


Prentice Hall Information 
a n d Sys tem Sciences Series 
Thomas Kailath, Editor 

Astrom & Wittenmark 

Bhattacharyya, Chape Hat & Keel 

Friedland 

Gardner 

Grewal & Andrews 

Haykin 

Haykin, ed. 

Jain 
Kailath 

Kung 

Kung, Whitehouse & Kailath, eds. 

Kwakernaak & Sivan 

Ljung 

Ljung & Glad 

Macovski 

Narendra & Annaswamy 

Nekoogar & Moriarty 

Porat 

Rugh 

Siu, Roychowdhury & Kailath 

Soliman & Srinath 

Solo & Kong 
Srinath, Rajasekaran 
& Viswanathan 

Wells 

Williams 

Computer-Controlled Systems: Theory and Design. 3rd ed. 

Robust Control: The Parametric Approach 

Advanced Control System Design 

Statistical Spectral Analysis: A Nonprobabilistic Theory 

Kalman Filtering: Theory and Practice 

Adaptive Filter Theory, 3rd ed. 

Blind Deconvolution 

Fundamentals of Digital Image Processing 

Linear Systems 

Digital Neural Networks 

VLSI and Modern Signal Processing 

Signals & Systems 

System Identification: Theory for the User, 2nd ed. 

Modeling of Dynamic Systems 

Medical Imaging Systems 

Stable Adaptive Systems 

Digital Control Using Digital Signal Processing 

Digital Processing of Random Signals: Theory & Methods 

Linear System Theory. 2nd ed. 

Discrete Neural Computation: A Theoretical Foundation 

Continuous and Discrete Time Signals and Systems, 2nd ed. 

Adaptive Signal Processing Algorithms: Stability & Performance 

Introduction to Statistical Signal Processing with Applications 

Applied Coding and Information Theory for Engineers 

Designing Digital Filters 



System Identification 
Theory for the User 

Second Edition 

Lennart Ljung 
Linkoping University 

Sweden 

P R E N T I C E H A L L P T R 

Upper Saddle River, NJ 07458 
http://www.phptr.com 

http://www.phptr.com


Library of Congress Cataloging-in-Publication Data 

Editorial/production supervision: Jim Gwyn 
Cover design director: Jerry Votta 
Cover design: Anthony Gemmellaro 
Manufacturing manager: Alexis R. Heydt 
Acquisitions editor: Bernard Goodwin 
Marketing manager: Kaylie Smith 
Composition: PreTgX 

© 1999 Prentice Hall PTR 
^a^i^= Prentice-Hall, Inc. 
^ = ^ ^ = A Simon & Schuster Company 
: r^L Upper Saddle River, New Jersey 07458 

Prentice Hall books are widely used by corporations and government agencies for training, market' 
ing. and resale. The publisher offers discounts on this book when ordered in bulk quantities. For 
more information, contact: 

Corporate Sales Department 
Phone: 800-382-3419 
Fax: 201-236-7141 
E-mail: corpsales@prenhall.com 

Or write: 
Prentice Hall PTR 
Corp. Sales Department 
One Lake Street 
Upper Saddle River, NJ 07458 

All rights reserved. No part of this book may be reproduced, in any form or by any means, without 
permission in writing from the publisher. 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

ISBN o-ia-bstb^s-e 
Prentice-Hall International (UK) Limited. London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc.. Toronto 
Prentice-Hall Hispanoamericana. S.A., Mexico 
Prentice-Hall of India Private Limited. New Delhi 
Prentice-Hall of Japan, Inc.. Tokyo 
Simon & Schuster Asia Pte. Ltd.. Singapore 
Editora Prentice-HaJl do Brasil. Ltda., Rio de Janeiro 

mailto:corpsales@prenhall.com


To Ann-Kristin. Johan, and Arvid 





Contents 

Preface t o t h e First Edit ion xiv 

A c k n o w l e d g m e n t s xvi 

Preface t o t h e Second Edit ion xvii i 

Operators and Nota t iona l Convent ions x ix 

• 1 Introduction 1 

1.1 Dynamic Systems 1 
1.2 Models 6 
1.3 An Archetypical P rob lem—ARX Models and the Linear Least Squares 

Method 8 
1.4 The System Identification Procedure 13 
1.5 Organization of the Book 14 
1.6 Bibliography 16 

part i: systems and mode ls 

• 2 Time-Invariant Linear Systems 18 

2.1 Impulse Responses, Disturbances, and Transfer Functions 18 
2.2 Frequency-Domain Expressions 28 
2.3 Signal Spectra 33 
2.4 Single Realization Behavior and Ergodicity Results (*) 42 
2.5 Multivariable Systems (*) 44 
2.6 Summary 45 
2.7 Bibliography 46 
2.8 Problems 47 

Appendix 2A: Proof of Theorem 2.2 52 
Appendix 2B: Proof of Theorem 2.3 55 
Appendix 2C: Covariance Formulas 61 

vii 



viii 

3.1 Simulation 63 

3.2 Prediction 64 

3.3 Observers 72 

3.4 Summary 75 

3.5 Bibliography 75 

3.6 Problems 76 

• 4 Models of Linear Time-Invariant Systems 79 

4.1 Linear Models and Sets of Linear Models 79 

4.2 A Family of Transfer-Function Models 81 

4.3 State-Space Models 93 

4.4 Distributed Parameter Models (*) 103 

4.5 Model Sets. Model Structures, and Identifiabilitv: Some Formal Aspects 
(*) 105 

4.6 Identifiabilitv of Some Model Structures 114 

4.7 Summary 118 

4.8 Bibliography 119 

4.9 Problems 121 

Appendix 4A: Identifiabilitv of Black-Box Multivariable Model 
Structures 128 

• 5 Models for Time-varying and Nonlinear Systems 140 

5.1 Linear Time-Varying Models 140 

5.2 Models with Nonlinearities 143 

5.3 Nonlinear State-Space Models 146 

5.4 Nonlinear Black-Box Models: Basic Principles 148 

5.5 Nonlinear Black-Box Models: Neural Networks, Wavelets and Classical 
Models 154 

5.6 Fuzzy Models 156 

5.7 Formal Characterization of Models (*) 161 

5.8 Summary 164 

5.9 Bibliography 165 

5.10 Problems 165 

Contents 

63 • 3 Simulation and Prediction 



Contents ix 

part ii: m e t h o d s 

• 6 Nonparametr ic Time- and Frequency-Domain Methods 168 

6.1 Transient-Response Analysis and Correlation Analysis 168 
6.2 Frequency-Response Analysis 170 
6.3 Fourier Analysis 173 
6.4 Spectral Analysis 178 
6.5 Estimating the Disturbance Spectrum (*) 187 
6.6 Summary 189 
6.7 Bibliography 190 
6.8 Problems 191 

Appendix 6A: Derivation of the Asymptotic Properties of the Spectral 
Analysis Estimate 194 

• 7 Parameter Estimation Methods 197 

7.1 Guiding Principles Behind Parameter Estimation Methods 197 
7.2 Minimizing Prediction Errors 199 
7.3 Linear Regressions and the Least-Squares Method 203 
7.4 A Statistical Framework for Parameter Estimation and the Maximum 

Likelihood Method 212 
7.5 Correlating Prediction Errors with Past Data 222 
7.6 Instrumental-Variable Methods 224 
7.7 Using Frequency Domain Data to Fit Linear Models (*) 227 
7.8 Summary 233 
7.9 Bibliography 234 
7.10 Problems 236 

Appendix 7A: Proof of the Cramer-Rao Inequality 245 

• 8 Convergence and Consistency 247 

8.1 Introduction 247 
8.2 Conditions on the Data Set 249 
8.3 Prediction-Error Approach 253 
8.4 Consistency and Identifiabilitv 258 
8.5 Linear Time-Invariant Models: A Frequency-Domain Description of the 

Limit Model 263 
8.6 The Correlation Approach 269 
8.7 Summary 273 
8.8 Bibliography 274 
8.9 Problems 275 



X Contents 

280 

9.1 Introduction 280 
9.2 The Prediction-Error Approach: Basic Theorem 281 
9.3 Expressions for the Asymptotic Variance 283 
9.4 Frequency-Domain Expressions for the Asymptotic Variance 290 
9.5 The Correlation Approach 296 
9.6 Use and Relevance of Asymptotic Variance Expressions 302 
9.7 Summary 304 
9.8 Bibliography 305 
9.9 Problems 305 

Appendix 9A: Proof of Theorem 9.1 309 
Appendix 9B: The Asymptotic Parameter Variance 313 

• 10 Computing the Estimate 317 

10.1 Linear Regressions and Least Squares 317 
10.2 Numerical Solution by Iterative Search Methods 326 
10.3 Computing Gradients 329 
10.4 Two-Stage and Multistage Methods 333 
10.5 Local Solutions and Initial Values 338 
10.6 Subspace Methods for Estimating State Space Models 340 
10.7 Summary 351 
10.8 Bibliography 352 
10.9 Problems 353 

