
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Collaboration of Tasks

Tamás Kovácsházy, Phd
14th topic
Deadlocks

Operating systems (vimia219)

© BME-MIT 2014, All Rights Reserved 2. lap

Deadlock

 Deadlock is one of the most serious error can
happen (caused by programmers actually) in
parallel programs

 Exact definition:

o An H subset of tasks of a system is in deadlock, if all
tasks in the H subset wait for such event, that can be
only created by other tasks in the H subset

o The H subset is only a subset of all tasks in the system,
not all tasks are influenced by the deadlock

© BME-MIT 2014, All Rights Reserved 3. lap

Typical example

 2 resources, A and B.

 2 tasks want to use them the following way

P1 task:

Acquire(A);

Acquire(B);

use A and B;

Release(A);

Release(B);

P2 task:

Acquire(B);

Acquire(A);

use A and B;

Release(B);

Release(A);

© BME-MIT 2014, All Rights Reserved 4. lap

Typical example

 2 resources, A and B.

 2 tasks want to use them the following way

P1 task:

Acquire(A);

Acquire(B);

use A and B;

Release(A);

Release(B);

P2 task:

Acquire(B);

Acquire(A);

use A and B;

Release(B);

Release(A);

Race condition between P1 and P2

Which one runs first?

© BME-MIT 2014, All Rights Reserved 5. lap

Typical example

 2 resources, A and B.

 2 tasks want to use them the following way

P1 task:

Acquire(A);

Acquire(B);

use A and B;

Release(A);

Release(B);

P2 task:

Acquire(A);

Acquire(B);

use A and B;

Release(B);

Release(A);

Acquiring resources in the same order the deadlock cannot
occur!

Most cases the names of the resources are not so easy to order,
so the solution is not so straightforward…

© BME-MIT 2014, All Rights Reserved 6. lap

Deadlock in real life

 There are very complex cases compared to the previous
simple demonstration

 Hard to identify...

o It manifests itself in the form of a race condition
• It works sometimes, and sometimes it ends up in a deadlock…

• Hard to reproduce the problem and correct it

o Certain hard to reproduce conditions must be met to recreate
the deadlock

 The deadlock may influence other tasks also:

o E.g. tasks in the H subset may reserve and never free (freeze)
other resources in the system limiting the system

© BME-MIT 2014, All Rights Reserved 7. lap

Necessary conditions
1. Mutual Exclusion

There are shared resources in the system to be used by more tasks
than the resource can handle concurrently without errors

2. Hold and Wait
There are tasks in the system that acquires and may wait for

additional shared resources while it holds (uses) some other
shared resources

3. No resource preemption
No task gives up shared resources on request involuntarily, it only

releases a shared resource when that is not needed anymore
by the task (the exception is the CPU in preemptive
schedulers, but there preemption is handled properly)

4. Circular Wait
There is a {P0, P1, ... Pn} list of tasks in the system, for witch Pi

waits for Pi+1 (0 ≤ i < n), and Pn waits for P0

© BME-MIT 2014, All Rights Reserved 8. lap

R2

Resource reservation graphs 1.

 Resource-allocation graph to visualize the situation…

P1 P2

R1 R3

P3

R4

© BME-MIT 2014, All Rights Reserved 9. lap

R2

Resource reservation graphs 2.

P1 P2

R1 R3

P3

R4

Task node

© BME-MIT 2014, All Rights Reserved 10. lap

R2

Resource reservation graphs 3.

P1 P2

R1 R3

P3

R4

Resource node

© BME-MIT 2014, All Rights Reserved 11. lap

R2

Resource reservation graphs 4.

P1 P2

R1 R3

P3

R4

Resource requested
but not acquired

(waiting for it)

© BME-MIT 2014, All Rights Reserved 12. lap

R2

Resource reservation graphs 5.

P1 P2

R1 R3

P3

R4

Acquired resource

© BME-MIT 2014, All Rights Reserved 13. lap

R2

Resource reservation graphs 5.

P1 P2

R1 R3

P3

R4

The number of black dots constitutes
the number of resources available.

For the task it is arbitrary which one of
the actual resources are acquired from

the available items.

© BME-MIT 2014, All Rights Reserved 14. lap

R3

How deadlock are identified?

P1 P2

R1 R2

P3

 Directed loop on the graph (4th necessary condition).

