
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Handling of Memory

Tamás Kovácsházy, Phd

16th topic
Handling of Memory

Operating systems(vimia219)

© BME-MIT 2014, All Rights Reserved 2. lap

Storage hierarchy today

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

Size Speed Price (EUR/Byte)

G
ro

w
s

G
ro

w
s

G
ro

w
s

© BME-MIT 2014, All Rights Reserved 3. lap

Storage hierarchy some years ago

CPU registers

Cache

Physical Memory

Magnetic Disk

Optical Storage

Tape Backup

Flash memory (Pendrive, SSD)
changed the picture!

Disappearing due to the Internet,
portable HDD, pendrive!

Disappearing due to HDD backup!

© BME-MIT 2014, All Rights Reserved

CPU registers

 Type: D flip-flop

o 10-100 machine words

• Small number of the on the x86
architecture while others may have more

o Special purpose for some of them (PC,
segment register., stb.).

 Speed:

o During a single instruction may be
accessed multiple times

• E.g. ADD instruction (read one of the
operands then write the result)

 Price: Hard to quantify

 Volatile memory (forgets the content
if power supply is lost)

4. lap

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, All Rights Reserved

Cache

 Type: Static RAM (SRAM)
o Multiple levels

o 1st level: 64-128 Kbyte (I+D).

o 2nd level: 1-8 Mbyte.

o 3rd level: 4-32 Mbyte (if there is any).

 Speed:
o Bandwidth: n*10 Gbyte/s.

o Delay:
• 1st level cache: one or some clock cycles

• 2nd and 3rd level: 10 – n*10 clock cycles

 Price
o High, SRAM need lot of space on the chip

 Volatile memory (forgets the content if
power supply is lost)

5. lap

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, All Rights Reserved

Physical (operative) memory

 Type: Dynamic RAM (DRAM)

 Size: n*10 Mbyte – n*100 Gbyte

 Speed:
o Memory wall

o Sequential and random access
• Random access is slower

o Max.: n*1 Gbyte/s – 10 Gbyte/s.

o Delay: n*10 ns (worst case)

 Price:
o Depends on market and availability, large

fluctuations

 Must be refreshed periodically (today
done by an on-chip controller)

 Volatile memory (forgets the content if
power supply is lost)

6. lap

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, All Rights Reserved

Permanent storage (HDD, Flash) 1.
 Types:

o HDD (magnetic disk)
o Flash memory (pendrive, SSD, etc.).
o Size:n*1 Mbyte (Flash) – n*100 Tbyte.

 File based access
o Content is seen as files from the operating

system
o Block based access on low HW level

 Speed:
o Sequential and random access

• Random access is slower for HDD

o Read and write is different
o Max. speed: n*10 Mbyte/s (low price pendrive)

–
n*1 Gbyte/s (RAID array).

o Delay: n*10 ns (Flash) – kb. 10 ms HDD

7. lap

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, All Rights Reserved

Permanent storage (HDD, Flash) 2.
 Price: Strong size, technology,

speed dependence
o Cheap HDD is in the 70-80 EUR range even

now
o Storage array may cost millions of EUR

 Non-volatile, but very sensitive,
can fail:
o The data cannot be read back, i.e., it

is lost
o HDD: MTBF
o Flash: wear

• Limited number of writes can be endured
by a flash block

8. lap

CPU registers

Cache

Physical Memory

Permanent storage

External storage

Backup storage

© BME-MIT 2014, All Rights Reserved 9. lap

Topics addressed

 Handling of physical memory
o The notion of physical, logical and virtual memory
o Mapping in between them and the management of them

 Handling of the permanent storage
o Through virtual memory it is interconnected with the

physical memory
o How the OS handles the permanent storage, how it is

organized, partitioned, how file systems and files are
handled, etc.

o RAID, NAS, SAN, etc.

 External storage and backup storage are not
addressed in the class
o Today, they are more and more handled just as permanent

storage

© BME-MIT 2014, All Rights Reserved 10. lap

Memory

 The CPU uses it for:
o For loading instructions from it

o Reading and writing data

 Sequence of memory operations
o Reads and writes in a given sequence

o As it is defined by the running program

 Process support must be provided (separation in
memory).

 Let’s neglect the Cache!
o It only influences the speed of operation assuming

that the system is cache coherent

© BME-MIT 2014, All Rights Reserved 11. lap

Logical and physical address

 Logical address:
o The CPU generates it while it executes code in the process

o Logical address space: All logical addresses of a process

 Physical address:
o The address of a memory element as it appears on the memory

bus driven by the memory controller

o Physical address space: All the physical addresses of a process
or the whole OS

 If they are different:
o Sometimes we refer to it as virtual address

o In this case the mapping between them is implemented by the
MMU

© BME-MIT 2014, All Rights Reserved 12. lap

Address binding 1.

 When the mapping between logical and physical
addresses happen?

