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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L. = [p, A; (1 —p), B] 1-p

Notation:
A= B A preferred to BB
A~ B indifference between A and B

AZ B B not preferred to A
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Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =
behavior describable as maximization of expected utility

Constraints:
Orderability
(A>=B)V (B> A)V (A~ B)
Transitivity
(A= B)AN(B>C) = (A= C)
Continuity
A=B»~C = dp [p,A; 1 —p,C]~ B
Substitutability
A~B = [p,4; 1—-p,Cl~p,B;1—-p,C]
Monotonicity
A=B = (p=q < [pA 1-p Bl Rg,A 1-q,B)
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced
to give away all its money

If B > (', then an agent who has _A
(" would pay (say) 1 cent to get B ” ”
If A >~ B, then an agent who has
B would pay (say) 1 cent to get A 3 CV
.
If C' = A, then an agent who has \1/
C

A would pay (say) 1 cent to get C'
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):.
Given preferences satisfying the constraints

there exists a real-valued function U such that
U(A)>U(B) < AXB
U([pla Sl; ceo 5 DPny Sn}) — Zz sz(Sz)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state /A to a standard lottery L, that has
“best possible prize” 1+ with probability p
“worst possible catastrophe” u, with probability (1 — p)

adjust lottery probability p until A ~ L,

continue as before

instant death
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Utility scales

Normalized utilities: ©w+ = 1.0, v, = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
U/(SIZ') — klU(ZE> + ko where k1 >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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Money

Money does not behave as a utility function. Given a lottery L. with
expected monetary value KAV (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse.

Utility curve: for what probability p» am | indifferent between a prize
x and a lottery [p, $M: (1 — p), $0] for large NM7?

Typical empirical data, extrapolated with risk-prone behavior:
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Student group utility

For each 1z, adjust p until half the class votes for lottery (M=10,000)
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Decision networks (DNs)

Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

Algorithm:
For each value of action node
compute expected value of utility node given action, evidence
Return MEU action
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Loss functions and matrices in DNs




Loss functions and matrices in DNs
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Multiattribute utility

How can we handle utility functions of many variables X ... X7
E.g., what is U(Deaths, Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

|dea 1: identify conditions under which decisions can be made without
complete identification of U(xy, ..., x,)

|dea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(xq,.... x,)
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Strict dominance

Typically define attributes such that {J is monotonic in each

Strict dominance: choice 3 strictly dominates choice A iff
Vi X,(B)> X;(A) (and hence U(B) > U(A))

Xo Thisregion X5

i dominates A A |

I | /B
|

2N ___d___fe__
Al aias | A :
.D I
X 1 X1
Deterministic attributes Uncertain attributes

Strict dominance seldom holds in practice
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Probability

Stochastic dominance
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Distribution p; stochastically dominates distribution p- iff
+ t
Vi [ opi(@)de < [ pa(t)dt

If U is monotonic in x, then A; with outcome distribution p;
stochastically dominates A with outcome distribution p-:

Lo pi(@)U(x)de > [° pala)U(x)dx
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Stochastic dominance contd.

Stochastic dominance can often be determined without exact distri-
butions using qualitative reasoning

E.g., construction cost increases with distance from city
S is closer to the city than 55
= 5] stochastically dominates S5 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X 3 Y (X positively influences Y') means that
For every value z of Y''s other parents Z

Vay, o9 11 > 19 = P(Y|r1,2) stochastically dominates
P(Y’ZCQ,Z)
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Preference structure: Deterministic

X1 and X, preferentially independent of X3 iff preference between
(1,29, 73) and (2!, 2}, x3) does not depend on 13

E.g., (Noise, Cost, Safety):
(20,000 suffer, $4.6 billion, 0.06 deaths/mpm) vs.
(70,000 suffer, $4.2 billion, 0.06 deaths/mpm)

Theorem (Leontief, 1947): if every pair of attributes is P.I. of its
complement, then every subset of attributes is P.I of its complement:
mutual P.I..

Theorem (Debreu, 1960): mutual P.I. = o additive value func-
tion:

V(S) = 2, Vi(Xi(9))
Hence assess 1 single-attribute functions; often a good approximation
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Preference structure: Stochastic

Need to consider preferences over lotteries:
X is utility-independent of Y iff preferences over lotteries in X do

not depend on y

Mutual U.l.: each subset is U.l of its complement
= o multiplicative utility function:
U= kU + kUy + k3Us;
+ k1koU Uy + koksUsUs + kskUsUy
+ klkgnglUQUg

Routine procedures and software packages for generating preference
tests to identify various canonical families of utility functions
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Value of information

|dea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is £ /2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
= expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A” or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of “buy A" given “oil in A"
+ 0.5 x value of “buy B" given “no oil in A"| - 0
= (0.5 x k/2)+ (0.5 x k/2) —0=Fk/2
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General formula

Current evidence £, current best action «
Possible action outcomes \5;, potential new evidence

EU(a|E) = max 2; U(S;) P(Si|E, a)
Suppose we knew [; = ¢, then we would choose e, St
EU(O&e‘jk‘E, Ej = ejk) = III(?JX 27 U(Sq) P(SJE, a, Ej = Bjk)

E; is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIg(E)) = (Xk P(E;=ej| E)EU(ac, |E, Ej=e)) — EU(a|E)

(VPI = value of perfect information)
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Properties of VPI

Nonnegative—in expectation, not post hoc
Vi, E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £/; twice
VPIp(E;, Ey) # VPIg(E;) +VPIg(Ey)
Order-independent
VPIg(E;, EBy) = VPIg(E;) + VPlg g (Ey) = VPIg(Ey) + VPIg g, (E;)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem
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