Az R adatelemzési nyelv
alapjai |.

Egészségligyi informatika és biostatisztika

Gézsi Andras
gezsi@mit.bme.hu

What R is and what it is not

*Ris
e a programming language
* a statistical package
* an interpreter
* Open Source

* Ris not
e SPSS, Statistica, etc.
* a collection of “black boxes”
* a spreadsheet software package
e commercially supported

What R is

e data handling and storage: numeric, textual

* matrix algebra

* regular expressions

* high-level data analytic and statistical functions
* classes (“O0”)

* graphics

e programming language: loops, branching,
functions

What R is not

* has no click-point user interfaces

* [anguage interpreter can be very slow, but allows to
call own C/C++ code

* no spreadsheet view of data, but connects to
Excel/MsOffice

* no professional /commercial support

R and statistics

* Packaging: a crucial infrastructure to efficiently
produce, load and keep consistent software
libraries from (many) different sources / authors

e Statistics: most packages deal with statistics and
data analysis

* State of the art: many statistical researchers
provide their methods as R packages

History of R

e Statistical programming language S developed at
Bell Labs since 1976 (at the same time as UNIX)

* Intended to interactively support research and data
analysis projects

* Exclusively licensed to Insightful (“S-Plus”)

* R: Open source platform similar to S developed by
R. Gentleman and R. lhaka (U of Auckland, NZ)
during the 1990s

* Since 1997: international “R-core” developing team
* Updated versions available every couple months

Getting started

* To obtain and install R on your computer

 Go to http://cran.r-project.org/mirrors.html to choose a
mirror near you

* Click on your favorite operating system (Linux, Mac, or
Windows)

e Download and install the “base”

* To install additional packages
e Start R on your computer
* Choose the appropriate item from the “Packages” menu

http://cran.r-project.org/mirrors.html

+ RGui - [R Console]

R File Edit Misc Packages ‘Windows Help

EEEIERRE

== %]
=18 %|

E : Copyright 2003, The E Dewvelopment Core Team
Version 1.7.0 [2003-04-18)

R iz free software and comes with ABIQLUTELY NO WARRANTTY.

Tou are welcomwe to redistribute it under certain conditions.

Type “license()' or "licence()' for distribution details.

R iz a collakborative project with many contributors.

Type “contributors()' for more information.

Type "demo()' for some demos, "helpi()' for on-line help, or
"help.start()' for a HTHL browser interface to help.

Type “of)' to quit R.

> library("HASS™)
= |

A

e

|R 1.7.0 - A Language and Environmenk

dstart |||] & 5 || E]stavisticswithrPartLopt [} RGui - [R Console]

vume NG B@®B 2 11.09pm

RRGui =121 x|

File Edit Windows

E ¢ Copyright 2003, The R Devel [[arigeme

Version 1.7.0 [2003-04-16)
E iz free software and comes wi
Tou are welcome to redistribute

Type “license()' or "“licence()]'

F iz a collaborative project wi

Type "contributors|()' for more
Type "demo()' for some demos,
“help.start()' for a HTML hrows
Type “o)' to guit R.

> library ("MLES™)
> datal)
> i

1

wolocano
warphreaks
WalnEn

Data =sets in package

ahhey
accdeaths
Aids2
Animals
anorexia
austres
bacteria
heavl
beawva
biopsy
birthwt
Eostcon
cabhages
caith
Cars93
cats
Cement
chem
coop
cpus
crahs
Cushing=
DDT
deaths=

'MAZE

=10l %]
Y
Topographic Information on Auckland's Maunga W3
The Number of EBreaks in Yarn during Weaswving
Average Helights and Weights for American Women

Determinations of Nickel Content

Aocidental Deaths in the U3 1973-1973
Australian AIDS Survival Data

Erain and Body Weights for 28 3pecies

Anorexia Data on Weight Change

ouarterly Time 3Zeries of the Nunber of Australjd
Presence of Bacteria after Drug Treatments
Eodvy Temperature 2eries of Beawver 1