 Compile/link time binding

o It is known in advance to where the code will be loaded

o Absolute addressing

o The program has physical addresses in it

o It is typically used in embedded systems firmwares, BIOS/EFI
and OS kernel may use it, DOS *.com programs use it also

 Load time binding

o Relocatable code

o The mapping is done while loading

o The process uses physical addresses

© BME-MIT 2014, All Rights Reserved 13. lap

Execution time address binding 2.

 Mapping can change while running

o The processes may be moved to another location in
the physical address space while running

o Special HW must do the binding (MMU).

• Execution speed must not be reduced due to it

o The process is not allowed to see the actual physical
addresses used by it directly

• It always uses logical/virtual addresses

 Using logical addresses bound to physical
addresses is a fundamental concept in modern
operating systems

© BME-MIT 2014, All Rights Reserved 14. lap

Dynamic loading

 Certain functions are not loaded into memory if
the process does not use them

o The program can be started faster (it is not necessary
to copy everything in memory)

o Less memory is used

o Dynamic loading is implemented by the program itself

• The operating system does not know about that, nor it
supports it

© BME-MIT 2014, All Rights Reserved 15. lap

Dynamic linking

 Dynamic loading with operating system support
o Dynamically linked/loaded library (Windows *.dll).

o Shared Object (UNIX/Linux *.so).

o Program libraries loaded using dynamic linking can be used by
multiple processes (code sharing)

 Implementation:
o The program itself contains only a stub of the program library

o The stub finds and loads the whole program library if necessary
using the services of the OS

o The same program library may be present in the system with
multiple versions (same name, multiple locations)

• Which one is loaded?

• UNIX: LD_LIBRARY_PATH environment variable defines it

• Windows: It is version dependent how the DLLs are found

© BME-MIT 2014, All Rights Reserved 16. lap

First solution (variable sized partitions)

 The process are located in a
continuously addressed, static,
predefined size physical address
region

o It starts from the Base address

o It has a given size

o The scheme is also called Base-
relative addressing

 The process must fit into it during
its lifetime

 Not an efficient solution, but it is a
good first iteration

OS

Process 1.

Process 2.

Process 3.

Free memory

Base

Base +

Size

© BME-MIT 2014, All Rights Reserved 17. lap

Implementation

 Required for implementation:
o Two protected (available only from the OS kernel) register to

store the Base address and the Size for the partition per process

o One comparator and one adder

 If the process generate address out of the available
memory it is signaled by an exception to the CPU
o This exception is handled by the CPU in kernel mode

CPU < Physical memory
True

False

“address error” exception

Size Base

+

© BME-MIT 2014, All Rights Reserved 18. lap

Problem 1.

 External fragmentation:

o Process 2. is terminated
OS

Process 1.

Process 2.

Process 3.

Free memory

Base

Base +

Size

© BME-MIT 2014, All Rights Reserved 19. lap

Problem 1.

 External fragmentation:

o Process 2. is terminated

o Its address space is freed
OS

Process 1.

Free memory

Process 3.

Free memory

© BME-MIT 2014, All Rights Reserved 20. lap

Problem 1.

 External fragmentation:

o Process 2. is terminated

o Its address space is freed

o A smaller sized Process 4. is
loaded into its former
address space

OS

Process 1.

Process 4.

Process 3.

Free memory

Base

Base +

Size
Free memory

© BME-MIT 2014, All Rights Reserved 21. lap

Problems 1.

 External fragmentation:

o Process 2. is termineted

o Its address space is freed

o A smaller sized Process 4. is
loaded into its former address
space

o The memory between Process 4.
and Process 3. cannot be used
due to its minimal size

• No processes can be loaded into it

• This memory is practically lost for
the OS

OS

Process 1.

Process 4.

Process 3.

Free memory

Base

Base +

Size
Free memory

© BME-MIT 2014, All Rights Reserved 22. lap

Process 4.

Problems 2.

 Internal fragmentation:
o Same as external

fragmentation, but…

o The small memory between
Process 4. and Process 3. is
not handled as free
• It is given to Process 4.

• It does not worth the
resources used for accounting

o The address space reserved
by the process is not
necessarily used by it

OS

Process 1.

Process 3.

Free memory

Base

Base +

Size
Not used

© BME-MIT 2014, All Rights Reserved 23. lap

Problems 3.

