
µC/OS-II

Micro-Controller Operating
System IISystem II

Core: v2.52
Port: Atmel AVR-GCC v270603

(Julius Luukko)

Gábor Naszály
BME – MIT
naszaly@mit.bme.hu

ver.: 2012a

1. The story of µC/OS

� Developer: Jean J. Labrosse
� Motivation : they needed a RT kernel for an

applicationapplication
– Kernel „A”: already known, stable, but too

expensive

– Kernel „B”: unknown but cheaper
� They had decided to buy this one
� They spent 2 month just for creating some tasks
� As it came out, they were one of the first customers of

this kernel, and it hadn’t been tested well

1. The story of µC/OS

– After all they bought kernel “A” too
� They made it work within two days
� But they had found a bug after 3 months
� It was a pity because the warranty became void after 90

days
� They tried to convince the maker of the kernel to fix the

bug for free (because by finding a bug they made a
favor to them)

� Unfortunately they failed to convince them, so they paid
for the bug fix too!

– Certainly they became extremely furious and
finished their product with a huge overdue

1. The story of µC/OS

”Well, it can’t be that difficult to write a kernel. All
it needs to do is save and restore processor

– Jean J. Labrosse

– Working at nights and on weekends they made a
new kernel

– After a year they reached the level of kernel “A”
– They didn’t want to found a new company (there

was already about 50 kernels on the market)

it needs to do is save and restore processor
registers.”

1. The story of µC/OS

– He wanted to publish an article in C User’s
Journal instead. But he was refused for the
following reasons:following reasons:
� The article was too long
� ”Another kernel article?”

– Then he called the Embedded Systems
Programming magazine:
� At the beginning he was refused for the same reasons
� But calling the editor three times a week he eventually

managed to publish the article
� In that year (1992) it was the most read article of the

magazine

1. The story of µC/OS

– Dr. Bernard Williams, publisher of C User’s
Journal, called him shortly after about the article:

Jean J. Labrosse: “Don’t you think you are a little bit
late with this? The article is being published in
ESP.”

Dr. Bernard Williams: “No, No, you don’t
understand, because the article is so long, I want
to make a book out of it.”

– → Book: µC/OS, The Real-Time Kernel
– → Conferences → Success → Company

2. Features of µC/OS

• The source code is accessible
• Portable (processor dependent parts are separated)
• ScalableScalable
• Multi-tasking
• Preemptive
• Deterministic
• Every task can have a different size task
• OS services: mailbox, queue, semaphore, fixed/sized

memory partitions, time related functions, etc.
• Interrupt management (255 level nesting)
• Robust and reliable

2. Features of µC/OS

� Very well documented (µC/OS-II, The Real-Time Kernel
about 300 pages long)

� For educational purposes the kernel is free
Additional packages:� Additional packages:

– TCP-IP (Protocol Stack)
– FS (Embedded File System)
– GUI (Embedded Graphical User Interface)
– USB Device (Universal Serial Bus Device Stack)
– USB Host (Universal Serial Bus Host Stack)
– FL (Flash Loader)
– Modbus (Embedded Modbus Stack)
– CAN (CAN Protocol Stack)
– BuildingBlocks (Embedded Software Components)
– Probe (Real-Time Monitoring)

3. The structure of µC/OS

Application software

µC/OS-II
(Processor Independent Code)

OS_CORE.C OS_TASK.C
OS_MBOX.C OS_TIME.C

µC/OS-II Configuration
(Application Specific)

OS_CFG.H
INCLUDES.H

Hardware

Software

CPU Timer

µC/OS-II Port
(Processor Specific Code)

OS_CPU.H OS_CPU.C OS_CPU_A.ASM

OS_MBOX.C OS_TIME.C
OS_MEM.C
OS_Q.C uCOS_II.C
OS_SEM.C uCOS_II.H

INCLUDES.H

4. Configuring µC/OS (OS_CFG.H)

/* ---------------------- Miscellaneous ----------------------- */

#Define OS_ARG_CHK_EN 1 /* enable (1) or disable (0) argument checking */

#Define OS_CPU_HOOKS_EN 0 /* uc/os-ii hooks are found in the processor port files */

#Define OS_LOWEST_PRIO 63 /* defines the lowest priority that can be assigned */

The OS can be scaled using #define statements
in the configuration header file.

