
© BME-MIT 2014, All Rights Reserved
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Interoperation of tasks

Tamás Kovácsházy, PhD
4th topic,

Implementation of tasks, processes and threads

Operating systems (vimia219)

© BME-MIT 2014, All Rights Reserved 2. lap

Implementation of the concept of task...

 From the point of view of
implementation the concept of
process is quite close to the
concept of task

 The process is a program under
execution
o From the same program multiple

processes can be created
o It has its own code, data, heap,

stack, and free memory
o It is protected from other

processes
• Separation, virtual machine,

sandbox

Stack

Free memory

Heap

Data

Code

© BME-MIT 2014, All Rights Reserved 3. lap

Separation of processes

 They run on their own virtual machine:
o The virtual machine is created by the OS

o They cannot have access to other processes and to the
operating system (to the CPU states and memory areas)

o There is a context switch if another process gets to run

 They have their own virtual memory (details will be
given later).
o Processes cannot have access to the virtual memory of

other processes and to the physical memory directly

o The MMU of the CPU provides this functionality
• It is a possibility of sharing memory areas with “READ” privileges

(e.g. shared library code memory).

• Modern MMUs provide more detailed sharing capabilities (e.g.
Write, No Execute, etc.)...

© BME-MIT 2014, All Rights Reserved 4. lap

Creation of Processes

 OS specific system call (e.g. CreateProcess() in Windows,
fork() in UNIX)

 Parent/child relationship between creator/created
processes

o Process tree

o The child may have access to the resources of the parent in a
configurable way (everything – nothing).

o The parent may wait for the termination of the child (luckily life
is different…)

o The parent can pass parameters to the child (command line).

 UNIX fork() is going to be introduced later in detail

 Requires lot of administration and resources

© BME-MIT 2014, All Rights Reserved 5. lap

Communication of processes
 Processes must interoperate (the actual solutions are

going to be detailed later)
o For that, they need to communicate

 Arbitrary two processes cannot communication through
memory
o The main task of the MMU and the virtual memory is to

separate processes from this aspect
o They can communicate only through system calls, which is

resource hungry

 The process is efficient from the point of view of
protection/separation

 The process is en inefficient way of solving parallel,
strongly interrelated problems
o E.g. GUI and some CPU intensive computation in the

background (WORD „typesetting” after some edit)

© BME-MIT 2014, All Rights Reserved 6. lap

Termination of processes

 OS specific system call (e.g. TerminateProcess() on
Windows, exit() on UNIX)

 The opened, previously used resources must be closed

o E.g. opened files or TCP/IP sockets, etc.

 The parent may get a return value (most cases an
integer), it informs it about the status of termination

 What if the parent terminates before the child?

o OS specific implementation, typical solutions are:
• The child is assigned a default parent (e.g. UNIX: init process).

• Automatic termination of all childs (cascading termination).

 Requires lot of administration and resources

© BME-MIT 2014, All Rights Reserved 7. lap

Evaluation of the concept of process
 From the point of view of protection and separation it is

good solution, but it requires lot of resources
o Creation and termination of processes
o Communication and resource sharing between processes

 Solution: Introduction of the thread
o The thread the default unit of CPU utilization, it is a sequential

code
o It has its own virtual CPU and stack
o The code, data, heap and other resources are shared with other

threads running in the context of a process
o The process is a memory container, the thread is a CPU

container

 Process = heavyweight process
 Thread = lightweight process

© BME-MIT 2014, All Rights Reserved 8. lap

Processes and threads on a figure

Single thread OS supporting only

processes, e.g. traditional UNIX

Thread based operating system,

e.g. Windows NT and later, modern UNIX

Code Data

Heap

Stack

Resources

CPU

Code

Data

Heap
Resources

CPU

Stack

CPU

Stack

CPU

Stack

...