 The memory requirement of running programs
(processes) changes dynamically, it is very hard
to specify an upper limit

 Running programs have the following
properties:
o A small part of the program code uses a small part of

the data for very long periods of time typically
(locality).

o Certain parts of the program are never executed
• E.g., research has shown that 90% of users never use 90%

of functionalities of MS Office
• Dynamic linking allows us only to load the really necessary

parts of the code, and only in one instance for all
programs using that code

© BME-MIT 2014, All Rights Reserved 24. lap

Allocation strategies for new requests

 First fit:
o It starts at the beginning of the storage and allocates the first

applicable free area

 Next fit:
o It starts to find applicable are at the free space left from the last

allocation, otherwise it operates as the first fit

 Best fit:
o From all the free areas the smallest applicable one is selected

o The smallest external fragmentation is the aim

 Worst fit:
o From all the free areas the largest applicable one is selected

o The assumption is that we may be able to use the large
remaining space later

© BME-MIT 2014, All Rights Reserved 25. lap

Evaluation of allocation strategies

 They influence external fragmentation
 The First/Next/Best fit algorithms can allocate the

33% of the whole memory typically based n statistical
analyses, i.e., half of the used memory cannot be
allocated

 The worst fit algorithm is ever worse! 50% of the
whole memory cannot be allocated

 First and the Next fit algorithms require less
resources, the others require searching through the
whole list
o Assuming a simple list of free entries, not a more

sophisticated data structure

 Example: Similar tasks could be found in the mid-term

© BME-MIT 2014, All Rights Reserved 26. lap

Example

Introduce/explain the operation of the following
allocation strategies for variable size partitions:

a, first fit

b, next fit

c, best fit

d, worst fit

by evaluating them for the following case:

Free areas: 23K, 64K, 10K, 80K, 12K, 50K és 40K

Request: 65K, 21K, 48K, 13K, 62K

Show how memory is allocated and specify if it is possible
or not to allocate all the request!

© BME-MIT 2014, All Rights Reserved 27. lap

Solution for the first fit algorithm

 Requests: 65K, 21K, 48K, 13K, 62K

 Free areas in the iterations:

0. 23K, 64K, 10K, 80K, 12K, 50K és 40K (65K req.)

1. 23K, 64K, 10K, 15K, 12K, 50K és 40K (21K req.)

2. 2K, 64K, 10K, 15K, 12K, 50K és 40K (48K req.)

3. 2K, 16K, 10K, 15K, 12K, 50K és 40K (13K req.)

4. 2K, 3K, 10K, 15K, 12K, 50K és 40K (62K req.)

It is not possible to allocate memory for the last
request…

© BME-MIT 2014, All Rights Reserved 28. lap

Solution for the worst fit algorithm

 Requests: 65K, 21K, 48K, 13K, 62K

 Free areas in the iterations:

0. 23K, 64K, 10K, 80K, 12K, 50K és 40K (65K req.)

1. 23K, 64K, 10K, 15K, 12K, 50K és 40K (21K req.)

2. 23K, 64K, 10K, 15K, 12K, 50K és 40K (48K req.)

3. 23K, 64K, 10K, 15K, 12K, 2K és 40K (13K req.)

4. 23K, 64K, 10K, 2K, 12K, 2K és 40K (62K req.)

5. 23K, 2K, 10K, 2K, 12K, 2K és 40K

It is possible to allocate the memory for all the
requests…

© BME-MIT 2014, All Rights Reserved 29. lap

Garbage collection

 Compaction, Garbage collection

 Solves the problem of external fragementation

o Rearranges the allocation of memory for processes for
continuous allocation

o Creates a large, continuous free memory area

 Running it requires lot of resources

o All base address registers must be reset to a new value

o Physical memory must be copied from the old location
to the new one

© BME-MIT 2014, All Rights Reserved 30. lap

Better solution to the problem

 Physical memory management must be implemented
more efficiently than that is possible with variable
sized partitions

o It was exceptionally critical with early computers (1960-
1970) having physical memory in the range of n*10 kByte

o But even with the current memory sizes (n*1Gbyte) the
problem is here to stay (we want to do more)

 Swapping

 Segmentation (not directly a solution, but
programmers like it to have)

 Paging

© BME-MIT 2014, All Rights Reserved 31. lap

Swapping

 The whole process can be written to permanent
storage (it is a memory content only):
o It is possible if the process is not in running state and if

there is no ongoing I/O operation on its memory are
(DMA)

• If I/O is done in OS buffers, the process itself can be swapped out

o If run-time address binding is used
• The process can be loaded to another memory area

o Context switch associated with swapping operations is very
time consuming (permanent storage is very slow compared
to memory).

• Whole processes must be written to or read from the permanent
storage!

© BME-MIT 2014, All Rights Reserved 32. lap

Paging

 Physical address space of the process can no none
continuous (practically, it is non continuous)

 Physical memory is split into frames

 Logical memory is split into pages

 Page and frame sizes are identical

 All logical addresses are split into two parts
1. Page number, p

2. Page offset, d

 Page number is used to index the page table
o A page table entry stores the base address of the physical

memory frame (f) and some additional data (flag bits with
various meaning)

 The frame table stores the list of free frames

© BME-MIT 2014, All Rights Reserved 33. lap

Address translation with paging

CPU
Physical

memory
p d f d

Page table

f

Logical address Physical address

n bitm-n bit

© BME-MIT 2014, All Rights Reserved 34. lap

Evaluation of paging
 Mapping is done by hardware
 Process separation is implemented

o Logical address space seen by processes are totally different
from the actual physical address space used by the processes

o The operating system handles the page and frame table in
kernel mode, processes cannot access it in user mode

o The process cannot have access to the memory area of other
processes because it access memory through the page table…