Eody Temperature Series of Beaver 2

Eiopsy Data on Breast Cancer Patients

Riszk Factors Associated with Low Infant Birth 3
Housing Values in 3uburbs of Boston

Data from a cabbhage field trial

Colours of Eves and Hair of People in Caithness
Data from 93 Cars on 3ale in the UIA in 1993
Aratomical Data from Domestic Cats

Heat Ewvolwved by Setting Cements

Copper in Wholemweal Flour

Co—operative Trial in Analytical Chemistry
Ferformance of Computer CPUs

Morphological Measurements on Leptograpsus Crad
Diagnostic Testz on Patients with Cushing's 3vs
DDT in Eale

Monthly Deaths from Lung Diseases in the UK

gmﬁtartnj o] @ < |J (] StatisticsWithRPartT ppt ||Rmsui

vume NG B®B R 11:10em

+ RGui - [R Console]

R File Edit Misc Packages ‘Windows Help

EEEIERRE

== %]
=18 %|

E : Copyright 2003, The E Dewvelopment Core Team
Version 1.7.0 [2003-04-18)

R iz free software and comes with ABIQLUTELY NO WARRANTTY.

Tou are welcomwe to redistribute it under certain conditions.

Type “license()' or "licence()' for distribution details.

R iz a collakborative project with many contributors.

Type “contributors()' for more information.
Type "demo()' for some demos, "helpi()' for on-line help, or
"help.start()' for a HTHL browser interface to help.
Type “of)' to quit R.
= library ("TMAZE™)
> datal)
> data(Cars93)
= Cars9id

Manufacturer Model Type Min.Price Price Max.Price MPG.City
1 Aoura Integra Small 12.9 15.%9 15.8 25
2 Loura Legend Midsize 29.2 33.9 38.7 13
3 hudi S0 Compact 25.9 29.1 32.3 Z0
4 hudi 100 Midsize 3o.gs 37.7 44 .5 19
3 BHI E35i1 Midsize 23.7 30.0 3.2 22
6 Euick Century Midsize 14.2 15.7 17.3 22
7 Euick Lelabre Large 19.9 Z0.8 21.7 19
=1 Buick Roadmaster Large 22.6 23.7 24.9 16
Q Buick Riwviera Hidsize ZB.3 Z26.3 Z6.3 19
10 Cadillac DevVille Large 33.0 34.7 36.3 1a
11 Cadillac ZJewille Hidsize 37.5 40.1 42.7 1a
12 Chewvrolet Cavalier Compact 8.5 13.4 13.3 25
13 Chewvrolet Corsica Compact 11.4 11.4 11.4 25
14 Chevrolet Camaro 3porty 13.4 15.1 16.8 19
15 Chevrolet Lumina Midsize 13.4 15.9 15.4 21
1la Chewvrolet Lumina APV Van 14.7 16.3 15.0 15
17 Chewvrolet h=ztro Van 14.7 16.6 15.6 15
18 Chevrolet Caprice Large 18.0 1&8.8 19.6 17

A

I

|R 1.7.0 - A Language and Environmenk

dstart |||] & 5 || E]stavisticswithrPartLopt [} RGui - [R Console]

