
Stochastic inference in Bayesian
networks, Markov chain Monte Carlo
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Outline

♦ Types of inference in (causal) BNs

♦ Hardness of exact inference in general BNs

♦ Approximate inference by stochastic simulation

♦ Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge= empty, Lights= on, Starts= false)

Conjunctive queries: P(Xi,Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Causal inference: what is the effect of an intervention?

Counterfactual inference: what would have been the effect of a hy-
pothetical/imagery past intervention&observation?
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Inference by enumeration: principle

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E.

Let the hidden variables be H = X−Y− E.

Then the required summation of joint entries is done by summing out
the hidden variables:

P(Y|E= e) = αP(Y,E= e) = αΣhP(Y,E= e,H=h)

The terms in the summation are joint entries!

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of exact inference O(dkn)

Multiply connected networks:
– can reduce 3SAT to exact inference: 0<p(AND)? ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete
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Inference by stochastic simulation

Basic idea:
1) DrawN samples from a sampling distribution S

Coin

0.52) Compute an approximate posterior probability P̂
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic

process
whose stationary distribution is the true posterior
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Sampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn

inputs: bn, a belief network specifying joint distribution P(X1, . . . , Xn)

x← an event with n elements

for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi))

given the values of Parents(Xi) in x

return x
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Rejection sampling

P̂(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e, bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do

x←Prior-Sample(bn)

if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler= true) using 100 samples
27 samples have Sprinkler= true

Of these, 8 have Rain= true and 19 have Rain= false.

P̂(Rain|Sprinkler= true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
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Analysis of rejection sampling

P̂(X|e) = αNPS(X, e) (algorithm defn.)
= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ P(X, e)/P (e) (property of PriorSample)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

P (e) drops off exponentially with number of evidence variables!
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The Markov chain

With Sprinkler= true,WetGrass= true, there are four states:
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 Wet
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Cloudy
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Wander about for a while, average what you see
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Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Approximate inference using MCMC

“State” of network = current assignment to all variables. Generate
next state by sampling one variable given Markov blanket. Sample
each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e, bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y

for j = 1 to N do

for each Zi in Z do

sample the value of Zi in x from P(Zi |mb(Zi))

given the values of MB(Zi) in x

N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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MCMC example contd.

Estimate P(Rain|Sprinkler= true,WetGrass= true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain= true, 69 have Rain= false

P̂(Rain|Sprinkler= true,WetGrass= true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov blanket sampling

Markov blanket of Cloudy is
Cloudy

RainSprinkler

 Wet
Grass

Sprinkler and Rain
Markov blanket of Rain is

Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:
P (x′i|mb(Xi)) = P (x′i|parents(Xi))ΠZj∈Children(Xi)P (zj|parents(Zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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The MCMC age

♦ Hardware!

♦ Bayesian model averaging
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MCMC analysis: Outline

Transition probability q(x→ x′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Stationary distribution

πt(x) = probability in state x at time t
πt+1(x

′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x
′) = Σxπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) = Σxπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
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Detailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance ⇒ stationarity:

Σxπ(x)q(x→ x′) = Σxπ(x
′)q(x′ → x)

= π(x′)Σxq(x
′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Gibbs sampling

Sample each variable in turn, given all other variables

Sampling Xi, let X̄i be all other nonevidence variables
Current values are xi and x̄i; e is fixed
Transition probability is given by

q(x→ x′) = q(xi, x̄i → x′i, x̄i) = P (x′i|x̄i, e)

This gives detailed balance with true posterior P (x|e):
π(x)q(x→ x′) = P (x|e)P (x′i|x̄i, e) = P (xi, x̄i|e)P (x′i|x̄i, e)

= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (chain rule)

= P (xi|x̄i, e)P (x′i, x̄i|e) (chain rule backwards)

= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Performance of approximation algorithms

Absolute approximation: |P (X|e)− P̂ (X|e)| ≤ ε

Relative approximation: |P (X|e)−P̂ (X|e)|
P (X|e) ≤ ε

Relative ⇒ absolute since 0 ≤ P ≤ 1 (may be O(2−n))

Randomized algorithms may fail with probability at most δ

Polytime approximation: poly(n, ε−1, log δ−1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ε, δ < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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Summary

Exact inference:
– polytime on polytrees (NBNs,HMMs), NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference:
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous

variables
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