 No external fragmentation
 Internal fragmentation is ½ page in average (small page

size optimizes memory allocation efficiency)
 In modern computers large amount of memory is typical

(large page size is better):
o Simplified administration
o Smaller page and frame table may be used

© BME-MIT 2014, All Rights Reserved 35. lap

Searching in the page table
 The page and frame table can be quite large in modern

operating systems:
o In case of 4Kbyte page size and 32 bit addresses there are 220

entry in the page table, that can be stored in a 4MByte memory
(just the page table)

o Several page sizes may be supported in a system

 Solutions (from the subject Computer architectures)
o Hierarchical paging
o Hashed page table
o Inverted page table

 Search in the page table is slow:
o Typically 2 times more than direct memory access (page table

lookup then memory access)
o Translation look-aside buffer (TLB) is used to speed up the

process (a kind of associative memory)

© BME-MIT 2014, All Rights Reserved 36. lap

Translation look-aside buffer (TLB)

CPU

Physical

memory

p d

f d

Page table

f

p f

TLB

TLB hit

TLB miss

© BME-MIT 2014, All Rights Reserved 37. lap

Translation look-aside buffer (TLB)

CPU

Physical

memory

p d

f d

Page table

f

p f

TLB

TLB hit

TLB miss

TLB miss results
in a TLB update!

In case of context
switch TLB must

be cleared…

© BME-MIT 2014, All Rights Reserved 38. lap

TLB effectiveness

 The real question is the hit ratio?
o It depends on the size of the TLB, TLB operational

details, and on the executed code
• How many pages are used and in which order they are used

o Typically the hit ratio is in the range of 80-90%

 Effect of TLB on computer performance: AMD
Phenom (2007)
o There is a minor error in TLB, the BIOS allows to switch

it of, differences:
• 20% performance difference in the whole benchmark, 14%

aapplication benchmarks

• Memory benchmarks may show 50% difference!

• http://techreport.com/articles.x/13741/4

http://techreport.com/articles.x/13741/4

© BME-MIT 2014, All Rights Reserved 39. lap

Additional information in the page table
 Additional information:

o Valid/invalid bit
• Is the page in physical memory (page is mapped to a frame)?

• If not, it must be brought in.

o Read/read-write bit, execute bit, etc.
• Specifies the allowed memory operation on the page

• E.g. No Execute : No code execution from a page storing data (buffer
overflow)

o Referenced/Used bit
• If a memory address in the page is used this bit is set by the MMU

 The HW (MMU) sets/checks the bits, and if the memory is not
used according the values of bits the MMU generates
exceptions, that are handled by the OS

 The OS works based on this bits, and sometimes also sets
them

© BME-MIT 2014, All Rights Reserved 40. lap

Sharing pages
 Processes are separated in memory form each other/
 However, for performance reasons this separation is limited
 In an OS controlled way memory may be shared:

o The OS controls all aspects of sharing

 Applications
o Shared code pages (read only, e.g. DLL/SO).
o Copy on Write (COW):

• In case of processes in parent-child relation
• The two processes first use a fully shared physical memory
• If any of the processes tries to write the page, during the first write, a

process specific copy is created for the child, after that they can use their
own specific (different) page

o Writable shared pages
• UNIX System V Shared memory.

 HW (MMU) must be present with the necessary capabilities
to support these performance enhancements

© BME-MIT 2014, All Rights Reserved 41. lap

Segmentation 1.
 Programmers like to see memory:

o Data, code, program, stack, heap, etc. memory areas are
clearly identified

o The program is located in a non-continuous memory in the
view of the programmer

o Violations of these limits are handled by the OS

 Segmentation implements this expectation
o The logical address space is split into segments

o Programmers specify a segment (segment name/ID) and a
segment offset inside that to identify memory locations

• In case of paging the programmer specify an address and that is
split by hardware!

• Here the programmer specifies two parts, and these two parts are
fused together into a logical address!

© BME-MIT 2014, All Rights Reserved 42. lap

Segmentation 2.

 Segment size must be stored!

o If the address specified is outside the segment a
“segment overflow fault” exception is generated by
the MMU

 Segments can be stored continuously, not internal
fragmentation happens (or at least it can be
achieved)

 Segments are set up by the compiler and linker,
and the program specifies it for the loader, which
sets up the memory space of the program
according that specification

© BME-MIT 2014, All Rights Reserved 43. lap

Implementation

CPU s d

Segment table
Logical address

< Physical memory
True

False

„segment overflow fault” exception

Size Base

+

s

© BME-MIT 2014, All Rights Reserved 44. lap

Segmentation and paging
 Some HW supports both (such as the x86 architecture)

 In the book it is introduced in detail (we do not deal with it due to
time restrictions)