#Define OS_LOWEST_PRIO 63 /* defines the lowest priority that can be assigned */

#Define OS_MAX_EVENTS 20 /* max. Number of event control blocks in your application */

#Define OS_MAX_FLAGS 5 /* max. Number of event flag groups in your Application */

#Define OS_MAX_MEM_PART 10 /* max. Number of memory partitions */

#Define OS_MAX_QS 5 /* max. Number of queue control blocks in your Application */

#Define OS_MAX_TASKS 32 /* max. Number of tasks in your application */

#Define OS_SCHED_LOCK_EN 1 /* include code for osschedlock() and Osschedunlock() */

#Define OS_TASK_IDLE_STK_SIZE 512 /* idle task stack size */

#Define OS_TASK_STAT_EN 1 /* enable (1) or disable(0) the statistics task */

#Define OS_TASK_STAT_STK_SIZE 512 /* statistics task stack size */

#Define OS_TICKS_PER_SEC 200 /* set the number of ticks in one second */

4. Configuring µC/OS (OS_CFG.H)
/* ----------------------- EVENT FLAGS ------------------------ *

#define OS_FLAG_EN 0 /* Enable (1) or Disable (0) code generation for EVENT FLAGS */

#define OS_FLAG_WAIT_CLR_EN 1 /* Include code for Wait on Clear EVENT LAGS */

#define OS_FLAG_ACCEPT_EN 1 /* Include code for OSFlagAccept() */

#define OS_FLAG_DEL_EN 1 /* Include code for OSFlagDel() */

#define OS_FLAG_QUERY_EN 1 /* Include code for OSFlagQuery() */

/* ------------------------ SEMAPHORES ------------------------ */

#define OS_SEM_EN 0 /* Enable (1) or Disable (0) code generation for SEMAPHORES */#define OS_SEM_EN 0 /* Enable (1) or Disable (0) code generation for SEMAPHORES */

#define OS_SEM_ACCEPT_EN 1 /* Include code for OSSemAccept() */

#define OS_SEM_DEL_EN 1 /* Include code for OSSemDel() */

#define OS_SEM_QUERY_EN 1 /* Include code for OSSemQuery() */

/* ---------------- MUTUAL EXCLUSION SEMAPHORES --------------- */

#define OS_MUTEX_EN 0 /* Enable (1) or Disable (0) code generation for MUTEX */

#define OS_MUTEX_ACCEPT_EN 1 /* Include code for OSMutexAccept() */

#define OS_MUTEX_DEL_EN 1 /* Include code for OSMutexDel() */

#define OS_MUTEX_QUERY_EN 1 /* Include code for OSMutexQuery() */

4. Configuring µC/OS (OS_CFG.H)
/* -------------------- MESSAGE MAILBOXES --------------------- */

#define OS_MBOX_EN 1 /* Enable (1) or Disable (0) code generation for MAILBOXES */

#define OS_MBOX_ACCEPT_EN 1 /* Include code for OSMboxAccept() */

#define OS_MBOX_DEL_EN 0 /* Include code for OSMboxDel() */

#define OS_MBOX_POST_EN 1 /* Include code for OSMboxPost() */

#define OS_MBOX_POST_OPT_EN 0 /* Include code for OSMboxPostOpt() */

#define OS_MBOX_QUERY_EN 0 /* Include code for OSMboxQuery() */

/* ---------------------- MESSAGE QUEUES ---------------------- *//* ---------------------- MESSAGE QUEUES ---------------------- */