vume NG B@®B R 11:11em

RStudio An IDE that wraps R

(N NG RStudio
O_’ e =] 3 Project: (None) -
|_] R data sets @7 pr3.R i | Workspace History =
[Source on Save Q A~ =#Run | %% | | ¥ Source ~| i | &% [| _#Import Datasetr | &
1 # Titanic problem starter file... Data
2 # Be sure to comment each function using # or " " t 742 obs. of 11 variables H
2 . t2 6 obs. of 11 variables 5
. A . . Values
5 Here is an example of multi-line gquote-based 'comments' ...
6 el mts[7448]
7 pr@(obs) takes in one observation (obs) fd expression[1]
8 and outputs whether or not that passenger would have nlm. ¥ 1ist[6]
9 survived by our model... nlm. £2 list[6]
10 .
11 In the case of pr@, the prediction is that every op list[Z] .
12 passenger perishes (@) r character[1]
13 " [B, 14 -al27 b
14~ pr@ <- function(obs) { Files Plots Packages Help -
15 return(®) . - —~
16 1} e mealk
17 R: Sorting or Ordering Vectors =
18
19 # Here is an example of #-style (single-line) comments : sort {base} R Documentation m
a3 A
21:51 (Top Level) = R Script = S . .
orting or Ordering Vectors
Console ~ =
3 1 3 Heikkinen, Miss. Laina Description
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)
5 ") 3 Allen, Mr. William Henry Sort (or order} a vector or factor (partially) into ascending or descending
order. For ordering along more than one variable, e.g., for serting data
6 4] 3 Moran, Mr. James frames. see order.
sex age sibsp parch ticket fare cabin embarked !
1 male 22 1] ASS 21171 7.2588 S Usage
2 female 38 1] PC 17599 71.2833 (85 C
3 female 26] @ STON/OZ2. 3101282 7.925@ S sort(x, decreasing = FALSE, ...)
4 female 35 1] 113883 53.1080 C123 S ## Default S3 method:
5 male 35]] 373450 B.0500 S sort(x, decreasing = FALSE, na.last = WA, ...)
6 male NA)] 330877 8.4583 Q i (a1 L 4 i
sort.int(x, partial = NULL, na.last = NA, decreasing =
> plot(tSage) method = c{"shell"”, "guick"), index.return =
> 7sort
> sort(c(3,2,4)) Arguments
[1]234 m
> plot(sort(tSage)) <l = for sort an R object with a class or a numeric, s
- romnley _character or lnnical uertnr Far amed ink oa
ry =3 <k

A~

RStudio

An IDE that wraps R

anon RStudio
Q| 2~ i) project: (None) ~
|_| R data sets B priR Hr Workspace History
[Source on Save Q A~ =% Run | %% | |_®Source - | i | =% [| _fImportDatasetr | 3 &
1 # Titanic problem starter file... Data
2 # Be sure to comment each function using # or " t 742 obs. of 11 wvariables
z . t2 6 obs. of 11 variables
5 Here is a 1 nts' Yalues
: Editable e wstroe
7 pr@(obs) fd
8 and outpu f' 1 : t e nlm.f L : d
o wniea THES/SCIIPLS an. £2 1Ive data
11 In the case of pr@, the prediction is that every op ikl S, .
12 passenger perishes (@) r character[1]
13 " [B, 14 -al27 b
14~ pr <- fu;gtion{obs) f Files Plots Packages Help
15 return(]
1% 1} & 0w gl | @
17 R: Sorting or Ordering Vectors =
18
19 # Here is an example of #-style (single-line) comments : sort {base} R Documentation m
a3 A
21:51 (Top Level) R Script . .
Sorting or Ordering Vectors
Console
3 1 3 Heikkinen, Miss. Laina Description
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel)
5 o 3 Allen, Mr. William Henry Sort (o'r: arden a vactor nr factor Inartialh intn aseanding or desranding
6 4] 3 Moran, Mr. James }::r:mer;s c;rec; ata
sex age sibsp parch ticket fare cabin embarked ! Pl t d h l
1 male 22 1] ASS 21171 7.2588 S Usage O S an e
2 female 38 1] PC 17599 71.2833 (85 C
3 female 26] @ STON/OZ2. 3101282 7.925@ S sort(x, decreasing = FALSE, ...)
4 female 35 1 e 11oene £ anes f10e ¢ ## Default S3 method:
5 male 35]] sort(x, decreasing = FALSE, na.last = WA, ...)
6 male NA @ @]
ConSO e sort.int(x, partial = NULL, na.last = NA, decreasing =

> plot(t$age)

> 7sort

> sort{ c(3,2,4))
[1]234

> plot(sort(tSage))