 Segmentation is used sometimes on OSs supporting x86 hardware
o E.g. Linux uses 6 segments: kernel code/data, user code/date, Task state,

default local descriptor table

 On the other hand, paging is a fundamental requirement
o x86 HW (32 bit) uses 4KByte pages (2 level page table) or 4Mbyte pages (1

level page table)

o Linux has a 3 level page table, the 2nd level is not used on x86 hardware

CPU
Segmentation

unit
Paging unit Physical memory

Logical

address

Linear

address

Physical

address

© BME-MIT 2014, All Rights Reserved 45. lap

Virtual memory

 Earlier we talked about virtual addresses (when
logical address  physical address

o Virtual memory is a different thing (much more) while
it is uses virtual addresses

 Sometimes it is assumed to be the same as
swapping

o It is uses features like swapping, but quite different
than that

 Practically, virtual memory is a new memory
management technology built on the foundation
of earlier solutions

© BME-MIT 2014, All Rights Reserved 46. lap

Observations
 Executing processes in physical memory:

o Seems to be a required and reasonable solution
o There are serious consequences of the solution

1. It is not required to load the whole process to memory to
execute it, most cases it is sufficient to have the neighborhood of
the PC (Program counter) and necessary data in memory (the
locality)

2. Large parts of the code of processes are never or rarely executed
(error handling, software/feature bloat)

3. It is not necessary to load the whole program to start it
4. Some code can be shared among processes, and sometimes it is

even reasonable to share data (e.g. they use the same code and
data).

5. Some code and data in processes are not used again or used
again after long times (and therefore not needed in physical
memory), while other processes lack sufficient amount of
physical memory

© BME-MIT 2014, All Rights Reserved 47. lap

Requirements
 It would be nice to run programs with bigger memory

requirements than the available physical memory
o Virtual memory, the programmer does not need to deal with

the available memory, it is always there (at least virtually)
o There are architectural limits (32 bit architecture, 4Gbyte)
o There are consequences: Complexity and speed

 The OS assigns only the necessary physical memory to
processes, therefore, more processes can run in parallel
(kept in physical memory)

 Programs load only the minimal part code and data into
physical memory while starting, therefore, they can start
up faster

 They can share code, data, and resources in an efficient
way in memory

© BME-MIT 2014, All Rights Reserved 48. lap

Virtual memory

 The foundation is paging
o The continuous virtual address space is mapped by a table

(memory map, page table)

 The mapping is not directly to physical memory
o The virtual memory is partially mapped to physical

memory
o The virtual memory is partially mapped to a special area of

the permanent storage (HDD, SSD)
• Pagefile (Windows) or swap partition/file (UNIX/Linux)
• The UNIX/Linux name is selected for archaic reasons

 The process sees a continuous, large virtual memory
space, but that space is sparsely populated (large
parts are not mapped at all to anything) with physical
memory or permanent storage locations

© BME-MIT 2014, All Rights Reserved 49. lap

Virtual memory in a figure

Page 0

Page 1

Page 2

Page 3







Page N

Virtual memory

Page table

Physical memory

pagefile

© BME-MIT 2014, All Rights Reserved 50. lap

Other properties

 Processes may share physical memory areas with read
and even write access rights

o Access rights must be also stored in the page table

o These physical memory areas are paged into the virtual address
space of multiple processes (on different virtual addresses)

 Keeping record of modifications (modified/dirty bit):

o All page has this bit maintained by the MMU in the page table
• At load it is set to False, in case of a write to the page it is set to True

• The system knows if a page has been changed (need to be written back
to its copy stored on the permanent storage)

 Keeping record of use (referenced/used bit):

o OS clear it periodically or in case of some events

o MMU sets it in case of use (read or write on the page)

© BME-MIT 2014, All Rights Reserved 51. lap

Consequences

 The process sees a continuous,
large memory in which it can run

 In reality the program runs in a
sparse address space

o A large part of the virtual memory
is not mapped at all

o If it is required the system puts
physical memory behind the
referenced virtual memory on
demand

Stack

Free memory

Heap

Data

Code

Process in memory

© BME-MIT 2014, All Rights Reserved 52. lap

Operation
 If the referenced virtual memory page is in physical memory,

the instruction can be executed
 What if not (valid/invalid bit)?

o A page fault exception is generated by the MMU
• The page is not in physical memory, i.e., physical memory must be put

“behind” the virtual one
• It is not an error, but the part of the regular operation!

o The operating system handles the situation, possibilities:
• It is written to the page file, must be brought in
• Never loaded, must be brought in from its original location (e.g. a file in the

filesystem)
• Question: To where, especially interesting question if the physical memory is

full?

o The OS return control back to the process, the process sees nothing
from it

o While physical memory is assigned the process waits passively (in the
middle of an instruction)

© BME-MIT 2014, All Rights Reserved 53. lap

Fetch strategies
 Demand paging:

o The algorithm starts only in case of a page fault, and loads only
the page into physical memory required to continue operation

o Only the used pages are in physical memory
o Referencing a page not in physical memory results in long

waiting times (it must be brought in)

 Anticipatory paging:
o Looks into the future (estimation), the OS tries to find out which

of the pages are to be used, and brings into physical memory
also those pages

o Requirement: free resources (CPU, HDD, physical memory)
o If the preloaded pages are really used (successful estimation)

the number of page faults decreases
o If not, we use resources without any gain (even performance

can degrade due to this)

© BME-MIT 2014, All Rights Reserved 54. lap

Operation in case of a page fault 1.