Process

Process

Thread Thread Thread Thread

© BME-MIT 2014, All Rights Reserved 9. lap

Support of threads

 Modern operating systems support threads in a
native way

 Windows:
o Program or service = process and under the process

multiple threads

o The scheduler schedules threads

 Modern UNIX, Linux:
o Program or daemon = process and under processes

multiple threads

o The scheduler schedules tasks, and a task can be a
process (legacy programs from traditional UNIX) or a
thread (new programs)

© BME-MIT 2014, All Rights Reserved 10. lap

User space threads

 Under UNIX (even Linux in earlier times).
o green threads

 The OS knows only processes
 Threads are needed, support is coming,

programmers want to use it
o User space thread libraries...

 The OS can only schedule processes, so if the
process runs, its user space thread library can run
its own thread level scheduler
o Multiple threads form a scheduling unit!

• Only one of those threads or the user space thread
scheduler can run

• Cannot utilize multiple execution units

© BME-MIT 2014, All Rights Reserved 11. lap

Thread support (Creation)

 E.g. Win32 API, Pthreads, JAVA thread

 Win32: CreateThread() with complex parameters

 Pthreads: POSIX threads e.g. Linux and other UNIX
variants, it supports kernel and user space threads also

 JAVA (VM is the process, inside the VM you can have
threads):
o If the class is inherited from the Thread class

o If the Runnable interface is implemented

o JAVA implements threads in a platform specific way
• Nativ OS specific threads (one-to-one, today it is the typical solution).

• JAVA specific threads mapping all JAVA threads to one native OS thread
(many-to-one, if the OS does not support threads)

• many-to-many mapping (may require less resources the one-to-one, but
allows parallel execution not supported by many-to-one).

© BME-MIT 2014, All Rights Reserved 12. lap

Advantages of using threads

 Low amount of resources are needed to create and
terminate them
o Some estimates it is 1/10 of the processes.

 Multiple running thread in an application
o The GUI responsive of the application does some

computation in the background

 Fast communication in-between threads running in
the context of a process
o They run in the same virtual memory
o Stack is thread specific, but also shared as memory

• Lot of problems may be caused by this

 Scalability
o Multiple execution unit can be utilizes in one application

© BME-MIT 2014, All Rights Reserved 13. lap

Consequences of using threads

 Communication using shared memory is
dangerous

o The consistency of data structures used for
communication may be violated by multiple threads
accessing them

o We are going to deal with this problem later in at least
two lectures

o Threads running in the context of different processes
must use system calls for communication

• It is needed less frequently, because closely interrelated
functionalities can be implemented using thread in a process

© BME-MIT 2014, All Rights Reserved 14. lap

HW support

CPU CPU

Multiple Address

Space OS

Single Address

Space OS

P
ro

c
e
s
s
 1

P
ro

c
e
s
s

2

P
ro

c
e
s
s
 N

T
h
re

a
d
1

T
h
re

a
d
2

T
h
re

a
d
N

MMU

T
h
re

a
d

1

T
h
re

a
d

2

T
h
re

a
d

M

Virtual memory with MMU Physical memory only

(some embedded operating system)

© BME-MIT 2014, All Rights Reserved 15. lap

HW support

CPU CPU

Multiple Address

Space OS

Single Address

Space OS

P
ro

c
e
s
s
 1

P
ro

c
e
s
s

2

P
ro

c
e
s
s
 N

T
h
re

a
d
1

T
h
re

a
d
2

T
h
re

a
d
N

MMU

T
h
re

a
d

1

T
h
re

a
d

2

T
h
re

a
d

M

Virtual memory with MMU Physical memory only

(some embedded operating system)

no MMU or MMU is not

programmed

© BME-MIT 2014, All Rights Reserved 16. lap

Coroutine or fiber

 Cooperative multitasking

o Inside a process or a thread

• OS support or programming language level implementation

• On the OS level the process or thread is scheduled

• The scheduling of coroutines or fibers are in the hand of the
programmer (cooperative scheduling).

o Coroutine: programming language level construct

• Haskell, JavaScript, Modula-2, Perl, Python, Ruby, etc.

o Fiber: system (OS) level solution

• Win32 API (ConvertThreadToFiber and CreateFiber).

