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Outline

> Types of inference in (causal) BNs
> Hardness of exact inference in general BNs

> Approximate inference by stochastic simulation

> Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(.X;|E =e)
e.g., P(NoGas|Gauge =empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;|E=¢) = P(X,|E=¢)P(X,|X,,E=¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do | need a new starter motor?

Causal inference: what is the effect of an intervention?

Counterfactual inference: what would have been the effect of a hy-
pothetical /imagery past intervention&observation?
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Inference by enumeration: principle

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E.

Let the hidden variables be H = X — Y — E.

Then the required summation of joint entries is done by summing out
the hidden variables:

P(Y|[E=e)=aP(Y,E=¢) =X ,P(Y,E=¢,H=h)
The terms in the summation are joint entries!

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of exact inference O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference: 0<p(AND)? =- NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBv ~C
2. CvDv A
3. Bv Cv-D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S A
2) Compute an approximate posterior probability 7

3) Show this converges to the true probability P
Outline: @

— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— Markov chain Monte Carlo (MCMC): sample from a stochastic
process
whose stationary distribution is the true posterior
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P( X1, ..., X},)

X <—an event with n elements
for: = 1tondo
z; <—a random sample from P(X; | parents(X;))
given the values of Parents(X;) in x
return x
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Example

C |P(S|IC)
T/ .10
F| .50

P(C)
50

S R|[P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01

C |P(RIC)
T| .80
F| .20
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Rejection sampling

P (X |e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then
NJa] < N[z]+1 where z is the value of X in x
return NORMALIZE(N[X])

J
~—r~

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

A

P(Rain|Sprinkler =true) = NORMALIZE((8, 19)) = (0.296, 0.704)
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Analysis of rejection sampling

P(X|e) = aNpg(X, e) (algorithm defn.)
= Npg(X,e)/Npg(e) (normalized by Npg(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!
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The Markov chain

With Sprinkler =true, WetGrass =true, there are four states:
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Wander about for a while, average what you see
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Approximate inference using MCMC

“State” of network = current assignment to all variables. Generate
next state by sampling one variable given Markov blanket. Sample
each variable in turn, keeping evidence fixed

function MCMC-ASk(X, e, bn, N) returns an estimate of P(X|e)
local variables: IN[X], a vector of counts over X, initially zero

7., the nonevidence variables in bn

9%

X, the current state of the network, initially copied from ¢

initialize x with random values for the variables in Y
for j=1to Ndo
for each Z; in Z do
sample the value of Z; in x from P(Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] < N|z| 4+ 1 where z is the value of X in x
return NORMALIZE(IN|[X])

Can also choose a variable to sample at random each time
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MCMC example contd.

Estimate P(Rain|Sprinkler =true, WetGrass = true)

Sample C'loudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain= false

A

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31,0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of C'loudy is
Sprinkler and Rain o3
Markov blanket of Rain is '@
C'loudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P(x”mb(X7)) - P(‘x'/é’par@ntS(Xi))HZjECiLil(i7’e7L(Xi)P(Zj’par@nts(zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;|mb(X;)) won't change much (law of large numbers)
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The MCMC age

> Hardware!

{> Bayesian model averaging
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MCMC analysis: Outline

Transition probability ¢(x — x')
Occupancy probability 7;(x) at time ¢

Equilibrium condition on 7; defines stationary distribution 7(x)
Note: stationary distribution depends on choice of ¢(x — x')

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others
= detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable's Markov blanket
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Stationary distribution

m;(x) = probability in state x at time ¢
m.1(x') = probability in state x’ at time 7 + |

701 in terms of 7, and g(x — x')
ret(x) = Sm(x)g(x — %)
Stationary distribution: 7, = 1, =7
m(x') = 2ixm(x)g(x — x')  forall X’
If 7 exists, it is unique (specific to ¢(x — %))

In equilibrium, expected “outflow” = expected “inflow”
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Detailed balance

“Outflow” = “inflow” for each pair of states:
T(x)g(x = X') = 7(x')q(x’ — x) for all x, x’
Detailed balance =- stationarity:

2xT(x)g(x = X)) = 2xm(x)g(x’ — x)
= 7(x')2xq(x’ — x)
- ()

MCMC algorithms typically constructed by designing a transition
probability ¢ that is in detailed balance with desired 7
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Gibbs sampling

Sample each variable in turn, given all other variables

Sampling X, let X, be all other nonevidence variables
Current values are z; and x;; e is fixed
Transition probability is given by

(](X — X/) = Q(in,}zi — Q]j,}@) = P(CIZ;‘}Z” e)
This gives detailed balance with true posterior P(x|e):

r(x)a(x = X) = P(x|e)P(&|%:, ) = Plas, ile) (|, e)
= P(x|x;,e)P (Xlle) (z7|X;,e) (chain rule)
= P(x|x;,e)P(x;, X;|e) (chain rule backwards)
— o = X)7(x) = 7(x)gx — %)
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Performance of approximation algorithms

Absolute approximation: |P(X|e) — P(X|e)| < ¢

P(X|e)-P(X|e)| ~

Relative approximation: P(X[e) <

Relative = absolute since 0 < P < 1 (may be O(27"))
Randomized algorithms may fail with probability at most o
Polytime approximation: poly(n, e ! logd 1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ¢,0 < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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Summary

Exact inference:
— polytime on polytrees (NBNs,HMMs), NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference:
— Convergence can be very slow with probabilities close to 1 or 0
— Can handle arbitrary combinations of discrete and continuous
variables

Al: Stochastic inference in BNs 28