Load M V/I

Page table
Physical

memory

OS

page fault

exception

reference

© BME-MIT 2014, All Rights Reserved 55. lap

Operation in case of a page fault 2.

Load M V/I

Page table
Physical

memory

OS

page fault

exception

© BME-MIT 2014, All Rights Reserved 56. lap

Operation in case of a page fault 3.

Load M V/I

Page table
Physical

memory

OS
Page on permanent storage

© BME-MIT 2014, All Rights Reserved 57. lap

Operation in case of a page fault 4.

Load M V/I

Page table

free

Physical

memory

OS

The page is brought into

a free physical memory frame

© BME-MIT 2014, All Rights Reserved 58. lap

Operation in case of a page fault 5.

Load M V/I

Page table
Physical

memory

OS

Setting up the page table

© BME-MIT 2014, All Rights Reserved 59. lap

Operation in case of a page fault 6.

Load M V/I

Page table
Physical

memory

OS

execution

© BME-MIT 2014, All Rights Reserved 60. lap

Page replacement strategies

 The physical memory is full and a page fault happens
o We need to select a physical memory frame to be written

to the permanent storage
• Victim selection

o To this place we will load the data to be loaded into
physical memory

 Algorithms:
o Optimal algorithm
o Oldest page (FIFO)
o Second chance (SC)
o Least recently used (LRU)
o Least frequently used (LFU)
o Not recently used (NRU)

© BME-MIT 2014, All Rights Reserved 61. lap

Optimal algorithm

 Looks into the future, and knows witch of the
pages are going to be used

o Cannot be realized (Who knows the future?), but a
good reference point as a performance target

o In the knowledge of the actually referenced pages one
can compute what the optimal algorithm would have
done

© BME-MIT 2014, All Rights Reserved 62. lap

FIFO

 References to pages in physical memory are
organized in a FIFO, and the oldest one (brought in
first) is replaced
o Very simple, makes decision based on the past, looks into

the past

o It may replace frequently used pages
• It does not take into account the actual usage

• It takes into account of the time the page is brought in

o Bélády anomaly (László Bélády, a former BME student,
who left the country in 1956, and worked for IBM):

• If the number of pages assigned to a process is increased the
number of page faults may also increase

• Anomaly: It does not work as expected

• The number of page faults should decrease, but not in this case

© BME-MIT 2014, All Rights Reserved 63. lap

Second chance, SC
 It operates like the FIFO, replacing the page brought in the

earliest time but only if that page has not been referenced (it
uses the referenced/used bit).
o The reference bit is set to TRUE by the MMU if the page is used

(referenced in an instruction in any way)!
o The SC algorithm sets the reference bit to FALSE if encounters with a

page for which this bit is set to TRUE and gives the page a second
chance to stay in physical memory:

• This is why it is named to second chance
• After that the page is put to the end of the FIFO as a newly loaded page
• Otherwise it would en up in an infinite cycle
• Then it tries to replace the next page in the FIFO

o It shows a higher complexity than the FIFO, but generally it is a simple
algorithm compared to the other alternatives

o It looks back into the past, and makes decisions based on the time of
presence in the physical memory, and usage also

• It is somewhat capable of taking into the locality of the program

© BME-MIT 2014, All Rights Reserved 64. lap

Least Recently Used, LRU

 A good solution:

o Complex, but can provide performance close to the
performance of the optimal algorithm

• It takes locality into account

o It also looks back

o Various implementations exist:

• Counter based: For all pages there exists a “last used
counter”

• Linked list: The page used last is put to the end of list

• Two-dimensional array: NxN matrix, where N is the number
of pages

o Most cases the LRU algorithm is approximated only

© BME-MIT 2014, All Rights Reserved 65. lap

Least Frequently Used, LFU
 The pages frequently used in the recent past are

used again due to the locality of the program
o The pages rarely used in the recent past are not likely

to be used again

o The value of the Referenced (R) bit is added to a page
specific counter, and the value of R is erased

o The page with the smaller counter value is replaced

o The algorithm does not forget anything...

o The algorithm will replace the newly loaded pages
because the their counter has 0 or very low value

• Pages newly loaded into physical memory must be frozen
into the physical memory for a while

© BME-MIT 2014, All Rights Reserved 66. lap

Not Recently Used, NRU

 Both the Referenced (R) and modified (M) bits are
taken into account during the algorithm

 R can be erased, M must be kept

 Priority is assigned to pages based on the value of
the bits R and M
o Priority 0: R=0, M=0 (lowest priority)

o Priority 1: R=0, M=1

o Priority 2: R=1, M=0

o Priority 3: R=1, M=1 (highest priority)