 It can be a deadlock, but it may or may not happen (only the
possibility is shown)

© BME-MIT 2014, All Rights Reserved 15. lap

Handling of deadlock
 Ostrich algorithm (we do not care about the possibility)

o Classic joke: How car would handle malfunctions if cars were
designed by Microsoft?

o Unfortunately, due to the huge software content of modern
cars the joke is reality!

• New Windows operating systems are much better from the point of view
of reliability, especially if you take configurability and complexity into
account

o In non mission critical systems it is a solution (let’s restart this…)

 Deadlock detection and recovery
 Deadlock prevention

o Structural prevention of deadlock
o Analyses of the solution

 Deadlock avoidance

© BME-MIT 2014, All Rights Reserved 16. lap

Deadlock detection and recovery 1.

 Detection:
o The cases of single item resource and multiple item resource must be

handled differently

o There are large number of published algorithms

o Single item resource: Wait-for graphs
• You can capture which one waits...

o General multiple item resource : Coffman’s deadlock detection
algorithm (We do not have time to introduce it).

o When the algorithm should run?
• One extremity : For any resource request cannot be granted immediately

(may cause a deadlock)

• The other extremity : Periodically in case of low CPU usage when lot of tasks
wait for resources (this situation may be caused by a deadlock)

o Algorithms usable in real life are CPU intensive
• The should be executed rarely (the second extremity is realistic).

© BME-MIT 2014, All Rights Reserved 17. lap

Deadlock detection and recovery 2.

 Recovery:

o Multiple solutions

• The radical one : All tasks in the deadlock are terminated

• The humane one: Only selected tasks are terminated, a
decision must be made, and the success is not guaranteed

o Tasks to do:

• Selecting a victim

• Rollback, if there exist any intermediate safe state to roll
back the resource to

o In case of consecutive deadlocks we should pick
different victims

• Avoiding starvation , not to end up in a higher level livelock

© BME-MIT 2014, All Rights Reserved 18. lap

Deadlock prevention 1.

 Design time solution
 A deadlock free system is developed

o At least one of the necessary conditions of deadlock
cannot happen

• Mutual exclusion is a precondition in this environment

 1th: No run-time resource reservation:
o Drastic, but it is possible in some simple embedded

systems

 2nd: No Hold and Wait:
o A task holding a resource request an another resource
o All resources are reserved by one system call
o It utility highly depends on the application, i.e., how

resources must be handled
o Resource utilization is decreased (sometimes drastically)

© BME-MIT 2014, All Rights Reserved 19. lap

Deadlock prevention 2.

 3rd : Resource preemption:
o The resource must have a state to which it can be

rolled back

o No rollback is required on the task level

 4th : No circular waiting:
o Restricting the resource usage during development

o E.g. Total ordering algorithm
• Programmers must adhere the algorithm

• Automatic checking of the source code may enhance the
situation by identifying errors of programmers

o Formal methods
• A formal model of the program is constructed and checked

© BME-MIT 2014, All Rights Reserved 20. lap

Deadlock avoidance

 Run-time method

 Resources are not automatically granted, but the
effect of granting the resource is reconsidered:
o Is the system is going to be in a safe state if the

resource granted?

o Banker’s algorithm (Dijsktra, 1965)
• Old school bankers used this algorithm to allocate resources

to clients with long term projects

• To allocate resources in way that allows clients to be
financed in the long term from reimbursements

• The modern bankers used a quite different algorithm and
the last financial crisis let us to see it in detail with its
devastating effects… 

© BME-MIT 2014, All Rights Reserved 21. lap

Banker’s algorithm 1.

 N tasks, M resource types

 The resources are available in multiple numbers

 Tasks announce the maximum number of resource
items they use from a given resource:
o MAX matrix, size: NxM,

 The resources actually reserved by tasks
o RESERVED matrix, size: NxM

o Can be computed by the incoming requests

 Number of free resources:
o FREE vector, size: M

© BME-MIT 2014, All Rights Reserved 22. lap

Banker’s algorithm 2.

 MAXr stores the number of available

resources

 RESERVEDr stores the number of reserved

resources

 The number of possible resource reservation

that can be submitted:

o LEFT = MAX-RESERVED a matrix with the siye

NxM

 Reservation request waiting are stored in

oREQUEST with the size of NxM

© BME-MIT 2014, All Rights Reserved 23. lap

Banker’s algorithm in operation 1.