• 11 Recursive Estimation Methods 361 

11.1 Introduction 361 
11.2 The Recursive Least-Squares Algorithm 363 
11.3 The Recursive IV Method 369 
11.4 Recursive Prediction-Error Methods 370 
11.5 Recursive Pseudolinear Regressions 374 
11.6 The Choice of Updating Step 376 
11.7 Implementat ion 382 
11.8 Summary 386 
11.9 Bibliography 387 
11.10 Problems 388 

Appendix 11 A: Techniques for Asymptotic Analysis of Recursive 
Algorithms 389 

11A Problems 398 

• 9 Asymptotic Distribution of Parameter Estimates 



Contents 

• 12 Options and Objectives 

12.1 Options 399 
12.2 Objectives 400 
12.3 Bias and Variance 404 
12.4 Summary 406 
12.5 Bibliography 406 
12.6 Problems 406 

• 13 Experiment Design 408 

13.1 Some General Considerations 408 
13.2 Informative Experiments 411 
13.3 Input Design for Open Loop Experiments 415 
13.4 Identification in Closed Loop: Identifiabilitv 428 
13.5 Approaches to Closed Loop Identification 434 
13.6 Optimal Experiment Design for High-Order Black-Box Models 441 
13.7 Choice of Sampling Interval and Presampling Filters 444 
13.8 Summary 452 
13.9 Bibliography 453 
13.10 Problems 454 

• 14 Preprocessing Data 458 

14.1 Drifts and Detrending 458 
14.2 Outliers and Missing Data 461 
14.3 Selecting Segments of Data and Merging Experiments 464 
14.4 Prefiltering 466 
14.5 Formal Design of Prefiltering and Input Properties 470 
14.6 Summary 474 
14.7 Bibliography 475 
14.8 Problems 475 

• 15 Choice of Identification Criterion 477 

15.1 General Aspects 477 
15.2 Choice of Norm: Robustness 479 
15.3 Variance-Optimal Instruments 485 
15.4 Summary 488 

part iii: user's choices 



xii Contents 

15.5 
15.6 

Bibliography 489 
Problems 490 

• 16 Model Structure Selection and Model Validation 491 

16.1 General Aspects of the Choice of Model Structure 491 
16.2 A Priori Considerations 493 
16.3 Model Structure Selection Based on Preliminary Data Analysis 495 
16.4 Comparing Model Structures 498 
16.5 Model Validation 509 
16.6 Residual Analysis 511 
16.7 Summary 516 
16.8 Bibliography 517 
16.9 Problems 518 

• 17 System Identification in Practice 520 

17.1 The Tool: Interactive Software 520 
17.2 The Practical Side of System Identification 522 
17.3 Some Applications 525 
17.4 What Does System Identification Have To Offer? 536 

• Appendix I Some Concepts From Probability Theory 539 

• Appendix II Some Statistical Techniques for Linear Regressions 543 

II. 1 Linear Regressions and the Least Squares Estimate 543 
11.2 Statistical Properties of the Least-Squares Estimate 551 
II .3 Some Fur ther Topics in Least-Squares Estimation 559 
II.4 Problems 564 

References 565 

Subject Index 596 

Reference Index 603 



Preface to the First Edition 

System identification is a diverse field that can be presented in many different ways. 
The subtitle. Theory for the User, reflects the atti tude of the present treatment. Yes, 
the book is about theory, but the focus is on theory that has direct consequences 
for the understanding and practical use of available techniques. My goal has been 
to give the reader a firm grip on basic principles so that he or she can confidently 
approach a practical problem, as well as the rich and sometimes confusing literature 
on the subject. 

Stressing the utilitarian aspect of theory should not, I believe, be taken as an 
excuse for sloppy mathematics. Therefore, I have tried to develop the theory without 
cheating. The more technical parts have, however, been placed in appendixes or 
in asterisk-marked sections, so that the reluctant reader does not have to stumble 
through them. In fact, it is a redeeming feature of life that we are able to use many 
things without understanding every detail of them. This is true also of the theory of 
system identification. The practitioner who is looking for some quick advice should 
thus be able to proceed rapidly to Part III (User 's Choices) by hopping through the 
summary sections of the earlier chapters. 

The core material of the book should be suitable for a graduate-level course 
in system identification. As a prerequisite for such a course, it is natural, although 
not absolutely necessary, to require that the student should be somewhat familiar 
with dynamical systems and stochastic signals. The manuscript has been used as 
a text for system identification courses at Stanford University, the Massachusetts 
Institute of Technology, Yale University, the Australian National University and the 
Universities of Lund and Linkoping. Course outlines, as well as a solutions manual 
for the problems, are available from the publisher. 

The existing literature on system identification is indeed extensive and virtually 
impossible to cover in a bibliography. In this book I have tried to concentrate on 
recent and easily available references that I think are suitable for further study, as 
well as on some earlier works that reflect the roots of various techniques and results. 
Clearly, many other relevant references have been omitted. 

Some portions of the book contain material that is directed more toward the 
serious student of identification theory than to the user. These portions are put 
either in appendixes or in sections and subsections marked with an asterisk (*) . 
While occasional references to this material may be encountered, it is safe to regard 
it as optional reading; the continuity will not be impaired if it is skipped. 

The problem sections for each chapter have been organized into four groups 
of different problem types: 

xiii 



Preface to the First Edition 

G problems: These could be of General interest and it may be worthwhile to 
browse through them, even without intending to solve them. 
E problems: These are regular pencil-and-paper Exercises to check the basic 
techniques of the chapter. 
T problems: These are Theoretically oriented problems and typically more 
difficult than the E problems. 
D problems: In these problems the reader is asked to fill in technical Details 
that were glossed over in the text. 
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Operators and Notational Conventions 

arg(c) = argument of the complex number z 
arg min fix) = value of .t that minimizes / (.v) 
xx e As Fin. m): sequence of random variables r,v converges in distribution to 

the F-distribution with n and m degrees of freedom 
Xfr e AsN(m. P): sequence of random variables x^ converges in distribution to 

the normal distribution with mean m and covariance matrix P: see (1.17) 
x*j € Asx2(n)'- sequence of random variables A\V converges in distribution to 

the x2 distribution with n degrees of freedom 
Covjr. = covariance matrix of the random vector x: see (1.4) 
det A = determinant of the matrix A 
dim 6 = dimension (number of rows) of the column vector 9 
Ex = mathematical expectation of the random vector .v; see (T.3) 
Exit) = lim/v—x ~ £ * ( ? ) ; see (2.60) 

N 
Oix) = ordo .v: function tending to zero at the same rate as x 
oix) = small ordo x: function tending to zero faster than JC 
x € Nim. P): random variable x is normally distributed with mean m and 

covariance matrix P: see (1.6) 
Re z = real part of the complex number z 
%if) = range of the function / = the set of values that f{x) may assume 
Rd = Euclidian ^/-dimensional space 
,v = so l{ / ( . t ) = 0}: x is the solution (or set of solutions) to the equation 

fix) = 0 
t r (A) = trace (the sum of the diagonal elements) of the matrix A 
Varx = variance of the random variable x 
A~x — inverse of the matrix A 
AT = transpose of the matrix A 
A~T = transpose of the inverse of the matrix A 
z = complex conjugate of the complex number ^ 
(superscript * is not used to denote transpose and complex conjugate: it is used 

only as a distinguishing superscript) 

>'i = { v ( 5 ) . y ( J + ! ) • • • •«>•( ' )} 

xix 



XX Operators and Notational Conventions 

v r = { y ( l ) . y ( 2 ) , - - - y ( r ) } 
U\(a>) = Fourier transform of M ' v : see (2.37) 

Rv(z) = Ev(t)vT{t - r ) ; s e e (2.61) 

fl,u.(r) = ~Es(t)wT(t - T ) : see (2.62) 
<J>r(a>) = spectrum of v = Fourier transform of Rv{z): see (2.63) 
<J>Xu (tw) = cross spectrum between 5 and w = Fourier transform of / ? 5 u , ( r ) : see 

(2.64) 

= i Ef=i *(0.^(/ ~ r ) ; s e e (6.10) 

(OJ) = estimate of the spectrum of u based on t r v ; see (6.48) 

v(t\t — 1) = prediction of v(t) based on v'~l 

d 
— V(0) = gradient of V(#) with respect to 0: a column vector of dimension 
du 

dim 0 if V is scalar valued 
V'(0) = gradient of V with respect to its argument 
i'E(e, 0) = partial derivative of t with respect to s 
8jj = Kronecker 's delta: zero unless / = j 
S(k) = 8k() 

$(8Q, e) = e neighborhood of 0 O : {$\\0 - < e) 
= = the left side is defined by the right side 
| • | = (Euclidian) norm of a vector 
11 • 11 = (Frobenius) norm of a matrix (see 2.91) 

S Y M B O L S U S E D IN T E X T 

This list contains symbols that have some global use. Some of the symbols may have 
another local meaning. 