>

method = c{"shell"”, "guick"), index.return =

inte raCtionS Arguments

0 . . .
x for sort an R object with a class or a numeric, :
rcnmnley character or Innical wentnr For anvd ink a

ry 3 <k

A~

Getting help... and quitting

» Getting information about a specific command
> help (rnorm)
> rnorm
* Finding functions related to a keyword
> help.search ("boxplot")
 Starting the R installation help pages
> help.start ()
* Quitting R
> gq()

Basic data types

Objects

e variables = objects

* types of objects: vector, factor, array,
matrix, data.frame, ts, list

e attributes
* mode: integer, numeric, character, complex, logical
* length: number of elements in object

e creation

e assign a value
e create a blank object

Naming Convention

* must start with a letter (A-Z or a-z)

* can contain letters, digits (0-9), and/or

o»”»

e periods “
* underscore

o on

e case-sensitive
* mydata different from MyData

Assignment

o

e “<-” used to indicate assignment

x<-c(1,2,3,4,5,0,7)
x<-c(1l:7)
x<—-1:7

* note: as of version 1.4 “="is also a valid assignment operator

R as a calculator

> 5 4+ (6 + 7) * pi~n2

[1] 133.3049

> log(exp (1))

[1] 1

> 1log (1000, 10)

(1] 3

> sin(pi/3)"2 + cos(pl/3)"2
(1] 1

> Sin(pi/3)"2 + cos(pl/3)"2
Error: couldn't find function "Sin"

R as a calculator

> log2(32)
[1] 5

> sqrt(2)
[1] 1.414214

> seq(0, 5, length=6)
[1] 01 2 3 4 5

> plot(sin(seq(0, 2*pi,

0.5 1.0
|

sin(seq(0, 2 * pi, length = 100))
0.0
1

5

Index

length=100)))

100

Basic (atomic) data types

* Logical * Character
> x <= T; y <- F > a <- "1"; b <=1
> x; v > a; b
(1] TRUE [1] 717
[1] FALSE (111
_ > a <- "character"
* Numerical

2 > b <_ "a"; C <_ a
> a <- 5; b <= sgrt
qrt(2) > a; b; c

> ai b [1] "character"

I::I-] 5 [1] "a"

(1] 1.414214 1] "character™

Data Type Conversion

* Type conversions in R work as you would expect. For
example, adding a character string to a numeric
vector converts all the elements in the vector to
character.

e Use is.foo to test for data type foo. Returns TRUE or
FALSE

Use as.foo to explicitly convert it.

* is.numeric(), is.character(), is.vector(), is.matrix(),
is.data.frame()
as.numeric(), as.character(), as.vector(), as.matrix(),
as.data.frame)

Vectors, Matrices, Arrays

* Vector
* Ordered collection of data of the same data type
* Example:
 last names of all students in this class
* Mean intensities of all genes on an oligonucleotide microarray
* In R, single number is a vector of length 1

* Matrix
* Rectangular table of data of the same type
* Example
* Intensities of all genes measured during a microarray experiment

* Array
* Higher dimensional matrix

Vectors

e VVector: Ordered collection of data of the same data

type

> x <= c¢(5.2, 1.7, 6.3)

> 1og (x)

>y <-= 1:5

> z <- seq(l, 1.4, by = 0.1)
>y + z

> length (vy)

> mean(y + z)

Vectors

> Mydata <- c(2,3.5,-0.2) Vector (c=“concatenate”)
> Colors <-
c ("Red", "Green", "Red") Character vector

> x1 <- 25:30
> x1
(1] 25 26 27 28 29 30 Number sequences

> Colors|[2]
[1] "Green" One element (1-index!)

