

(play, stop, forward, backward, volume, speed, etc.)

o Lifecycle callbacks are present here also
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