DM = set of values over which 9 ranges in a model structure. See (4.122) 
DC = set into which the 0-estimate converges. See (8.23) 
e(t) = disturbance at time t: usually {e(t). t = 1, 2 . . . . } is white noise (a sequence 

of independent random variables with zero mean values and variance A ) 
£o(0 = " t rue" driving disturbance acting on a given system S; see (8.2) 
fe(x). fe(x. 9) = probability density function of the random variable e: see (1.2) 

and (4.4) 
G(q) = transfer function from u to y ; see (2.20) 
G(q.9) = transfer function in a model structure, corresponding to the parameter 

value 9: see (4.4) 
0{)(q) = " t rue" transfer function from u to y for a given system; see (8.7) 

G_\(q) — estimate of G(q) based on Z 

G*(q) = limiting estimate of G(q); see (8.71) 



Operators and Notational Conventions xxi 

G\'(q) = difference Gy(q) — Go(<?):see (8.15) 
Q = set of transfer functions obtained in a given structure; see (8.44) 

H{q), H{q, 0 ) , H0(q), Hx(q), H*(q), H\(q), 3<\ analogous to G but for the 
transfer function from e to y 

L(q) = prefilter for the prediction errors; see (7.10) 
£(£), £(e. 9), l(e, t. 9) = norm for the prediction errors used in the criterion; see 

(7.11), (7.16), (7.18) 
M = model structure (a mapping from a parameter space to a set of models); see 

(4.122) 
M{9) = particular model corresponding to the parameter value 9: see (4.122) 
34* = set of models (usually generated as the range of a model structure); see 

(4.118). 
Pe = asymptotic covariance matrix of 9\ see (9.11) 
q*q~l = forward and backward shift operators; see (2.15) 
S = "the true system;" see (8.7) 
T(q) = [G(q)H(q)];see (4.109) 

T(q. 9). TQ(q), Ts(q). fs(q) = analogous to G and H 
u(t) = input variable at time t 
VV(#, ZN) ~ criterion function to be minimized; see (7.11) 
V(9) = limit of criterion function; see (8.28) 
v(t) = disturbance variable at time t 
w{t) = usually a disturbance variable at time t\ the precise meaning varies with 

the local context 
x(t) = state vector at time / ; dimension = n 
y(t) = output variable at time t 
\(t\9) = predicted output at time t using a model M(9) and based on Z ' " 1 ; see 

(4-6) 

Z(t) = [ y ( r ) M(01 r :see(4.113) 
Z v = {«(0) ,y(0) u{N),y{N)} 
e(r. 9) = prediction error y(t) — y(t\9) 
X = used to denote variance; also, in Chapter 11. the forgetting factor; see (11.6). 

(11.63) 
9 = vector used to parametrize models; dimension = d; see (4.4), (4.5). (5.66) 

#.v, 9Q, 0*. 9$ = analogous to G 
ip{t) = regression vector at time t; see (4.11) and (5.67) 

/<)(/) = [«(/) e0(t)]r; see (8.14) 
\j/(t. 9) — gradient of y{t\9) with respect to 9; a ^-dimensional column vector: 

see (4.121c) 
£(/), £(/, 9) = "the correlation vector" (instruments); see (7.110) 
T(q, 9) = gradient of T(q. 9) with respect to 9 (a d x 2 matrix); see (4.125) 



xxii Operators and Notational Conventions 

ABBREVIATIONS A N D A C R O N Y M S 

A R A R X : See Table 4.1 
A R M A: AutoRegressive Moving Average (see Table 4.1) 
A R M AX: AutoRegressive Moving Average with ex te rna l input (see Table 4.1) 
A R X : AutoRegressive with ex te rna l input (see Table 4.1) 
BJ: Box-Jenkins model structure (see Table 4.1) 
ETFE: Empirical Transfer Function Estimate; see (6.24) 
FIR: Finite Impulse Response model (see Table 4.1) 
IV: Instrumental variables (see Section 7.6) 
LS: Least Squares (see Section 7.3) 
ML: Maximum Likelihood (see Section 7.4) 
MSE: Mean Square Error 
OE: Output error model structure (see Table 4.1) 
PDF: Probability Density Function 
PEM: Prediction-Error Method (see Section 7.2) 
PLR: PseudoLinear Regression (see Section 7.5) 
RIV: Recursive IV (see Section 11.3) 
RLS: Recursive LS (see Section 11.2) 
R P E M : Recursive PEM (see Section 11.4) 
RPLR: Recursive PLR (see Section 11.5) 
SISO: Single Input Single Output 
w.p.: with probability 
w.p. 1: with probability one; see (1.15) 
w.r.t.: with respect to 
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INTRODUCTION 

Inferring models from observations and studying their properties is really what sci
ence is about. The models ("hypotheses." "laws of nature," "paradigms," etc.) may 
be of more or less formal character, but they have the basic feature that they at
tempt to link observations together into some pattern. System identification deals 
with the problem of building mathematical models of dynamical systems based on 
observed data from the system. The subject is thus part of basic scientific methodol
ogy, and since dynamical systems are abundant in our environment, the techniques 
of system identification have a wide application area. This book aims at giving an 
understanding of available system identification methods, their rationale, properties, 
and use. 

1.1 D Y N A M I C S Y S T E M S 

In loose terms a system is an object in which variables of different kinds interact 
and produce observable signals. The observable signals that are of interest to us are 
usually called outputs. The system is also affected by external stimuli. External 
signals that can be manipulated by the observer are called inputs. Others are 
called disturbances and can be divided into those that are directly measured and 
those that are only observed through their influence on the output. The distinction 
between inputs and measured disturbances is often less important for the modeling 
process. See Figure 1.1. Clearly the notion of a system is a broad concept, and it is 
not surprising that it plays an important role in modern science. Many problems in 
various fields are solved in a system-oriented framework. Instead of attempting a 
formal definition of the system concept, we shall illustrate it by a few examples. 

1 
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v 

H' 

• 
• 

u 
Figure 1.1 A system with output y. input u. measured disturbance u \ and 
unmeasured disturbance v. 

Example 1.1 A Solar-Heated House 

Consider the solar-heated house depicted in Figure 1.2. The system operates in such 
a way that the sun heats the air in the solar panel. The air is then pumped into a heat 
storage, which is a box filled with pebbles. The stored energy can later be transferred 
to the house. We are interested in how solar radiation and pump velocity affect the 
temperature in the heat storage. This system is symbolically depicted in Figure 1.3. 
Figure 1.4 shows a record of observed data over a 50-hour period. The variables 
were sampled every 10 minutes. • 

v 

1 • 

Figure 1.2 A solar-heated house. 

Example 1.2 A Military Aircraft 

For the development of an aircraft, a substantial amount of work is allocated to con
struct a mathematical model of its dynamic behavior. This is required both for the 
simulators, for the synthesis of autopilots, and for the analysis of its properties. Sub
stantial physical insight is utilized, as well as wind tunnel experiments, in the course 
of this work, and a most important source of information comes from the test flights. 
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velocity 

Figure 1.3 The solar-heated house system: u: input: / : measured disturbance: y: 
output; i;: unmeasured disturbances. 
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Figure 1.4 Storage temperature y. pump velocity w, and solar intensity / over a 
50-hour period. Sampling interval: 10 minutes. 
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Figure 1.5 The Swedish fighter aircraft JAS-Gripen. 

Figure 1.5 shows the Swedish aircraft JAS-Gripen, developed by S A A B AB, 
Sweden, and Figure 1.6 shows some results from test flights. Such data can be 
used to build a model of the pitch channel, i.e., how the pitch rate is affected 
by the three control signals: elevator, canard, and leading edge flap. The ele
vator in this case corresponds to aileron combinations at the back of the wings, 
while separate action is achieved from the ailerons at the leading edge (the front 
of the wings). The canards are a separate set of rudders at the front of the wings. 

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 
Figure 1.6 Results from test flights of the Swedish aircraft JAS-Gripen. developed by 
SAAB AB. Sweden. The pitch rate and the elevator, leading edge flap, and canard angles 
are shown. 

The aircraft is unstable in the pitch channel at this flight condition, so clearly the 
experiment was carried out under closed loop control. In Section 17.3 we will return 
to this example and identify models based on the measured data. • 
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Example 1.3 Speech 

The sound of the human voice is generated by the vibration of the vocal chords or. 
in the case of unvoiced sounds, the air stream from the throat, and formed by the 
shape of the vocal tract. See Figure 1.7. The output of this system is sound vibration 
(i.e., the air pressure), but the external stimuli are not measurable. See Figure 1.8. 
Data from this system are shown in Figure 1.9. C 

\ 

Vocal chords 

Figure 1.7 Speech generation. 

The systems in these examples are all dynamic, which means that the current 
output value depends not only on the current external stimuli but also on their earlier 
values. Outputs of dynamical systems whose external stimuli are not observed (such 
as in Example 1.3) are often called time series. This term is especially common in 
economic applications. Clearly, the list of examples of dynamical systems can be very 
long, encompassing many fields of science. 

1 

v: chord vibrations 
airflow 

F 

y: sound ! 