> x1[3:5]
(1] 27 28 29 Various elements

Operation on vector elements

> Mydata
[1] 2 3.5 -0.2

> Mydata > 0 Test on the elements
[1] TRUE TRUE FALSE

> Mydata [Mydata>0]
(1] 2 3.5

e Extract the positive elements

> Mydatal[-c(1,3)]
[1] 3.5

* Remove elements

Vector operations

> x <= c(5,-2,3,-7)

> vy <- c(1,2,3,4)*10 Operation on all the elements
>y

[1] 10 20 30 40

> sort (x) Sorting a vector
(1] -7 -2 3 5

> order (x)

[1] 4 2 3 1 Element order for sorting

> ylorder (x)]

[1] 40 20 30 10 Operation on all the components
> rev (x) Reverse a vector

[1] -7 3 =2 5

Matrices

* Matrix: Rectangular table of data of the same type

> m <- matrix(1l:12,

[,1]1 [,2]
(1,] 1 2
[2,] 4 5
(3,] 7 8
[4,] 1

> m.new <- m + vy
> t (m.new)

[,1]

(1,1 0 4
[2,] 1 5
[3,] ©
> dim (m)

[1] 4 3

> dim(t (m.new))
[

4,

[,3]

byrow

[, 4]
12
13
14

T); m

Matrices

Matrix: Rectangular table of data of the same type

> x <- c¢(3,-1,2,0,-3,06)

> x.mat <- matrix(x,ncol=2) Matrix with 2 cols
> xX.mat
[,1] [,2]
(1,] 3 0
(2,] -1 -3
[3,] 2 6

> x.mat <- matrix(x,ncol=2,

byrow=T) By row creation
> x.mat
[, 11 [,2]
(1,] 3 -1
(2,] 2 0
[3,] -3 o

Dealing with matrices

> x.mat[, 2] 2nd col

[1] -1 0 ©

> x.mat[c(1,3),] 1st and 3 lines
[,11 [,2]

[1,] 3 -1

[2,] -3 6

> x.mat[-2,] No 2" |ine
[,11 [,2]

[1,] 3 -1

Dealing with matrices

> dim(x.mat) Dimension

[1] 3 2

> t(x.mat) Transpose
[,1] [,2] [,3]

[1,] 3 2 -3

[2,] -1 0 0

> x.mat %$*% t(x.mat) Multiplication

[,1] [,2] [,3]

[1,] 10 6 -15

[2,] 6 4 -6

[3,] -15 -6 45

> solve () solves the equation A %*% X = B for X,

> eigen () Eigenvectors and eigenvalues

Missing values

* Ris designed to handle statistical data and therefore predestined to deal with missing values
* Numbers that are “not available”
> x <- c¢c(1, 2, 3, NA)
> x + 3
[1] 4 5 6 NA
* Testing for Missing Values
> is.na(x) # returns TRUE if x is missing
> vy <- ¢(1,2,3,NA)
> is.na(y) # returns a vector (F F F T)
* “Notanumber”
> log(c (0, 1, 2))
[1] -Inf 0.0000000 0.6931472
> 0/0
[1] NaN

Missing values

* Excluding Missing Values from Analyses

* Arithmetic functions on missing values yield missing
values.
> x <- c(1,2,NA, 3)
> mean (x) # returns NA
> mean (x, na.rm=TRUE) # returns 2

* The function complete.cases() returns a logical
vector indicating which cases are complete.

list rows of data that have missing values
> mydatal[!complete.cases (mydata),]

* The function na.omit() returns the object with
listwise deletion of missing values.

create new dataset without missing data
> newdata <- na.omit (mydata)

Subsetting

It is often necessary to extract a subset of a vector or
matrix

R offers a couple of neat ways to do that
> X <_ C("a", "b"’ "C", "d", "e", "f",
"g"’ "h")

> x[1]

> x[3:5]

> X[-(3:5)]

> x|[c(T, ¥, T, ¥, T, F, T, F)]
> x[x <= "d"]

> m[, 2]

> m[3,]

Lists, data frames, and
factors

Lists

an ordered collection of data of the same type.

> a = c(7,5,1)
> al2]
(1] >
an ordered collection of data of arbitrary types.
> doe = list (name="john",age=28,married=F)
> doeS$name
[1] "john"

> doeSage
(1] 28

Lists 1

* A list is an object consisting of objects called
components.

* The components of a list don’t need to be of the
same mode or type and they can be a numeric
vector, a logical value and a function and so on.

A component of a list can be referredas aa [[1]]
or aaStimes, where aa is the name of the list
and times is a name of a component of aa.