 Always selects a page from the lowest priority
group if there is a page in that priority group

© BME-MIT 2014, All Rights Reserved 67. lap

Aspects of page replacement

 Global page replacement: The whole physical
memory can be a victim

 Local page replacement: Only the physical
memory of the process can be replaced

 Locking page into physical memory (lock bit):

o Why?

o I/O operations reference the page

• In I/O physical addresses are used!

o The newly loaded pages in case of the LFU algorithm
may be replaced immediately, due to the fact they
have much lower use count than other pages

© BME-MIT 2014, All Rights Reserved 68. lap

Example

 Let’s introduce ourselves to the algorithms by
examples

 Similar tasks can be found in the exam or in the
mid-term (if this part is presented before the mid-
term)

© BME-MIT 2014, All Rights Reserved 69. lap

Example

A system using demand paging there makes 3 or 4
physical memory frames available for a process. The
process references the following pages while running:

0, 1, 2, 3, 0, 1, 4, 0, 1, 2, 3, 4, 0, 1

 How many pages faults happen for the following
algorithms, if the physical memory pages at the
beginning are empty?
o FIFO algorithm with 3 or 4 physical memory frames

o Least Recently Used (LRU) algorithm with 3 or 4 physical
memory frames

o Second chance (SC) algorithm with 3 or 4 physical memory
frames

 Explain the results!

© BME-MIT 2014, All Rights Reserved 70. lap

FIFO with 3 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0 1 2 3 0 1 4 4 4 2 3 3 0 1

0 1 2 3 0 1 1 1 4 2 2 3 0

0 1 2 3 0 0 0 1 4 4 2 3

y y y y y y y y y y y

Pages referenced

Results

Page faults

© BME-MIT 2014, All Rights Reserved 71. lap

FIFO with 4 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0 1 2 3 3 3 4 0 1 2 3 4 0 1

0 1 2 2 2 3 4 0 1 2 3 4 0

0 1 1 1 2 3 4 0 1 2 3 4

0 0 0 1 2 3 4 0 1 2 3

y y y y y y y y y y y y

Pages referenced

Results

Page faults

© BME-MIT 2014, All Rights Reserved 72. lap

LRU with 3 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0
1

0
2

0
3

3
1

3
2

3
3

4
1

4
2

4
3

2
1

2
2

2
3

0
1

0
2

1
1

1
2

1
3

0
1

0
2

0
3

0
1

0
2

0
3

3
1

3
2

3
3

1
1

2
1

2
2

2
3

1
1

1
2

1
3

1
1

1
2

1
3

4
1

4
2

4
3

y y y y y y y y y y y y

Pages referenced

Results

Page faults

© BME-MIT 2014, All Rights Reserved 73. lap

LRU with 4 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0
1

0
2

0
3

0
4

0
1

0
2

0
3

0
1

0
2

0
3

0
4

4
1

4
2

4
3

1
1

1
2

1
3

1
4

1
1

1
2

1
3

1
1

1
2

1
3

1
4

0
1

0
2

2
1

2
2

2
3

2
4

4
1

4
2

4
3

4
4

3
1

3
2

3
3

3
4

3
1

3
2

3
3

3
4

3
5

3
6

2
1

2
2

2
3

2
4

1
1

y y y y y y y y y y

Pages referenced

Results

Page faults

© BME-MIT 2014, All Rights Reserved 74. lap

SC with 3 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0
y

1
y

2
y

3
y

0
y

1
y

4
y

4
y

4
y

2
y

3
y

3
y

0
y

1
y

0
y

1
y

2
n

3
y

0
y

1
n

1
n

1
y

4
n

2
y

2
y

3
n

0
y

0
y

1
n

2
n

3
y

0
n

0
y

0
y

1
n

4
n

4
y

2
n

3
n

y y y y y y y y y y y

Pages referenced

Results

Page faults

Demand
paging, it brings
in the page and

uses it!

© BME-MIT 2014, All Rights Reserved 75. lap

SC with 4 physical memory frames

0 1 2 3 0 1 4 0 1 2 3 4 0 1

0
y

1
y

2
y

3
y

3
y

3
y

4
y

0
y

1
y

2
y

3
y

4
y

0
y

1
y

0
y

1
y

2
y

2
y

2
y

3
n

4
y

0
y

1
y

2
n

3
y

4
y

0
y

0
y

1
y

1
y

1
y

2

n

3
n

4
y

0
y

1
n

2
n

3
y

4
y

0
y

0
y

0
y

1
n

2
n

3
n

4
y

0
n

1
n

2
n

3
y

y y y y y y y y y y y y

Pages referenced

Results

Page faults

© BME-MIT 2014, All Rights Reserved 76. lap

Evaluating the results

 FIFO and SC for 3 or 4 physical memory frames:
o It is worse for 4 frames than for 3 frames

o Bélády anomaly

 LRU for 3 frames are worse than the FIFO or SC for
3 frames:
o The list of referenced pages has larger locality than the

available frames

 For 4 frames the LRU is the best

 The algorithms can be evaluated based on a full
statistical analyses
o This numbers are made up to show the typical

behavior

© BME-MIT 2014, All Rights Reserved 77. lap

Performance of virtual memory 1.