Figure 1.8 The speech system: y: output: v: unmeasured disturbance. 
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Figure 1.9 The speech signal (air pressure). Data sampled every 0.125 ms. (8 kHz 
sampling rate). 

1.2 M O D E L S 

Model Types and Their Use 

When we interact with a system, we need some concept of how its variables relate to 
each other. With a broad definition, we shall call such an assumed relationship among 
observed signals a model of the system. Clearly, models may come in various shapes 
and be phrased with varying degrees of mathematical formalism. The intended 
use will determine the degree of sophistication that is required to make the model 
purposeful. 

No doubt, in daily life many systems are dealt with using raema/models, which 
do not involve any mathematical formalization at all. To drive a car, for example, 
requires the knowledge that turning the steering wheel to the left induces a left turn, 
together with subtle information built up in the muscle memory. The importance 
and degree of sophistication of the latter should of course not be underestimated. 

For certain systems it is appropriate to describe their properties using numerical 
tables and/or plots. We shall call such descriptions graphical models. Linear systems, 
for example, can be uniquely described by their impulse or step responses or by their 
frequency functions. Graphical representation of these are widely used for various 
design purposes. The nonlinear characteristics of. say. a valve are also well suited to 
be described by a graphical model. 

For more advanced applications, it may be necessary to use models that describe 
the relationships among the system variables in terms of mathematical expressions 
like difference or differential equations. We shall call such models mathematical (or 
analytical) models. Mathematical models may be further characterized by a number 
of adjectives {time continuous or time discrete, lumped or distributed, deterministic 
or stochastic, linear or nonlinear, etc.) signifying the type of difference or differential 
equation used. The use of mathematical models is inherent in all fields of engineering 
and physics. In fact, a major part of the engineering field deals with how to make good 
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designs based on mathematical models. They are also instrumental for simulation and 
forecasting (prediction), which is extensively used in all fields, including nontechnical 
areas like economy, ecology and biology. 

The model used in a computer simulation of a system is a program. For com
plex systems, this program may be built up by many interconnected subroutines and 
lookup tables, and it may not be feasible to summarize it analytically as a mathemati
cal model. We use the term software model for such computerized descriptions. They 
have come to play an increasingly important role in decision making for complicated 
systems. 

Building Models 

Basically, a model has to be constructed from observed data. The mental model of 
car-steering dynamics, for example, is developed through driving experience. Graph
ical models are made up from certain measurements. Mathematical models may be 
developed along two routes (or a combination of them). One route is to split up the 
system, figuratively speaking, into subsystems, whose properties are well understood 
from previous experience. This basically means that we rely on earlier empirical 
work. These subsystems are then joined mathematically and a model of the whole 
system is obtained. This route is known as modeling and does not necessarily in
volve any experimentation on the actual system. The procedure of modeling is quite 
application dependent and often has its roots in tradition and specific techniques 
in the application area in question. Basic techniques typically involve structuring 
of the process into block diagrams with blocks consisting of simple elements. The 
reconstruction of the system from these simple blocks is now increasingly being done 
by computer, resulting in a software model rather than a mathematical model. 

The other route to mathematical as well as graphical models is directly based on 
experimentation. Input and output signals from the system, such as those in Figures 
1.4,1.6, and 1.9. are recorded and subjected to data analysis in order to infer a model. 
This route is system identification. 

The Fiction of a True System 

The real-life actual system is an object of a different kind than our mathematical 
models. In a sense, there is an impenetrable but transparent screen between our 
world of mathematical descriptions and the real world. We can look through this 
window and compare certain aspects of the physical system with its mathematical 
description, but we can never establish any exact connection between them. The 
question of nature 's susceptibility to mathematical description has some deep philo
sophical aspects, and in practical terms we have to take a more pragmatic view of 
models. Our acceptance of models should thus be guided by "usefulness" rather 
than "truth." Nevertheless, we shall occasionally use a concept of "the true system." 
defined in terms of a mathematical description. Such a fiction is helpful for devis
ing identification methods and understanding their properties. In such contexts we 
assume that the observed data have been generated according to some well-defined 
mathematical rules, which of course is an idealization. 
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1.3 A N ARCHETYPICAL P R O B L E M - A R X M O D E L S A N D T H E LINEAR 
LEAST S Q U A R E S M E T H O D 

In this section we shall consider a specific estimation problem that contains most of 
the central issues that this book deals with. The section will thus be a preview of the 
book. In the following section we shall comment on the general nature of the issues 
raised here and how they relate to the organization of the book. 

The Model 

We shall generally denote the system's input and output at time t by u(t) and y{t), 
respectively. Perhaps the most basic relationship between the input and output is 
the linear difference equation: 

v(f) + aiy{t - 1) + . . . + any(t - n) = b\u{t - 1) + . . . + bmu(t - m) (1.1) 

We have chosen to represent the system in discrete time, primarily since observed data 
are always collected by sampling. It is thus more straightforward to relate observed 
data to discrete time models. In (1.1) we assume the sampling interval to be one time 
unit. This is not essential, but makes notation easier. 

A pragmatic and useful way to see (1 .1) is to view it as a way of determining 
the next output value given previous observations: 

y{t) = -aiy(t - 1) - . . . - a„y(t - n) + b:u(t - 1) + . . . + bmu(t - m) (1.2) 

For more compact notation we introduce the vectors: 

0 — [a\ . . . a„ bi . . . bm ] 

? ( 0 = [ - v ( r - 1) . . . - \ ( t - n ) u(t-l) . . . ii(r 

With these. (1.2) can be rewritten as 

y(t) = <pT(t)0 

To emphasize that the calculation of y (f) from past data (1.2) indeed depends on the 
parameters in 0 . we shall rather call this calculated value y(t\0) and write 

y ( f | 0 ) = <pT(t)6 (1.5) 

The Least Squares Method 

Now suppose for a given system that we do not know the values of the parameters 
in r9, but that we have recorded inputs and outputs over a time interval 1 < t < N: 

ZN = {M(1),.v(1) u(N).y(N)} (1.6) 

An obvious approach is then to select ^ in (1.1) through (1.5) so as to fit the calculated 
values y (t\6) as well as possible to the measured outputs by the least squares method: 

(1.3) 

- m)]1 (1.4) 

min VN(B, Z ' v ) (1.7) 
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where 

•v ,v 
VS(0, Zs) = 1 £>(/) - y(t\9))2 = ~ ]T(y(?) - <pT(t)9)2 ( 1 . 

<=i ~ i=i 

We shall denote the value of 9 that minimizes (1.7) by 9$ 

9N = a rgmin VN(9, ZN) 

8) 

(1.9) 

("arg min" means the minimizing argument, i.e.. that value of 9 which minimizes 
Kv.) 

Since V\ is quadratic in 9, we can find the minimum value easily by setting the 
derivative to zero: 

v 
d 2 

0 = - V ^ , ZN) = ~ y>(f ) ( .v ( f ) - <pT(t)9) 
dB N 

which gives 
N 

t=l 

or 

Li=\ 

- l 

£ > ( 0 v ( 0 

(1.10) 

(1.11) 
J f=l 

Once the vectors ^ ( f ) are defined, the solution can easily be found by modern nu
merical software, such as M a t l a b . 

Example 1.4 First Order Difference Equation 

Consider the simple model: 

>'(/) + ay{t - 1) = bu(t - 1). 

This gives us the estimate according to (1.4), (1.3) and (1.11): 

aN 

X 

E v 2 ( f - D - 2 > ( / - i ) « ( r - i ) 

- £ > • ( / - d « c - 1 ) £ " 2 e - 1 ) 

- E j W j C - 1 ) 

E > - ( 0 « ( / - 1 ) 

- i 

All sums are from r = l t o f = / V . A typical convention is to take values outside 
the measured range to be zero. In this case we would thus take y(0) = 0 . • 



1 0 Chap. I Introduction 

The simple model (1.1) and the well known least squares method (1.11) form the 
archetype of System Identification. Not only that—they also give the most commonly 
used parametric identification method and are much more versatile than perhaps 
perceived at first sight. In particular one should realize that (1.1) can directly be 
extended to several different inputs (this just calls for a redefinition of ip{t) in (1.4)) 
and that the inputs and outputs do not have to be the raw measurements. On the 
contrary—it is often most important to think over the physics of the application 
and come up with suitable inputs and outputs for (1.1), formed from the actual 
measurements. 