Lists 2

* The names of components may be abbreviated
down to the minimum number of letters needed to
identify them uniquely.

eaal[[1l]] isthe first component of aa, while
aa[l] isthe sublist consisting of the first
component of aa only.

* There are functions whose return value is a List.

Lists are very flexible

> my.list <- list(c(5,4,-1),c("X1","X2","X3"))
> my.list

[[1]]:
(1] 5 4 -1

[[2]]:
[1] " 1" "X2" "XB"

> my.list[[1]]
[1] 5 4 -1

> my.list <- list(cl=c(5,4,-1),c2=c("X1","X2","X3"))
> my.list$c2[2:3]
[1] "XZ" "X3"

Lists 3

Empl <- list (employee=“Anna”, spouse=“Fred”,
children=3, child.ages=c(4,7,9))

Empl[[4]]

EmplSchild.a

Empl [4] # a sublist consisting of the 4t component of Empl
names (Empl) <- letters[1l:4]

Empl <- c(Empl, service=8)

unlist (Empl) # converts it to a vector. Mixed types will
be converted to character, giving a character vector.

More lists

> x.mat

[,1]1 [,2]
[1,] 3 -1
[2,] 2 0
[3,] -3 6

> dimnames (X.mat) <_ list(C("L]_","LZ","L3"),

C("Rl","R2"))
> X.mat
R1 R2
L1 3 -1
L2 2 0

L3 -3 ©

Data frames

represents a spreadsheet.
Rectangular table with rows and columns; data within each
column has the same type (e.g. number, text, logical),
but different columns may have different types.

Example:
> cw = chickwts
> CwW

welght feed
1 179 horsebean
11 309 linseed
23 243 soybean

377 473 sunflower

Data frames

Creating a data frame

d <- c(1,2,3,4)

e <- c("red", "white", "red", NA)

f <- ¢ (TRUE, TRUE, TRUE, FALSE)

mydata <- data.frame(d,e, f)

names (mydata) <- c("ID","Color","Passed")

vV V. V V V

Adding a new column
> mydata$Height <- ¢(100,120,120,130)
> mydata$Shape <- "circle"

Subsetting

Individual elements of a vector, matrix, array or data frame are
accessed with “[]” by specifying their index, or their name

> cw = chickwts
> Ccw

welght feed
1 179 horsebean
11 309 linseed
23 243 soybean
37 423 sunflower

> cw [3,2]
[1] horsebean

© Levels: casein horsebean linseed ... sunflower
> cw [3,]
welght feed

3 136 horsebean

Subsetting

Other ways to subset...

columns 3,4,5 of dataframe

> myframe[3:5]

columns ID and Age from dataframe
> myframe[c ("ID", "Age")]

variable ID in the dataframe

> myframe$ID

using subset function
> subset(myframe, Age < 35, c("ID","Age"))

Merging

To merge two dataframes (datasets) horizontally, use the merge
function. In most cases, you join two dataframes by one or more
common key variables (i.e., an inner join).

merge two dataframes by ID
total <- merge (dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country

total <- merge (dataframeA,
dataframeB,
by=c ("ID", "Country"))

Merging

ADDING ROWS

To join two dataframes (datasets) vertically, use the rbind function. The
two dataframes must have the same variables, but they do not have to
be in the same order.

total <- rbind(dataframeA, dataframeB)

If dataframeA has variables that dataframeB does not, then either:
. Delete the extra variables in dataframeA or

. Create the additional variables in dataframeB and set them to NA (missing) before
joining them with rbind.

http://www.statmethods.net/input/missingdata.html

Aggregating

* |tis relatively easy to collapse data in R using one or
more BY variables and a defined function.