 The algorithm is detailed in the book
o I am going to show you only an example

 In one iteration (for one resource
reservation request) there are four steps
in the algorithm

1st step: Check if there is enough resource

2nd step: Set the state

3rd step: Check if the state in step 2 is safe

4th step: If the system is not safe it rolled back
to a safe state

© BME-MIT 2014, All Rights Reserved 24. lap

Banker’s algorithm in operation 2.

 Checking if the state is safe

1st step: Setting initial state

2nd step: Searching for task with the possibility of

continuing of the resource reservation

• The maximum request can be reserved for the task with

the available resources

• If yes, the task can get the resources, it can run, free

the resources after usage, and those resources can be

reclaimed into the FREE pool

• If there is a task to run, we can continue with step 2

3rd step: Evaluation

Pi is the list of tasks that can end up in a deadlock

© BME-MIT 2014, All Rights Reserved

Banker’s algorithm excersize

 A system has 4 resource classes (A, B, C and D), and there
are 10, 11, 7, and 10 resources maximum available from
these resource classes. There are 5 tasks competing for
these resources in the system with the following actual
reservation and maximum required resource numbers.

 The system uses the Banker’s algorithm to avoiud
deadlocks. Is the system in a safe state? If your answer is
yes, show how the tasks can finish their work. If your
answer is no, show how deadlock may form in the system.

25. lap

 Maximum required Actual reservation

 A B C D A B C D

P1 2 2 5 4 0 2 3 3

P2 7 7 3 4 3 1 2 2

P3 5 6 6 4 2 2 0 2

P4 4 1 2 3 2 1 2 2

P5 6 3 1 1 1 3 0 0

© BME-MIT 2014, All Rights Reserved 26. lap

Solition 1.

 LEFT = MAX-RESERVED

 FREE = MAXr-RESERVEDr









































































1105

1002

2643

2164

1202

0031

2212

2022

2213

3320

1136

3214

4665

4377

4522

LEFT

     102297981071110LEFT 

© BME-MIT 2014, All Rights Reserved 27. lap

Solution 2.

 In which of the rows of LEFT has smaller or equal
numbers than in FREE?

o That can run with the currently available resources if it
runs alone

 In or example P4 is executable in this sense

o There is [2 2 0 1] free, and P4 needs only [2 0 0 1]

o After running P4 resources used by P4 goes back to
the FREE pool of resources

o FREE = [4 3 2 3] after running P4

© BME-MIT 2014, All Rights Reserved 28. lap

Solution 3.

 In which of the rows of LEFT has smaller or equal
numbers than in FREE?

o That can run with the currently available resources if it
runs alone

 P1 is executable

o There is [4 3 2 3] free, and P1 needs only [2 0 2 1]

o After running P1 resources used by P1 goes back to
the FREE pool of resources

o FREE = [4 5 5 6] after running P1

© BME-MIT 2014, All Rights Reserved 29. lap

Solution 4.

 In which of the rows of LEFT has smaller or equal
numbers than in FREE?

o That can run with the currently available resources if it
runs alone

 There is no safely executable task

o There is [4 5 5 6] free, but P2 needs [4 6 1 2]
• Cannot run safely because 1 unit is missing from resource B

o There is [4 5 5 6] free, but P3 needs [3 4 6 2]
• Cannot run safely because 1 unit is missing from resource C

o There is [4 5 5 6] free, but P5 needs [5 0 0 1]
• Cannot run safely because 1 unit is missing from A

 The system is not in a safe state!

© BME-MIT 2014, All Rights Reserved 30. lap

Evaluation of the Banker’s algorithm

 The algorithm shows the possibility of deadlock,
but the system will not necessarily end up in a
deadlock!

o The actual sequence of resources reservations and
freeing resource define if the deadlock develops or
not!

o The algorithm returns the worst case results

o How we can now matrix MAX?

• Most cases it is very hard or impossible to know it

© BME-MIT 2014, All Rights Reserved 31. lap

How we handle deadlock in practice

 Ostrich algorithm (we do not care about the possibility) is
very common unfortunately
o Not a solution in safety critical systems, but who cares if a

media player needs to be restarted 2-3 times a week under
Windows…

 Most cases we handle (try to handle) deadlocks in design
time, so we attempt to do deadlock prevention

 Deadlock detection and recovery are done by human
operators
o All tasks are killed and resources are rolled back into a safe state

(if possible)

 Why?: Run-time algorithms are complex, they need a lot of
resources, not all the required data available to run them
(MAX in case of the Banker’s algorithm), etc.