Example 1.5 An Immersion Heater 

Consider a process consisting of an immersion heater immersed in a cooling liquid. 
We measure: 

• v(t): The voltage applied to the heater 

• r(t): The temperature of the liquid 

• \{t): The temperature of the heater coil surface 

Suppose we need a model for how >*(/) depends on r(t) and v(t). Some simple con
siderations based on common sense and high school physics ("Semi-physical model-
ing v ) reveal the following: 

• The change in temperature of the heater coil over one sample is proport ional 
to the electrical power in it (the inflow power) minus the heat loss to the liquid 

• The electrical power is proportional to v2(t) 

• The heat loss is proportional to y(t) — r ( r ) 

This suggests the model: 

y(t) = y(r - 1) + av2(t - 1) - fi(y{t - 1) - r(t - 1)) 

which fits into the form 

y(0 + Oty(t - 1) = 02v2(t - 1) + 93r(t - 1) 

This is a two input ( i r and r) and one output model, and corresponds to choosing 

<p(t) = l-y(t - 1) v2U - 1) r ( i - l ) ] 7 

in (1.5). We could also enforce the suggestion from the physics that B\ + 63 = — 1 
by another choice of variables. • 

Linear Regressions 

Model structures such as (1.5) that are linear in 0 are known in statistics as linear 
regressions. The vector <p(t) is called the regression vector, and its components 
are the regressors. "Regress" here alludes to the fact that we try to calculate (or 
describe) y(t) by "going back" to <p(t). Models such as (1.1) where the regression 
vector—(p(t)—contains old values of the variable to be explained—y(r)—are then 
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partly auto-regressions. For that reason the model structure (1.1) has the standard 
name ARX-model : Auto-Regression with eXtra inputs {or eXogeneous variables). 

There is a rich statistical literature on the properties of the estimate H.\ under 
varying assumptions. We shall deal with such questions in a much more general 
setting in Chapters 7 to 9. and the following section can be seen as a preview of the 
issues dealt with there. See also Appendix II. 

Model Quality and Experiment Design 

Let us consider the simplest special case, that of a Finite Impulse Response (FIR) 
model. That is obtained from (1.1) by taking n = 0: 

x(t) = bxit{t - 1) + . •. + b,„uU - m) (1.12) 

Suppose that the observed data really have been generated by a similar mechanism 

y(t) = b°xu{t - 1) + . . . + b^idr - m) + e(t) (1.13) 

where e{t) is a white noise sequence with variance A . but otherwise unknown. (That 
is. e(t) can be described as a sequence of independent random variables with zero 
mean values and variances A . ) Analogous to (1.5). we can write this as 

v(r) = ipl\t)S{) + e(t) (1.14) 

The input sequence « ( / ) , t = 1, 2 . . . . is taken as a given, deterministic, sequence of 
numbers. We can now replace y(r) in (1.12) by the above expression, and obtain 

9N = R{N) 
! = \ . /=L 

R(N) = ^2tp(t)ipT(t) 

or 
.v 

(1.15) 

Since it and hence <p are given, deterministic variables. R{N) is a deterministic 
matrix. If E denotes mathematical expectation, we therefore have 

£6/,v = E = R(N)~] ^v{t)Ee{t) = 0 

since e(t) has zero mean. The estimate is consequently unbiased. 
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P j V = EBsBl = ER(Nrl <p(t)e(t)e(s)<pT(s)R(Nrl 

/ ,s=l 

.V 

= R(N)~l j^V(ty^T(s)R(N)'lEe{t)e(s) 

N 

= R(N)~X <P(t)(pT(s)R(Nyl\8(t - s) 
t.s=\ 

iV 

= R(N)-lxJ2(p(t)<pT(t)R(N)-1 = A.R(N)~l (1 .16) 
r=l 

where we used the fact that e is a sequence of independent variables so that Ee(t )e(s) 
= X8(t - s), with 6(0) = 1 and 8(r) = 0 if r # 0. 

We have thus computed the covariance matrix of the estimate Bs\. It is de
termined entirely by the input properties R(N) and the noise level X. Moreover, 
define 

R = lim — R(N) (1 .17) 

This will correspond to the covariance matrix of ..he input, i.e., the i — j-element of 
~R is 

N 1 . 
lim — - - i )n( r - / ) 

A'-VOO N ' 

If the matrix R is non-singular, we find that the covariance matrix of the parameter 
estimate is approximately given by 

= jjR~l (1 .18) 

and the approximation improves as N —> oo. A number of things follow from this. 

• The covariance decays like 1 /N, so the parameters approach the limiting value 
at the rate \/y/~N. 

• The covariance is proportional to the Noise-To-Signal ratio. That is. it is pro
portional to the noise variance X and inversely proportional to the input power. 

• The covariance does not depend on the input's or noise's signal shapes, only on 
their variance/covariance properties. 

• Experiment design, i.e., the selection of the input w, aims at making the matrix 
R "as small as possible." Note that the same R can be obtained for many 
different signals u. 

We can also form the expectation of 6\8y. i.e., the covariance matrix of the 
parameter error 
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1.4 THE S Y S T E M IDENTIFICATION PROCEDURE 

Three Basic Entities 
As we saw in the previous section, the construction of a model from data involves 
three basic entities: 

1. A data set. like ZN in (1.6). 
2. A set of candidate models: a Model Structure, like the set (1.1) or (1.5). 
3. A rule by which candidate models can be assessed using the data, like the Least 

Squares selection rule (1.9). 

Let us comment on each of these: 

1. The data record. The input-output data are sometimes recorded during a 
specifically designed identification experiment, where the user may determine 
which signals to measure and when to measure them and may also choose the 
input signals. The objective with experiment design is thus to make these choices 
so that the data become maximally informative, subject to constraints that may 

be at hand. Making the matrix R in (1.18) small is a typical example of this, 
and we shall in Chapter 13 treat this question in more detail. In other cases the 
user may not have the possibility to affect the experiment, but must use data 
from the normal operation of the system. 

2. The set of models or the model structure. A set of candidate models is obtained 
by specifying within which collection of models we are going to look for a 
suitable one. This is no doubt the most important and. at the same time, the 
most difficult choice of the system identification procedure. It is here that a 
priori knowledge and engineering intuition and insight have to be combined 
with formal properties of models. Sometimes the model set is obtained after 
careful modeling. Then a model with some unknown physical parameters is 
constructed from basic physical laws and other well-established relationships. 
In other cases standard linear models may be employed, without reference to 
the physical background. Such a model set. whose parameters are basically 
viewed as vehicles for adjusting the fit to the data and do not reflect physical 
considerations in the system, is called a black box. Model sets with adjustable 
parameters with physical interpretation may, accordingly, be called gray boxes. 
Generally speaking, a model structure is a parameterized mapping from past 
inputs and outputs Z'~l (cf (1.6)) to the space of the model outputs: 

>'(t\0) = g(0,Z'~l) (1.19) 

Here 8 is the finite dimensional vector used to parameterize the mapping. 
Chapters 4 and 5 describe common model structures. 

3. Determining the "best" model in the set, guided by the data. This is the iden
tification method. The assessment of model quality is typically based on how 
the models perform when they attempt to reproduce the measured data. The 
basic approaches to this will be dealt with independently of the model structure 
used. Chapter 7 treats this problem. 
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Model Validation 

After having settled on the preceding three choices, we have, at least implicitly, 
arrived at a particular model: the one in the set that best describes the data according 
to the chosen criterion. It then remains to test whether this model is "good enough," 
that is, whether it is valid for its purpose. Such tests are known as model validation. 
They involve various procedures to assess how the model relates to observed data, to 
prior knowledge, and to its intended use. Deficient model behavior in these respects 
make us reject the model, while good performance will develop a certain confidence 
in it. A model can never be accepted as a final and true description of the system. 
Rather, it can at best be regarded as a good enough description of certain aspects that 
are of particular interest to us. Chapter 16 contains a discussion of model validation. 

The System Identification Loop 

The system identification procedure has a natural logical flow: first collect data, then 
choose a model set, then pick the "best" model in this set. It is quite likely, though, 
that the model first obtained will not pass the model validation tests. We must then 
go back and revise the various steps of the procedure. 

The model may be deficient for a variety of reasons: 

• The numerical procedure failed to find the best model according to our crite
rion. 

• The criterion was not well chosen. 

• The model set was not appropriate, in that it did not contain any "good enough" 
description of the system. 

• The data set was not informative enough to provide guidance in selecting good 
models. 

The major part of an identification application in fact consists of addressing these 
problems, in particular the third one, in an iterative manner, guided by prior infor
mation and the outcomes of previous attempts. See Figure 1.10. Interactive software 
obviously is an important tool for handling the iterative character of this problem. 

1.5 O R G A N I Z A T I O N OF T H E BOOK 

To master the loop of Figure 1.10, the user has to be familiar with a number of things. 

1. Available techniques of identification and their rationale, as well as typical 
choices of model sets. 

2. The properties of the identified model and their dependence on the basic items: 
data, model set, and identification criterion. 

3. Numerical schemes for computing the estimate. 

4. How to make intelligent choices of experiment design, model set, and identifi
cation criterion, guided by prior information as well as by observed data. 
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Figure 1.10 The system identification loop. 

In fact, a user of system identification may find that he or she is primarily a user 
of an interactive software package. Items 1 and 3 are then part of the package and 
the important thing is to have a good understanding of item 2 so that task 4 can be 
successfully completed. This is what we mean by "Theory for the User" and this is 
where the present book has its focus. 