* # aggregate dataframe mtcars by cyl, returning means
for numeric variables

> attach (mtcars)

> aggdata <- aggregate(mtcars,
by=list (cyl),
FUN=mean,
na.rm=TRUE)

> print (aggdata)

Applied Statistical Computing and Graphics 47

Factors

Tell R that a variable is nominal by making it a factor. The factor stores
the nominal values as a vector of integers in the range [1... k]
(where k is the number of unique values in the nominal variable),
and an internal vector of character strings (the original values)
mapped to these integers.

variable gender with 20 "male" entries and 30 "female" entries

gender <- c(rep("male",20), rep("female", 30))
gender <- factor (gender)

stores gender as 20 1s and 30 2s and associates
1=female, 2=male internally (alphabetically)

R now treats gender as a nominal variable
summary (gender)

Applied Statistical Computing and Graphics 48

Control structures

Control Structures

Control structures in R allow you to control the flow of execution of the program,
depending on runtime conditions. Common structures are

@ if, else: testing a condition

for: execute a loop a fixed number of times
while: execute a loop while a condition is true
repeat: execute an infinite loop

break: break the execution of a loop

next: skip an interation of a loop
@ return: exit a function

Most control structures are not used in interactive sessions, but rather when writing
functions or longer expresisons.

Slide credits: thanks to JHU's R. D. Peng

Control Structures: if

if (<condition>) {
do something

} else {
do something else

if (<condition1>) A
do something
} else if(<condition2>) {
do something different

} else {
do something different

This is a valid if/else structure.

if(x > 3) {

y <- 10
T else {

y <= 0
}

So is this one.

y <= if(x > 3) {
10

} else {
0

}

if(x > 1) {
print("x is big")
} else if(x > 0) {
print("x is positive")
} else {
print("x is negative or zero")

How are these two

conditionals different?
if(x > 1) {

print("x is big")
}
if(x > 0) {

print("x is positive")
}

print("x is negative or zero")

for loops take an interator variable and assign it successive values from a sequence or
vector. For loops are most commonly used for iterating over the elements of an object
(list, vector, etc.)

for(i in 1:10) {
print (i)
}

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3,
..., 10, and then exits.

These three loops have the same behavior.

X <_ C("a", llbll, "C", lldll)

for(i in 1:4) {
print(x[i])
}

for(i in seq_along(x)) {
print (x[i])
¥

for(letter in x) {
print(letter)

}

for(i in 1:4) print(x[i])

seq_along creates
a list of indices

While loops begin by testing a condition. If it is true, then they execute the loop body.
Once the loop body is executed, the condition is tested again, and so forth.

count <= 0

while(count < 10) {
print (count)
count <- count + 1

}

While loops can potentially result in infinite loops if not written properly. Use with
care!

Sometimes there will be more than one condition in the test.
z <- 5
while(z >= 3 && z <= 10) {

print(z)
coin <- rbinom(1, 1, 0.5)

if(coin == 1) { ## random walk
z2 L= Z ¥ 1

} else {
z =% = 1

}

Conditions are always evaluated from left to right.

Repeat initiates an infinite loop; these are not commonly used in statistical applications
but they do have their uses. The only way to exit a repeat loop is to call break.

x0 <=1
tol <- 1e-8
repeat {

x1 <- computeEstimate()

if(abs(xl - x0) < tol) {
break

} else {
x0 <- x1

next, return

next is used to skip an iteration of a loop

for(i in 1:100) {
if(i <= 20) {
Skip the first 20 iterations
next

¥
Do something here

}

return signals that a function should exit and return a given value

Arithmetic Operators

Operator
+

*

/
X %% y
X %/% Yy

Description

addition

subtraction

multiplication

division

exponentiation

modulus (x mod y) 5%%2 is 1
Integer division 5%/%2 is 2

Applied Statistical Computing and Graphics

60

Arithmetic Operators

Functions: abs (), sign(), log(), loglO(), sqrt(),
exp(), sin(), cos(), tan()
gamma () , lgamma () , choose()

Rounding: round (x, 3)

Rounding: f£loor(2.5) =>2, ceiling(2.5) =>3

Vector functions

> vec <- c(5,4,6,11,14,19)

> sum(vec)
[1] 59

> prod(vec)
[1] 351120

> mean (vec)
[1] 9.833333
> median (vec)
[1] 8.5

> var (vec)
[1] 34.96667
> sd(vec)

[1] 5.913262

> summary (vec)
Min. 1lst Qu.

