
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Collaboration of Tasks

Tamás Kovácsházy, PhD
13rd Topic

Inter Process Communication with Message Passing

Operating systems (vimia219)

© BME-MIT 2014, All Rights Reserved 2. lap

Looking back, communication solutions

 Using shared memory(RAM or PRAM model):

o Among threads running in the context of a process
(shared memory of the process)

 Messages:

o No shared memory

• Among processes running inside an operating system

• Distributed system (network communication)

o Microkernel based operating system

 Inter Process Communication, IPC

© BME-MIT 2014, All Rights Reserved 3. lap

Messages

 Different from the same word used in computer networks

o We consider a more generic notion of message

 Message passing

 For example:

o System call

o TCP/IP connection (TCP) or message (UDP) for internal
(localhost) or external communication (among machines)

 Most cases they are implemented as OS API
function/method calls resulting a system call

 The operating system implements them by its services

© BME-MIT 2014, All Rights Reserved 4. lap

Some notes
 Semaphore, Critical section object, and Mutex are

also implemented by the OS and handled by
system calls
o Threads running in the context of a process

communicate using shared memory (fast, low resource
utilization)

oMutual exclusion and synchronization are solved by
messages (using system calls).

o It has some overhead:
• Experiments: Lockless programming, transactional memory

etc.
• There is no good solution, but we can pick a better one than

the other (Churchill is right).
• The good solution is application and software architecture

dependent

© BME-MIT 2014, All Rights Reserved 5. lap

Properties of message passing

 Compared to shared memory:

o Higher delay

o Lower bandwidth

o Unreliable communication channel

• Shared memory is reliable with the propability of 1
– RAM, PRAM model

• It is not true even for system calls in an operating system
– System overload may happen!

• Using a computer network is unreliable by definition
– Random and intentional errors

– Intentional errors are the worse, because they target the
vulnerabilities of the system directly

© BME-MIT 2014, All Rights Reserved 6. lap

Addressing messages

 Computer networks...

 A given process (unicast address).

 All processes (broadcast address).
o E.g. power management messages

• Standby, Hibernate, PowerOff, etc.

 A group of processes (multicast address).

 One process from a group of processes (anycast
address).
o E.g. a process that is going to serve the request from

the processes that can serve the request because they
run a specific service

© BME-MIT 2014, All Rights Reserved 7. lap

Direct communication
 Symmetric message based communication

o send(P, message)
o receive(Q, message)
o P, Q are process identifiers
o Q, the sender, is specified when receive() is called!

o Message is a data structure containing the information to be sent

 Asymmetric message based communication
o send(P, message)
o receive(id, message)
o P is the process identifier of the recipient
o The id identifies the sender. The receiver receives from anybody!

• In other words, id is a return value…

o Message is a data structure containing the information to be sent

 There is a direct reference in the code to the receiver or the sender
(symmetric)
o Not a good idea...
o Makes everything too complex.

© BME-MIT 2014, All Rights Reserved 8. lap

Indirect communication
 There is a entity in between the communicating parties

o Proxy design pattern

 This entity can be: Mailbox, MesssageQueue, Port, etc.
 Interface: constructor and destructor plus

o send(A, message)
o receive(A, message)

 „A” is the identifier of the entity
o In distributed systems it may be in part the identifier of the node (identifier

of a computer)

P QA (mailbox)

© BME-MIT 2014, All Rights Reserved 9. lap

Additional properties

 Minimum one sender

 Minimum one receiver
o After the message is received by a process it is deleted

(single read)

o The message can be read multiple times (explicit delete is
needed to remove it)
• SystemV Shared Memory in UNIX

 Owner can be:
o Operating system

• It exists independently of the processes which use it

o A process (It is located in the memory area of the process)
• It exists with that process

© BME-MIT 2014, All Rights Reserved 10. lap

Blocking

 Non-blocking call = asynchronous call
o Results and side effects does not available when the

call returns (They may not have happened at all)

o Only execution of the real functionality is started after
returning from the call

o Handling of return values, results, and side effects
needs some other solutions from the caller:
• E.g. Events, signals, callback fuctions, etc. are used

 Blocking call = synchronous call
o Results and side effects are available on the return of

the call (they happened).

o Handling of return values is simple...

© BME-MIT 2014, All Rights Reserved 11. lap

Blocking on the sender side

 Blocking send():
o The send() call does not return until the message is

received (direct communication) or stored into the
communication entity (indirect communication)

o How we handle errors?
• The send() call returns with errors

 Non-blocking send():
o After sending the message locally, it returns (does not

wait for delivery or positive acknowledgements)

o A callback function or signal handling, etc.

© BME-MIT 2014, All Rights Reserved 12. lap

Blocking on the receiver side

 Blocking receive():

o The receive() call does not return until something is
received (maybe with a timeout)

o Classic example: TCP/UDP socket listen().