#define OS_Q_EN 1 /* Enable (1) or Disable (0) code generation for QUEUES */

#define OS_Q_ACCEPT_EN 1 /* Include code for OSQAccept() */

#define OS_Q_DEL_EN 1 /* Include code for OSQDel() */

#define OS_Q_FLUSH_EN 1 /* Include code for OSQFlush() */

#define OS_Q_POST_EN 1 /* Include code for OSQPost() */

#define OS_Q_POST_FRONT_EN 1 /* Include code for OSQPostFront() */

#define OS_Q_POST_OPT_EN 1 /* Include code for OSQPostOpt() */

#define OS_Q_QUERY_EN 1 /* Include code for OSQQuery() */

/* --------------------- MEMORY MANAGEMENT -------------------- */

#define OS_MEM_EN 0 /* Enable (1) or Disable (0) code gen.for MEM.MANAGER */

#define OS_MEM_QUERY_EN 1 /* Include code for OSMemQuery() */

4. Configuring µC/OS (OS_CFG.H)

/* --------------------- TASK MANAGEMENT ---------------------- */

#define OS_TASK_CHANGE_PRIO_EN 0 /* Include code for OSTaskChangePrio() */

#define OS_TASK_CREATE_EN 0 /* Include code for OSTaskCreate() */

#define OS_TASK_CREATE_EXT_EN 1 /* Include code for OSTaskCreateExt() */

#define OS_TASK_DEL_EN 0 /* Include code for OSTaskDel() */

#define OS_TASK_SUSPEND_EN 0 /* Include code for OSTaskSuspend() and OSTaskResume() */

#define OS_TASK_QUERY_EN 0 /* Include code for OSTaskQuery() */#define OS_TASK_QUERY_EN 0 /* Include code for OSTaskQuery() */

/* --------------------- TIME MANAGEMENT ---------------------- */

#define OS_TIME_DLY_HMSM_EN 1 /* Include code for OSTimeDlyHMSM() */

#define OS_TIME_DLY_RESUME_EN 0 /* Include code for OSTimeDlyResume() */

#define OS_TIME_GET_SET_EN 0 /* Include code for OSTimeGet() and OSTimeSet() */

typedef INT16U OS_FLAGS; /* Date type for event flag bits (8, 16 or 32 bits) */

4. Configuring µC/OS (OS_CFG.H)

#if OS_SEM_ACCEPT_EN > 0

INT16U OSSemAccept (OS_EVENT *pevent) {

INT16U cnt;

#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr = 0;

#endif

Conditional preprocessor directives refer to the #define statements.

#endif

#if OS_ARG_CHK_EN > 0

if (pevent == (OS_EVENT *)0) { /* Validate 'pevent' */

return (0);

}

#endif

…

}

#endif

5. µC/OS task states

WAITING

READY RUNNING

OSIntExit()

*

*

5. µC/OS task states

� Two special states:
– DORMANT: if the task is in the memory, but the scheduler

doesn’t administer it (eighter because it hasn’t even been doesn’t administer it (eighter because it hasn’t even been
created (by calling OSTaskCreate()) or has already been
deleted (by calling OSTaskDel())

– ISR: an interrupt has occured, thus the processor suspends the
execution of the task code and jumps to an interrupt service
routine (ISR). In one of the cases the ISR returns to the task
(where it has been suspended). However there are cases when
an ISR makes a higher priority task ready to run. In this case -
after return from the ISR - the scheduler switches to the higher
priority task. The original task becomes READY.

5. µC/OS task states

� If there is no task ready to run, then the OS executes
the idle task (OSTaskIdle()).

6. The µC/OS scheduler

� The tasks are represented by bits in a 2D
bitmap structure. A logical one means that
the given task is ready to run. Each bit the given task is ready to run. Each bit
position refers to a unique priority.

6. The µC/OS scheduler

+ Injecting bits is fast (and independent of the number
of the tasks ready to run).

+ It is also fast to find the highest priority task ready to + It is also fast to find the highest priority task ready to
run.

– The tasks must have unique priorities (so we can’t
use round-robin / time-slicing scheduling)

– We need some lookup tables (consuming relatively
much data memory)

6. The µC/OS scheduler

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

[3]

[2]

[1]

[0]

OSRdyGrp OSRdyTbl

X

Highest priority

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 34 33 32

31 30 29 28 27 26 25 24

[7]

[6]

[5]

[4]

[3]

0 0 Y Y Y X X X

Y

Lowest priority
A taszk prioritása

Bit position in one of the rows of OSRdyTbl

Designates one of the rows of OSRdyTbl and the corresponding bit in OSRdyGrp

6. The µC/OS scheduler

� Building blocks of scheduling:
1. Marking a task as not ready to run
2. Marking a task as ready to run2. Marking a task as ready to run
3. Finding the highest priority task among the ones that are

ready to run
4. Switching context

6. The µC/OS scheduler

� Where are these blocks used?
1. Marking a task as NOT ready to run: in system

calls causing a task to wait (eg. OSSemPend() , calls causing a task to wait (eg. OSSemPend() ,
OSMBoxPend(), OSTimeDly()). These calls
do some unique operation (e.g. trying to lock a
semaphore), then (if it is needed) mark the task
as NOT ready to run and call the scheduler
function.