4.000 5.250

Median
8.500

And also: min () max()
cummin() cummax ()
cumsum() cumprod()

range ()

Max.
19.000

Mean 3rd Qu.
9.833 13.250

Operator

ISTRUE(X)

Logical Operators

Description

less than

less than or equal to
greater than

greater than or equal to
exactly equal to

not equal to

Not X

XORYy

XAND vy

test if x is TRUE

Applied Statistical Computing and Graphics

63

Statistical functions

J(*wf —
- f(x _ 1 e 2t e
Normal distr (X|p,0)= —
oN2rx |
> dnorm(2,mean=1,sd=2) PDF in point 2 _
[1] 0.1760327 for X ~ N(1,4) |
> qnorm(0.975) Quantile for
[1] 1.959964 the 0.975 for N~ (0,1)
> pnorm(c(2,3) ,mean=2) = P(X<2) and P(X<3), where X ~ N(2,1)

[1] 0.5000000 0.8413447
> norm.alea <- rnorm(1000) Pseudo-random normally distributed numbers
> summary (norm.alea)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
-3.418 -0.6625 -0.0429 -0.01797 0.6377 3.153

> sd(norm.alea)
[1]1 0.9881418

How to remember functions

For a normal distribution, the root iIs norm. Then add the letters

d density (dnorm())

P probability(pnorm ())

q quantiles (gqnorm ())

r pseudo-random (rnorm())

Distribution | Root Argument

normal norm mean, sd, log
t (Student) t df, log
uniform unif min, max, log
F (Fisher) f dfl, df2

X2 chisq df, ncp, log
Binomial binom size, prob, log
exponential exp rate, log
Poisson pois lambda, log

Function Description

dnorm(x) normal density function (by default m=0 sd=1)
plot standard normal curve
X <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y, type="l', xlab="Normal Deviate", ylab="Density", yaxs="i")

pnorm(q) cumulative normal probability for q
(area under the normal curve to the right of q)
pnorm(1.96) is 0.975

gnorm(p) normal quantile.
value at the p percentile of normal distribution
gnorm(.9) is 1.28 # 90th percentile

rnorm(n, m=0,sd=1) n random normal deviates with mean m
and standard deviation sd.
#50 random normal variates with mean=50, sd=10
X <- rnorm(50, m=50, sd=10)

dbinom(x, size, prob) binomial distribution where size is the sample size
pbinom(q, size, prob) and prob is the probability of a heads (pi)
gbinom(p, size, prob) # prob of 0 to 5 heads of fair coin out of 10 flips
rbinom(n, size, prob) dbinom(0:5, 10, .5)

prob of 5 or less heads of fair coin out of 10 flips
pbinom(5, 10, .5)

dpois(x, lamda) poisson distribution with m=std=lamda

ppois(g, lamda) #probability of 0,1, or 2 events with lamda=4

gpois(p, lamda) dpois(0:2, 4)

rpois(n, lamda) # probability of at least 3 events with lamda=4
1- ppois(2,4)

dunif(x, min=0, max=1) uniform distribution, follows the same pattern
punif(g, min=0, max=1) as the normal distribution above.

qgunif(p, min=0, max=1) #10 uniform random variates

runif(n, min=0, max=1) X <- runif(10)

Importing/
Exporting Data

Importing/Exporting Data

* Importing data
* R can import data from other applications

* Packages are available to import microarray data, Excel
spreadsheets etc.

* The easiest way is to import tab delimited files
> SimpleData <- read.table(

file = "http://eh3.uc.edu/SimpleData.txt",
header = TRUE,

quote = "",

sep = "\t",

comment.char="")

* Exporting data
* R can also export data in various formats
* Tab delimited is the most common
> write.table(x, "filename") *)

*) make sure to include the path or
to first change the working directory

Credits

* Roger D. Peng
* Gilberto Camara (R — a brief introduction)

 Ralitza Gueorguieva (R Basics)