• Symbian

© BME-MIT 2014, All Rights Reserved 17. lap

Coroutine

 Generalization of the Subroutine

o Subroutine:

• LIFO (Last In/called, First Out/returns).

• Single entry point, multiple exit points (return/exit)

• The stack is used to pass parameters and return value

o Coroutine:

• First entry point is the same as in case of the subroutine

• After that its entry point is after the last exit point!

• Transfer is with the „yield to Coroutine_id” call.

• Cannot use stack, it never returns!

© BME-MIT 2014, All Rights Reserved 18. lap

Coroutine example, 1st call
var q := new queue

coroutine produce

loop while q is not full

create some new items

add the items to q

yield to consume

coroutine consume

loop while q is not empty

remove some items from q

use the items

yield to produce

© BME-MIT 2014, All Rights Reserved 19. lap

Coroutine example, all other calls
var q := new queue

coroutine produce

loop while q is not full

create some new items

add the items to q

yield to consume

coroutine consume

loop while q is not empty

remove some items from q

use the items

yield to produce

© BME-MIT 2014, All Rights Reserved 20. lap

Evaluation of coroutine and fiber

 For problems solvable with cooperative multitasking

 For stack based environments (e.g. C/C++)
implementation is hard if not done on the system level
(fiber)

 No resource sharing is required

o No specific OS calls for resource sharing

o Less overhead

 The OS schedules them in a thread, they cannot utilize
multiple execution units

© BME-MIT 2014, All Rights Reserved

Some other approaches…

 Android is based on Linux

o Based on the process and thread support it builds an
interesting framework for supporting mobile
applications

 Let’s see it in details…

21. lap

© BME-MIT 2014, All Rights Reserved

Android

22. lap

© BME-MIT 2014, All Rights Reserved

Android and Linux
 Application Security Sandbox
 Android applications run in an application specific instance of Dalvik

Virtual Machine (VM)
o The Dalvik VM runs in a UNIX process

• Thread and virtual memory support of Linux are used

o Dalvik is developed for mobile/embedded use
• Low memory usage
• Register based, not stack based VM

 Every running Android application gets its own Linux User ID (UID), to
deny access to other applications
o By default it can access only files created by the application
o Principle of least privilege

 Properties of the application is described in the Manifest File
 An application can be terminated by the OS any time in case of low

resource availability
o It is done by the OS automatically
o There are “Task managers” on the Android Market to do this
o No “Exit/Quit” button in most of the Android Apps (not needed)

23. lap

© BME-MIT 2014, All Rights Reserved

Android application components 1.
 Relevant from the point of view of task implementation
 Activity

o A screen with user interface
o Multiple one in an application
o In an application activities are independent entities, but they

interoperate while the user accesses the application
o It can be 3 states:

• Resumed (active screen), the user can “tap” on it
• Paused (inactive, visible, part of covered by the active screen),
• Stopped (inactive and not visible screen)
• Only activities visible on the screen are executed, all the others are

stored with their state (resource optimization)
• Lifecycle callbacks to inform the application on activity state changes

o Other applications may start an activity in the application If that
is allowed by the application

24. lap

© BME-MIT 2014, All Rights Reserved

Android application components 2.
 Service

o It runs in the background without any user interface
• For background tasks running continuously, such as the MP3 playing

component of an MP3 player
• It does not create a thread for itself, if it is CPU intensive, a thread must

be created for it for better user experience

o Started service
• It runs as long as it finishes its task, the application has minimal control

over it
• It can run longer than the application starting it
• Example: Downloading a big file

o Bound service
• Its lifecycle bound to the application
• It provides a well-defined interface to the application
• Example: Background MP3 player service controlled from an application

(play, stop, forward, backward, volume, speed, etc.)

o Lifecycle callbacks are present here also

25. lap