The idea behind the book's organization is to present the list of common and 
useful model sets in Chapters 4 and 5. Available techniques are presented in Chapters 
6 and 7, and the analysis follows in Chapters 8 and 9. Numerical techniques for off
line and on-line applications are described in Chapters 10 and 11. Task 4, the user's 
choices, is discussed primarily in Chapters 13 through 16, after some preliminaries 
in Chapter 12. In addition, Chapters 2 and 3 give the formal setup of the book, 
and Chapter 17 describes and assesses system identification as a tool for practical 
problems. 

Figure 1.11 illustrates the book's structure in relation to the loop of system 
identification. 
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Figure 1.11 Organization of the book. 

About the Framework 
The system identification framework we set up here is fairly general. It does not 
confine us to linear models or quadratic criteria or to assuming that the system itself 
can be described within the model set. Indeed, this is one of the points that should 
be stressed about our framework. Nevertheless, we often give proofs and explicit 
expressions only for certain special cases, like single-input, single-output systems and 
quadratic criteria. The purpose is of course to enhance the underlying basic ideas 
and not conceal them behind technical details. References are usually provided for 
more general treatments. 

Parameter estimation and identification are usually described within a proba
bilistic framework. Here we basically employ such a framework. However, we also 
try to retain a pragmatic viewpoint that is independent of probabilistic interpreta
tions. That is. the methods we describe and the recommendations we put forward 
should make sense even without the probabilistic framework that may motivate them 
as "optimal solutions."" The probabilistic and statistical environments of the book 
are described in Appendices I and II. respectively. These appendices may be read 
prior to the other chapters or consulted occasionally when required. In any case, the 
book does not lean heavily on the background provided there. 

1.6 BIBLIOGRAPHY 

The literature on the system identification problem and its ramifications is exten
sive. Among general textbooks on the subject we may mention Box and Jenkins 
(1970). Eykhoff (1974). Spriet and Vansteenkiste (1982). Ljung and Glad (1994a). 
and Johansson (1993)for t reatments covering several practical issues, while Good
win and Payne (1977). Davis and Vinter (1985). Hannan and Deistler (1988), Caines 



Sec. 1.6 Bibliography 17 

(1988), Chen and Guo (1991). and Soderstrom and Stoica (1989)give more theoret
ically oriented presentations. Kashyap and Rao (1976), Rissanen (1989)and Bohlin 
(1991)emphasize the role of model validation and model selection in their treatment 
of system identification, while Soderstrom and Stoica (1983)focuses on instrumental-
variable methods. A treatment based on frequency domain data is given in Schoukens 
and Pintelon (1991). and the so-called subspace approach is thoroughly discussed in 
Van Overschee and DeMoor (1996). Texts that concentrate on recursive identi
fication techniques include Ljung and Soderstrom (1983), Solo and Kong (1995). 
Haykin (1986). Widrow and Stearns (1985). and Young (1984). Spectral analysis is 
closely related, and treated in many books like Marple (1987), Kay (1988)and Stoica 
and Moses (1997). Statistical treatments of time-series modeling such as Anderson 
(1971). Hannan (1970). Brillinger (1981), and Wei (1990)are most relevant also for 
the system identification problem. The co-called behavioral approach to modeling 
is introduced in Willems (1987). 

Among edited collections of articles, we may refer to Mehra and Lainiotis 
(1976). Eykiioff (1981), Hannan. Krishnaiah, and Rao (1985). and Leondes (1987), 
as well as to the special journal issues Kailath, Mehra. and Mayne (1974). Isermann 
(1981), Eykhoff and Parks (1990). Kosut. Goodwin, and Polis (1992)and Soderstrom 
and Astrdm (1995). The proceedings from the IFAC (International Federation of 
Automatic Control) Symposia on Identification and System Parameter Estimation 
contain many articles on all aspects of the system identification problem. These 
symposia are held every three years, starting in Prague 1967. 

Philosophical aspects on mathematical models of real-life objects are discussed, 
for example, in Popper (1934). Modeling from basic physical laws, rather than from 
data, is discussed in many books: see, for example. Wellstead (1979), Ljung and Glad 
(1994a). Frederick and Close (1978)and Cellier (1990)for engineering applications. 
Such treatments are important complements to the model set selection (see Section 
1.3 and Chapter 16). 

Many books discuss modeling and identification in various application areas. 
See, for example. Granger and Newbold (1977)or Malinvaud (1980)(econometrics), 
Godfrey (1983)(biology). Robinson and Treitel (1980), Mendel (1983)(geoscience), 
Dudley (1983)(electromagnetic wave theory), Markel and Gray (1976)(speech sig
nals) and Beck and Van Straten (1983)(environmental systems). Rajbman (1976, 
1981 )has surveyed the Soviet literature. 
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2 

TIME-INVARIANT LINEAR 
SYSTEMS 

Time-invariant linear systems no doubt form the most important class of dynamical 
systems considered in practice and in the literature. It is true that they represent ide
alizations of the processes encountered in real life. But. even so. the approximations 
involved are often justified, and design considerations based on linear theory lead to 
good results in many cases. 

A treatise of linear systems theory is a standard ingredient in basic engineering 
education, and the reader has no doubt some knowledge of this topic. Anyway, in this 
chapter we shall provide a refresher on some basic concepts that will be instrumental 
for the further development in this book. In Section 2.1 wc shall discuss the impulse 
response and various ways of describing and understanding disturbances, as well as 
introduce the transfer-function concept. In Section 2.2 we study frequency-domain 
interpretations and also introduce the periodogram. Section 2.3 gives a unified setup 
of spectra of deterministic and stochastic signals that will be used in the remainder 
of this book. In Section 2.4 a basic ereodicily result is proved. The development 
in these sections is for systems with a scalar input and a scalar output. Section 2.5 
contains the corresponding expressions for multivariablc systems. 

2.1 I M P U L S E RESPONSES, D I S T U R B A N C E S , A N D TRANSFER 
F U N C T I O N S 

Impulse Response 

Consider a system with a scalar input signal it{t) and a scalar output signal \(t) 
(Figure 2.1). The system is said to be time invariant if its response to a certain input 
signal does not depend on absolute time. It is said to be linear if its output response to 
a linear combination of inputs is the same linear combination of the output responses 
of the individual inputs. Furthermore, it is said to be causal if the output at a certain 
time depends on the input up to that time onlv. 

18 
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Figure 2.1 Tlic system. 

It is well known that a linear, time-invariant, causal system can be described by 
its impulse response (or weighting function) g{z ) as follows: 

JT=<) 

y\t) = / g(z)u(t - Z)dz (2.1) 

Knowing r)}?! , , and knowing u(s) for s < t. we can consequently compute the 
corresponding output y\s). s < t for any input. The impulse response is thus a 
complete characterization of the system. 

Sampling 

In this book we shall almost exclusively deal with observations of inputs and outputs 
in discrete time, since this is the typical data-acquisition mode. We thus assume yit) 
to be observed at the sampling instants t<K = kT. k = 1. 2 . . . . : 

y\kT) - f gizhtikT - z)dr (2.2) 
J -—M 

The interval T will be called the sampling interval. It is. of course, also possible to 
consider the situation where the sampling instants are not equally spread. 

Most often, in computer control applications, the input signal u(t) is kept con
stant between the sampling instants: 

«<f) = tik. kT < t < {k + 1)7" (2.3) 

This is mostly done for practical implementation reasons, but it will also greatly 
simplify the analysis of the system. Inserting (2.3) into (2.2) gives 

yikT) = / g{r)uikT - z)dz = V ] f g(z)u(kT - z)dz 

J* =11*" f~1 Jr = u -1-7* 

. = ] 

where we defined 

gtit) = f g[z)dz (2.5) 
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The expression (2.4) tells us what the output will be at the sampling instants. Note 
that no approximation is involved if the input is subject to (2.3) and that it is sufficient 
to know the sequence {griO}^ in order to compute the response to the input. The 
relationship (2.4) describes a sampled-data system, and we shall call the sequence 
{gT(0)oL\ the impulse response of that system. 

Even if the input is not piecewise constant and subject to (2.3), the representa
tion (2.4) might still be a reasonable approximation, provided uit) does not change 
too much during a sampling interval. See also the following expressions (2.21) to 
(2.26). Intersample behavior is further discussed in Section 13.3. 

We shall stick to the notation (2.3) to (2.5) when the choice and size of T 
are essential to the discussion. For most of the time, however, we shall for ease of 
notation assume that T is one time unit and use / to enumerate the sampling instants. 
We thus write for (2.4) 

•x 

v(/) = £ * ( * ) « ( ' ~ * ) . t = 0 , 1 . 2 , . . . (2.6) 

For sequences, we shall also use the notation 

y[ = (y(s),y(s + 1) y( r ) ) (2.7) 

and for simplicity 

= >•' 

Disturbances 

According to the relationship (2.6). the output can be exactly calculated once the 
input is known. Tn most cases this is unrealistic. There are always signals beyond 
our control that also affect the system. Within our linear framework we assume that 
such effects can be lumped into an additive term v(t) at the output (see Figure 2.2): 

oc 

y(f) = ^2g(k)u(t - k) + v(t) (2.8) 

Figure 2J2 System with disturbance. 
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There are many sources and causes for such a disturbance term. We could list: 

• Measurement noise: The sensors that measure the signals are subject to noise 
and drift. 