 Non-blocking receive():

o The receive() call returns immediately with some data

• If there is a message receive, it return with that

• If there is no message it is told (pl. empty message with 0
length, null reference, error code, etc.).

• If there is no message and non-blocking receive is called in
an infinite cycle it results busy waiting (eats the CPU).

© BME-MIT 2014, All Rights Reserved 13. lap

Implementations 1.
 Mailbox:

o Indirect communication
o A single message is stored or multiple one, but the maximum number

of messages is specified
o The mailbox is handled on the OS level

 MessageQueue:
o Indirect communication
o Infinite number of messages can be stored

• Of course, system resources limit the number

o Message based middlewares
• MSMQ, IBM's WebSphere MQ, Oracle Advanced Queuing (AQ), JBoss

Messaging, Apache Qpid.

 Embedded operating systems typically support
Mailbox/MessageQueue type solutions even to communicate
among threads
o Simple, problem free solution

© BME-MIT 2014, All Rights Reserved 14. lap

Implementations 2.

 TCP/IP TCP or UDP port:

o Direct communication

o Socket interface

o Localhost (127.0.0.1/8) can be used inside the machine

o Low level solution, several middlewares are based on it:

• Remote Procedure Call, RPC

• Remote method Invocation:

– CORBA (Common Request Broker Architecture),

– JAVA RMI (Remote Method Invocation),

– DCOM/.NET Remoting,

– SOAP (Simple Object Access Protocol).

• Message based middlewares (we have already talked about them)

© BME-MIT 2014, All Rights Reserved 15. lap

Implementations 3.

 Various pipes and streams:

o Typically direct but can be indirect (named pipe)

o E.g. UNIX pipe, Windows Named Pipe, RTLinux FIFO

 System V Shared Memory (UNIX, Linux)

o Direct

o Memory based interface using the special features of
the MMU

o In the UNIX lectures is will be introduced

© BME-MIT 2014, All Rights Reserved 16. lap

Remote Procedure Call

 It is introduced in detail:

o It is used even now, primarily for OO, so it is called
Remote Method Invocation in this context

o Very illuminating to see how it works...

 Remote Procedure Call, RPC:

o Calling a function located in the memory of an other
process from the calling process using messages

o The caller blocks while waiting for the answer

o The called function runs in a thread of the called
process

© BME-MIT 2014, All Rights Reserved 17. lap

P
 s

id
e
 O

S

Q
 s

id
e
 O

S

Architecture of RPC

Stack

Free memory

Heap

Data

Code

Stack

Free memory

Heap

Data

Code

P process (client) Q process (server)

Function/method

Calling
code

P
 s

id
e

H
W

Q
 s

id
e

H
W

Computer

Network

Called
code

© BME-MIT 2014, All Rights Reserved 18. lap

How the programmer sees RPC

 Practically using a remote procedure is like calling a local
one (actually it is calling a local one).

o The function is available as a stub function in a program library
(prepared by the RPC development system)

o The programmer needs to nothing about where the actual
function will be executed (RPC hides the details)

 Implementation of the actual function is similar than
writing a local function

o The programmer gets an interface definition (prepared by the
RPC development system) and implements the functionality

o The programmer needs to nothing about from where the actual
function is called (RPC hides the details)

© BME-MIT 2014, All Rights Reserved 19. lap

RPC in operation 1.

 The parameters and return value of the call has types

o Structured message is sent

o Platform independence is realized by the Operating System and
the development system (compiler or interpreter)
• All sent data is converted to standard formats e.g. Binary Encoding Rules

(BER), XML, etc.

 The client program calls a normal local function

o The local function is an automatically generated stub function
handling the RPC

o The stub hides the details of communication from the
programmer using it

o We do not talk about that how the server is found
• Let us assume that it is known…

© BME-MIT 2014, All Rights Reserved 20. lap

RPC in operation 2.

 The responsibilities of the client side stub are during the call

o Packing the parameters of the call into a platform independent form
and putting it into a message (or messages), and sending it to the
server

o To implement this it uses the services of the operating system and the
computer network

 On the server side the RPC service gets the messages
containing the parameters of the call (including function
name)

o It converts the parameters to a local form

o It calls the local function

o The return values are converted back to standard form

o The standard form return values are sent back to the client in a
message (or messages)

© BME-MIT 2014, All Rights Reserved 21. lap

RPC in operation 3.

 The client side stub receives the messages with the
return values in standard form
o It converts the standard form return values to the local form

o It returns with the return values converted back to local form
from the stub into the calling program

 The client thread calling the remote code
o Waits for an event caused by the incoming message containing

the return values

 The server thread waits for incoming calls, and if there is
any, it runs (executes the calls)
o It blocks on listening for incoming messages