 The performance of the physical memory
o n*1 Gbyte/s throughput
o n*10 ns delay
o If it is cached, it is even faster

 The performance of the permanent storage
o Typically the throughput is in the range of 100 Mbyte/s,

but in case of random access and large number of parallel
users it can be significantly slower

o 10 ms worst case access time (head movement).
o In case of Flash storage deleting and writing content is

slow and problematic
• It may be damaged fast due to the extensive number of write

cycles

 The permanent storage is magnitudes slower

© BME-MIT 2014, All Rights Reserved 78. lap

Performance of virtual memory 2.

 If a page is not in physical memory:
o It is slower by several order of magnitude to load it

from the permanent storage than from physical
memory, i.e., if it happens regularly the system will
slow down drastically (without virtual memory it could
not run at all, though)

 The achievable speed is primarily determined by
the frequency of page faults
o Frequent page faults can reduce the performance of

the system drastically...

o Successful anticipatory paging can increase the
performance also!

© BME-MIT 2014, All Rights Reserved 79. lap

Thrashing

 How we can determine the number of physical memory
frames assigned to a process?
o Too few: Large number of page faults(trashing).

o Too many: Other processes cannot get enough physical
memory

 DEF: The performance reduction caused by frequent
page faults is called trashing
o While handling a page fault a new page fault appers

o Read request due to handling page faults are queued in the
queue of the permanent storage, and the queue grows
continuously

o The CPU waits for handling page faults

o If there is a long term scheduler it will term the situation as an
I/O intensive scenario, and therefore it allows new processes to
enter the system...

• The situation even get worth in this case!

© BME-MIT 2014, All Rights Reserved 80. lap

Trashing (figure)

CPU utilization (%)

The order of

multiprogramming

(the number of tasks

running in parallel)

optimum

maximum

trashing

© BME-MIT 2014, All Rights Reserved 81. lap

Avoiding trashing

 Aim: Low page fault frequency (PFF).

 While handling a page fault no new page fault should
appear:

o The wait queue of the permanent storage device may be
decreased...

 Local page replacement strategy:

o The processes cannot take away the physical memory frames
from each other

o The problem cannot spread to other processes

o The problem is reduced, but not solved

 How many physical memory frames are required by a
process to operate efficiently?

© BME-MIT 2014, All Rights Reserved 82. lap

Locality

 Statistics: In a given time period processes use a
small portion of their virtual address space

o Temporal

o Spatial

 Trashing:

o Allocating the required of physical memory frames

• No trashing

• Some page faults if the locality changes

o Smaller number of frames: trashing

© BME-MIT 2014, All Rights Reserved 83. lap

Working-set

 Based on locality

 The set of pages of a process that is used/referenced by
the process in a given time frame (working-set windows)

 Based on the working-set the size of the working-set can
be determined

 The required physical memory size (D) can be also
computed in the knowledge of the working-set of the
running processes

 iWSSD

© BME-MIT 2014, All Rights Reserved 84. lap

Application of working-set

 The OS measures the WSS for all running processes

o If there exists free physical memory frames:
• Frame request can be fulfilled from the free set of frames

• New processes are allowed to enter the system (there is free memory)

o If there exists no free physical memory frames:
• A victim process must be selected

• The victim must be suspend, i.e., it is a real swap out

• The physical memory frames of the victim can be used as free frames for
the other processes

 Trashing can be avoided by keeping the level of
multiprogramming at the optimum

 In practice it requires lot of resources (complex):

o A simpler solution must be found…

© BME-MIT 2014, All Rights Reserved 85. lap

PFF based optimization

 Trashing: PFF is high for the process

 PFF can be measured in a relatively simple way
o Low PFF: the process has to many physical memory frames

o High PFF: the process has to few physical memory frames

 Low and high limits must be specified somehow
o If PFF is over the high limit: the process gets a physical

memory frame

o If PFF is under the low limit: a physical memory frame is
taken away from the process

• Only if there exists no free physical memory frames in the system

• If there is no free physical memory frames at all: a process may be
suspended

© BME-MIT 2014, All Rights Reserved 86. lap

Embedded systems

 Memory handling may be drastically different in
embedded systems, but we do not go into the details,
some facts:
o A large portion of CPUs built into embedded system have

no MMU (or the MMU is not configured):
• Paging, virtual memory based operation, process separation, etc.

cannot be used due to it

o If there is an MMU and that is configured:
• Limited or not writable permanent storage makes using a page file

impossible

• Virtual memory cannot be used in real-time systems
– In case of a page fault how can we give an upper bound on execution

time?

• Primarily aims of using an MMU in real-time or safety critical
embedded systems are process separation and/or virtualization