• Uncontrollable inputs: The system is subject to signals that have the character 
of inputs, but are not controllable by the user. Think of an airplane, whose 
movements are affected by the inputs of rudder and aileron deflections, but 
also by wind gusts and turbulence. Another example could be a room, where 
the temperature is determined by radiators, whose effect we control, but also 
by people ( ~ KX) W per person) who may move in and out in an unpredictable 
manner. 

The character of the disturbances could also vary within wide ranges. Classical ways 
of describing disturbances in control have been to study steps, pulses, and sinusoids, 
while in stochastic control the disturbances are modeled as realizations of stochastic 
processes. See Figures 2.3 and 2.4 for some typical, but mutually quite different, 
disturbance characteristics. The disturbances may in some cases be separately mea
surable, but in the typical situation they are noticeable only via their effect on the 
output. If the impulse response of the system is known, then of course the actual 
value of the disturbance vit) can be calculated from (2.8) at time t. 

25 
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Figure 2.3 Room temperature. 

The assumption of Figure 2.2 that the noise enters additively to the output 
implies some restrictions. Sometimes the measurements of the inputs to the system 
may also be noise corrupted ("error-in-variable" descriptions). In such cases we 
take a pragmatic approach and regard the measured input values as the actual inputs 
» ( / ) to the process, and their deviations from the true stimuli will be propagated 
through the system and lumped into the disturbance v(t) of Figure 2.2. 
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Figure 2.4 Moisture content in paper during paper-making. 

Characterization of Disturbances 

The most characteristic feature of a disturbance is that its value is not known be
forehand. Information about past disturbances could, however, be important for 
making qualified guesses about future values. It is thus natural to employ a prob
abilistic framework to describe future disturbances. We then put ourselves at time 
/ and would like to make a statement about disturbances at times t + k, k > 1. 
A complete characterization would be to describe the conditional joint probability 
density function for {v(t + k), k > 1}, given {v(s), s < t}. This would, however, in 
most cases be too laborious, and we shall instead use a simpler approach. 

Let v(t) be given as 

where {e(t)} is white noise, i.e., a sequence of independent (identically distributed) 
random variables with a certain probability density function. Although this descrip
tion does not allow completely general characterizations of all possible probabilistic 
disturbances, it is versatile enough for most practical purposes. In Section 3.2 we 
shall show how the description (2.9) allows predictions and probabilistic statements 
about future disturbances. For normalization reasons, we shall usually assume that 
h(0) = 1, which is no loss of generality since the variance of e can be adjusted. 

It should be made clear that the specification of different probability density 
functions (PDF) for {e(t)} may result in very different characteristic features of the 
disturbance. For example, the P D F 

oc 
(2.9) 

e(t) = 0, with probability 1 — ft 

e(t) = r, with probability fx 
(2.10) 
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Figure 2.5 A realization of the process (2.9) with e subject to (2.10). 

where r is a normally distributed random variable: r € N(0, y) leads to, if p is a 
small number, disturbance sequences with characteristic and "determinist ic , , profiles 
occurring at random instants. See Figure 2.5. This could be suitable to describe 
"classical" disturbance patterns, steps, pulses, sinusoids, and ramps (cf. Figure 2.3!). 
On the other hand, the P D F 

gives a totally different picture. See Figure 2.6. Such a pattern is more suited to 
describe measurements noises and irregular and frequent disturbance actions. 

Often we only specify the second-order properties of the sequence {e(t)}, that 
is, the mean and the variances. Note that (2.10) and (2.11) can both be described as 
"a sequence of independent random variables with zero mean values and variances 
y [A. = fiy for (2.10)], despite the difference in appearance. 

Remark. Notice that \e(t)\ and {v(t}} as defined previously are stochastic 
processes (i.e.. sequences of random variables). The disturbances that we observe 
and that are added to the system output as in Figure 2.2 are thus realizations of 
the stochastic process [v(t)}. Strictly speaking, one should distinguish in notation 
between the process and its realization, but the meaning is usually clear from the 
context, and we do not here adopt this extra notational burden. Often one has oc
casion to study signals that are mixtures of deterministic and stochastic components. 
A framework for this will be discussed in Section 2.3. 

Covariance Function 

In the sequel, we shall assume that e(t) has zero mean and variance A . With the 
description (2.9) of v(t), we can compute the mean as 

e(t) € J V ( O . A ) (2 .11) 

(2 .12) 
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Figure 2.6 A realization of the same process (2.9) as in Figure 2.5. but with e 
subject to (2.11). 

and the covariance as 

Ev(t)v{t - r) = ^J2h(k)h(s)Ee(t - k)e(t - r - s) 
k=l) 5=0 

oc oc 

= ^^fh{k)h(s)S(k - T - s)X (2.13) 
*=0 .5=0 

oc 

= k^2h(k)h(k - r) 

Here h(r) = 0 if r < 0. We note that this covariance is independent of t and call 

Rr(x) = Ev(t)v(t - r) (2.14) 

the covariance function of the process v. This function, together with the mean, 
specifies the second-order properties of v. These are consequently uniquely defined 
by the sequence {h(k)} and the variance A of e. Since (2.14) and Ev(t) do not 
depend on f, the process is said to be stationary. 

Transfer Functions 

It will be convenient to introduce a shorthand notation for sums like (2.8) and (2.9), 
which will occur frequently in this book. We introduce the forward shift operator q 
by 

qu(t) = u(t + 1) 
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DC 
k=l 

where we introduced the notation 

« ( / ) = C ( ^ ) I I ( / ) 

(2.15) 

(2.16) 

We shall call G (q) the transfer operator or the transfer function of the linear system 
(2.6). Notice that (2.15) thus describes a relation between the sequences u* and y ' . 

Remark. We choose q as argument of G rather than q~] (which perhaps 
would be more natural in view of the right side) in order to be in formal agreement 
with --transform and Fourier-transform expressions. Strictly speaking, the term 
transfer function should be reserved for the c-transform of {gOt)}^. that is. 

Gil) = f^gik)z~k 

k=\ 

but we shall sometimes not observe that point. 

Similarly with 

Hiq) = ][>(*)<? 
-it 

k=0 

we can write 

v(t) = H(q)eit) 

(2.17) 

• 

(2.18) 

( 2 . 1 9 ) 

for (2.9). Our basic description for a linear svstem with additive disturbance will thus 
be 

y(r ) = Giq)uit) + H{q)eU) (2.20) 

with [eit)} as a sequence of independent random variables with zero mean values 
and variances A. 

and the backward shift operator q~l: 

q-lu{t) = u(r - 1) 

We can then write for (2.6) 



Chap. 2 Time-Invariant Linear Systems 

(* (Denotes sections and subsections that are optional reading: they can be omitted without serious 
loss of continuity. Sec Preface. 

Continuous-time Representation and Sampling Transfer 
Functions (*) 

For many physical systems it is natural to work with a continuous-time representation 
(2.1). since most basic relationships are expressed in terms of differential equations. 
With G, (s) denoting the Laplace transform of the impulse response function {g(r)} 
in (2.1). we then have the relationship 

Yis) = Ce(s)Uis) (2.21) 

between Y(s) and U(s). the Laplace transforms of the output and input, respectively. 
Introducing p as the differentiation operator, we could then write 

y{t) = G<(p)w</) (2.22) 

as a shorthand operator form of (2.1) or its underlying differential equation. Now. 
(2.1) or (2.22) describes the output at all values of the continuous time variable / . 
If )} is a known function (piecewise constant or not) , then (2.22) will of course 
also serve as a description of the output of the sampling instants. We shall therefore 
occasionally use (2.22) also as a system description for the sampled output values, 
keeping in mind that the computation of these values will involve numerical solution 
of a differential equation. In fact, we could still use a discrete-time model (2.9) for 
the disturbances that influence our discrete-time measurements, writing this as 

y(t) = GApMt) + H(q)e(t). t = 1, 2 . . . . (2.23) 

Often, however, we shall go from the continuous-time representation (2.22) to the 
standard discrete-time one (2.15) by transforming the transfer function 

Gc(p) GT(q) (2.24) 

T here denotes the sampling interval. When the input is piecewise constant over 
the sampling interval, this can be done without approximation, in view of (2.4). 
See Problem 2G.4 for a direct transfer-function expression, and equations (4.67) to 
(4.71). for numerically more favorable expressions. One can also apply approximate 
formulas that correspond to replacing the differentiation operator p by a difference 
approximation. We thus have the Euler approximation 

Gi{q) * GrfllA^ ( 2.25) 

a n d T u s t i n s formula 

GT(q) * Gc(^l^l (2.26) 

See Astrom and Wittenmark (1984)for a further discussion. 
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Some Terminology 

The function G(z) in (2.17) is a complex-valued function of the complex variable 
z. Values such that G ( # ) = 0. are called zeros of the transfer function (or 
of the system), while values at for which G(z) tends to infinity are called poles. 
This coincides with the terminology for analytic functions (see. e.g.. Ahlfors. 1979). 
If G(z) is a rational function of z. the poles will be the zeros of the denominator 
polynomial. 