6. The µC/OS scheduler

2. Marking a task as READY to run: in system
calls causing some event which others are maybe
awaiting for (eg. OSSemPost() , OSMBoxPost()) awaiting for (eg. OSSemPost() , OSMBoxPost())
or the elapse of a given time. They do some
unique operation (e.g. releasing a semaphore),
then (if it is needed) mark a task as READY to
run and call the scheduler function.

6. The µC/OS scheduler

3. Finding the highest priority task among the
ones that are ready to run: this is located in the
scheduler function.scheduler function.

4. Switching context: if this priority represents a
different task than the one currently running, the
scheduler function also does the context
switching.

6. The µC/OS scheduler

OSRdyGrp |= OSMapTbl[prio >> 3];
OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07];

2. Marking a task as READY to run
The bits designated by the task’s priority has to be set in
OSRdyGrp and in OSRdyTbl .

Index Bit mask (binary)
0 00000001
1 00000010
2 00000100
3 00001000
4 00010000
5 00100000
6 01000000
7 10000000

OSMapTbl:

prio: the task’s priority
prio >> 3: YYY
prio & 0x07: XXX

0 0 Y Y Y X X XPriority:

Bit position in one of the rows of OSRdyTbl

Designates one of the rows of OSRdyTbl
and the corresponding bit in OSRdyGrp

6. The µC/OS scheduler

1. Marking a task as NOT READY to run
We have to clear the bit designated by the task’s priority
from the corresponding row of OSRdyTbl . If this results
in no more ready to run task in the given row, we have to
clear a bit from OSRdyGrp corresponding to the given
row.

if ((OSRdyTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0)
OSRdyGrp &= ~OSMapTbl[prio >> 3];

row.

6. The µC/OS scheduler
3. Finding the highest priority task among the ones ready

to run

Which equals to finding the 1 in the top rightmost position.
(Which can be divided into two ‘find the rightmost bit in a
byte’ operation. First in OSRdyGrp, then in one of OSRdyTblbyte’ operation. First in OSRdyGrp, then in one of OSRdyTbl
rows.)

For example:

0 0 1 0 1 1 0 0

7. 6. 5. 4. 3. 2. 1. 0.

0x2C 2.

Hexa Binary Rightmost bit set

6. The µC/OS scheduler
INT8U const OSUnMapTbl[256] = {

0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x00 to 0x0F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x10 to 0x1F */
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x20 to 0x2F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x30 to 0x3F */
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x40 to 0x4F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x50 to 0x5F */
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x60 to 0x6F */5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x60 to 0x6F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x70 to 0x7F */
7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x80 to 0x8F */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0x90 to 0x9F */
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xA0 to 0xAF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xB0 to 0xBF */
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xC0 to 0xCF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xD0 to 0xDF */
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0, /* 0xE0 to 0xEF */
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0 /* 0xF0 to 0xFF */

};

6. The µC/OS scheduler

At first we search for the rightmost 1 in OSRdyGrp
designating the topmost row in OSRdyTbl (YYY value), then
we search for the rightmost 1 in that row (XXX value). After
that the highest priority can be calculated easily: YYY * 8 +
XXX.

y = OSUnMapTbl[OSRdyGrp];
x = OSUnMapTbl[OSRdyTbl[y]];
prio = (y << 3) + x;

6. The µC/OS scheduler
4. Switching context

1.Saving current context:
• Saving registers
• Saving stack pointer

Switching context is processor dependent!

• Saving stack pointer

2.Restoring new context:
• Restoring stack pointer
• Restoring registers

6. The µC/OS scheduler

� The scheduler is implemented as a
function (which is called by other OS
functions). For example, if we want to lock
a semaphore (which is not free at the
moment) then calling OSSemPend() also moment) then calling OSSemPend() also
administers that our task is no more ready
to run, then calls the scheduler. The
scheduler selects the task with the highest
priority among the remainder ones ready
to run, then do the context switch to it.

6. The µC/OS scheduler
void OSSched (void)
{

INT8U y;

OS_ENTER_CRITICAL();
if ((OSLockNesting | OSIntNesting) == 0) {

y = OSUnMapTbl[OSRdyGrp];
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdy Tbl[y]]);
if (OSPrioHighRdy != OSPrioCur) {

OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++;
OS_TASK_SW();

}
}
OS_EXIT_CRITICAL();

}

The scheduling code is a critical section: we need to disable interrupts before
and reenable them after (CPU dependent). Then we ensure that the scheduler
runs only when it hasn’t been locked and when not called from ISR. Then the
scheduler search for the highest priority task ready to run. Switching context
occurs only when this priority doesn’t equals to the priority of the currently
running task.

6. The µC/OS scheduler

if (OSPrioHighRdy != OSPrioCur) {
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++;
OS_TASK_SW();

}

At first we retrieve the TCB (Task Control Block) belonging to the task which we At first we retrieve the TCB (Task Control Block) belonging to the task which we
want to switch to. (The TCB holds the basic information belonging to a given
task: its priority, its stack pointer (previously saved), etc.) Then we increment a
variable counting context switches purely for statistical purposes. The actual
instructions needed for switching context (saving then restoring registers, stack
pointer) is done in processor dependent assembly code.

6. The µC/OS scheduler

typedef struct os_tcb {

OS_STK *OSTCBStkPtr; // Pointer to top of stack

...

INT16U OSTCBDly; // Ticks to delay task or timeout wait

INT8U OSTCBStat; // Task status

Main fileds in the TCB structure:

INT8U OSTCBStat; // Task status

INT8U OSTCBPrio; // Task priority

...

} OS_TCB;

6. The µC/OS scheduler
OS_TASK_SW()

1. Saving current context:
• Saving registers
• Saving stack pointer

PUSHRS
PUSHSREG

LDS R30,OSTCBCur
LDS R31,OSTCBCur+1
in r28,_SFR_IO_ADDR(SPL)
ST Z+,R28
in r29,_SFR_IO_ADDR(SPH)
ST Z+,R29

CALL OSTaskSwHook
LDS R16,OSPrioHighRdy

2. Restoring new context:
• Restoring stack pointer
• Restoring registers

LDS R16,OSPrioHighRdy
STS OSPrioCur,R16

LDS R30,OSTCBHighRdy
LDS R31,OSTCBHighRdy+1
STS OSTCBCur,R30
STS OSTCBCur+1,R31
LD R28,Z+
out _SFR_IO_ADDR(SPL),R28
LD R29,Z+
out _SFR_IO_ADDR(SPH),R29

POPSREG
POPRS

The context switch is platform dependent!

The given example is for the AVR
ATmega128 .

7. OS services

� Task management
�Create / Delete a task
�Suspend / Resume a task
�Change a task’s priority

� Time management� Time management
�Delay the execution of a task
�Get / Set system time

� Memory management
�Create a memory partition
�Request / Release a block in a partition

7. OS services

� Semaphore management
� Initialize a semaphore
�Pend on a semaphore (optional timeout)
�Accept a semaphore (non blocking)
�Release a semaphore

� Message mailbox management
�Same operations as for the semaphores

7. OS services

� Message queue management
�Same operations as for the mailboxes
�Post to the front of the queue
�Flush the queue

� Mutex management
�Same operations as for the semaphores

� Event flag management
�Same operations as for the semaphores
�Waiting for flags can be: AND, OR

8. Typical layout of a µC/OS application
void YourTask (void *pdata){

for (;;) {
/* USER CODE */
!! Call one of uC/OS-II’s
!! services: OSMboxPend(),
!! OSQPend(),OSSemPend(),
!! OSTaskDel(OS_PRIO_SELF),
!! OSTaskSuspend(OS_PRIO_SELF),
!! OSTimeDly() , OSTimeDlyHMSM()

void YourTask (void *pdata)
{

or

Infinite loop task

‘’Single shot” task

void main (void){
OSInit(); /* Initialize uC/OS-II */
...
!! Create at least 1 task using either OSTaskCreate() or
!! OSTaskCreateExt(). And maybe other OS objects (MBox, ...).
...
OSStart(); /* Start multitasking! OSStart() will not return */

}

!! OSTimeDly() , OSTimeDlyHMSM()
/* USER CODE */

}
}

{
/* USER CODE */
OSTaskDel(OS_PRIO_SELF);

}