We shall say that the transfer function G{q) (or " the system G" or "the filter 
G" ) is stable if 

00 oc 

Giq) = £|*(*>I < oc (2.27) 

The definition (2.27) coincides with the system theoretic definition of bounded-input, 
bounded-output (BIBO) stability (e.g. Brockett . 1970): If an input {«(/)} to G{q) 
is subject to |w(f )| < C. then the corresponding output z.U) = G(q)u(t) will also 
be bounded, |c(f )| < C , provided (2.27) holds. Notice also that (2.27) assures that 
the (Laurent) expansion 

oo 

G(z) = J2g(k)z-k 

A=l 

is convergent for all \z\ > 1. This means that the function G(c) is analytic on and 
outside the unit circle. In particular, it then has no poles in that area. 

We shall often have occasion to consider families of filters Ga{q).ot e S\.: 

OC 

Ga(q) = or € JA (2.28) 
k=l 

We shall then say that such a family is uniformly stable if 

oc 

lfo<*)| < *<*>,Va € A.J^Sik) < oc (2.29) 

Sometimes a slightly stronger condition than (2.27) will be required. We shall say 
that G(q) is strictly stable if 

•oc 

]T*|*<*)| < oc (2.30) 
*=i 

Notice that, for a transfer function that is rational in q. stability implies strict stability 
(and. of course, vice versa). See Problem 2T.3. 

Finally, we shall say that a filter H(q) is monk if its zeroth coefficient is 1 (or 
the unit matrix): 

oc 

Hiq) = ^h{k)q-k. h(0) = 1 (2.31) 
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t-k) 

k=\ k=\ 

= Re ,—i<ok 

k=l 

= | G ( 0 | c o s M + <p) 

= Re{eiMt • G(ei(0)} (2.33) 

where 
tp = aTgG(ek0) (2.34) 

Here, the second equality follows since the g(k) are real and the fourth equality 
from the definition (2.16) or (2.17). The fifth equality follows straightforward rules 
for complex numbers. 

In (2.33) we assumed that the input was a cosine since time minus infinity. If 
u(t) = 0.t < 0. we obtain an additional term 

-Re\eia,,J2s(l()e~U 

I k=t 

in (2.33). This term is dominated by 

k=t 

and therefore is of transient nature (tends to zero as t tends to infinity), provided 
that G(q) is stable. 

In any case. (2.33) tells us that the output to (2.32) will also be a cosine of the 
same frequency, but with an amplitude magnified by \G(eU0)\ and a phase shift of 
arg G{elM) radians. The complex number 

G{eiu>) (2.35) 

which is the transfer function evaluated at the point c = e'M, therefore gives full 
information as to what will happen in stationarity, when the input is a sinusoid of 
frequency o). For that reason, the complex-valued function 

G(e'w). -n < w < JT (2.36) 

2.2 FREQUENCY-DOMAIN EXPRESSIONS 

Sinusoid Response and the Frequency Function 

Suppose that the input to the system (2.6) is a sinusoid: 

it{t) = cos cot (2.32) 

It will be convenient to rewrite this as 

«(/) = Reei0J' 

with Re denoting "real part . M According to (2.6). the corresponding output will be 
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is called the frequency function of the system (2.6). It is customary to graphically 
display this function as log \G{e l a J ) \ and arg G(e'i0) plotted against logo; in a Bode 
plot. The plot of (2.36) in the complex plane is called the Nyquist plot. These 
concepts are probably better known in the continuous-time case, but all their basic 
properties carry over to the sampled-data case. 

Periodograms of Signals over Finite Intervals 

Consider the finite sequence of inputs w(r). t = 1, 2 N. Let us define the 
function Uy(a)) by 

Fourier transform (DFT) of the sequence wj . We can then represent u(t) by the 
inverse D F T as 

(2.37) 

The values obtained for a> N. form the familiar discrete 

(2.38) 

To prove this, we insert (2.37) into the right side of (2.38), giving 

Here we used the relationship 

1 .v 
(2.39) 

k = l 

From (2.37) we note that U^ico) is periodic with period 2TT: 

UN(a> + 2TT) = UN{a)) (2.40) 

Also, since u(t) is real. 

(2.41) 
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where the overbar denotes the complex conjugate. The function U.\- (co) is therefore 
uniquely defined by its values over the interval [0, TT\. It is, however, customary 
to consider Usico) for — TT < co < 7t, and in accordance with this, (2.38) is often 
written 

:V/2 

u(t) = -]= Y] UN(l7TklN)eil:lk,/N (2.42) 

making use of (2.40) and the periodicity of etb>. In (2.42) and elsewhere we assume 
N to be even; for odd N analogous summation boundaries apply. 

In (2.42) we represent the signal u{t) as a linear combination of et0>1 for N 
different frequencies co. As is further elaborated in Problem 2D.1. this can also 
be rewritten as sums of cos cot and sin cot for the same frequencies, thus avoiding 
complex numbers. 

The number Us{2nk/N) tells us the "weight" that the frequency co — InkjN 
carries in the decomposition of {w(f )}*=!• Its absolute square value \U,\>(27Tk/N)\2 

is therefore a measure of the contribution of this frequency to the "signal power." 
This value 

\UN(a>)\2 (2.43) 

is known as the periodogram of the signal u(t). t = 1, 2,..., N. 
Parseval's relationship, 

N N 

£ |£/ l V(2;r&/A0l2 = £ " 2 ( f ) <2-44) 

reinforces the interpretation that the energy of the signal can be decomposed into 
energy contributions from different frequencies. Think of the analog decomposi t ion 
of light into its spectral components! 

Example 2.1 Periodogram of a Sinusoid 

Suppose that 

u(t) = A cos co0t (2.45) 

where a>n = 2TT/NQ for some integer No > 1. Consider the interval t = 1, 2 N. 
where N is a multiple of No : N — s • No. Writing 

cos coot = ^[eiti** +<?-'***'] 

gives 

1 N A 
uw(co) = -L^Y-W^-^' + tf-'^+^'i 
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Using (2.39), we find that 

\UN(co)\2 = 

2n 2TZS 
N • ^ , iio) = ±io0 = — = 

4 N0 N 
Ink , 

0, if co = ——, k y£ s 
N 

(2.46) 

The periodogram thus has two spikes in the interval [—tt, n\. _ 

Example 12 Periodogram of a Periodic Signal 

Suppose u(t) = u(t + NQ) and we consider the signal over the interval [1, N]. 
/V = s • No- According to (2.42). the signal over the interval [1, No] can be written 

A N0/2 

u{t) = - = Y Are2*"'*"9 (2.47) 

with 
1 NO 

INITRJNO (2.48) 

Since u is periodic, (2.47) applies over the whole interval [1, N]. It is thus a sum of No 
sinusoids, and the results of the previous example (or straightforward calculations) 
show that 

\UN(co)\2 = 
s - | A r | 2 , if co = . r = 0 , ± l ± - - . ± — 

No ' 2 

0, 
2 t t* , 

if co = , k 7^ r - s 
N 

(2.49) 

• 
The periodograms of Examples 2.1 and 2.2 turned out to be well behaved. For signals 
that are realizations of stochastic processes, the periodogram is typically a very erratic 
function of frequency. See Figure 2.8 and Lemma 6.2. 

Transformation of Periodograms(*) 

As a signal is filtered through a linear system, its periodogram changes. We show 
next how a signal's Fourier transform is affected by linear filtering. Results for the 
transformation of periodograms are then immediate. 

Theorem 2.1. Let {s(t)} and {w(t)} be related by the strictly stable system G(q): 

s(t) = G(q)w(t) (2.50) 
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Then 

where 

with 

v A7 . 

.v 
Wwito) = -p^'y wine-*** 

\RN(cv)\ < 2C U -

(2.51) 

(2.52) 

(2.53) 

(2.54) 

k=l 

Proof. We have by definition 

= [change variables: f — k = r ] 

1 

T=\-k 
Now 

J * rtT~k 

J** A ' - 1 + 1 

The input w(t) for t < 0 is unknown, but obeys \w{t)\ < Cu- for all t. Let 

i " 
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Hence 

| S l V M - G(eit0)Wx(a>)\ = 

and (2.53) to (2.55) follow. C 

Corollary. Suppose {w(t)} is periodic with period A r. Then Rs(co') in (2.53) is 
zero for co = 2nk( N. 

Proof. The left side of (2.56) is zero for a periodic w(z) at co = 2TTk/N. Z 

2.3 S I G N A L SPECTRA 

The periodogram defines, in a sense, the frequency contents of a signal over a finite 
time interval. This information may. however, be fairly hidden due to the typically 
erratic behavior of a periodogram as a function of co. We now seek a definition of a 
similar concept for signals over the interval t e [1, oc ) . Preferably, such a concept 
should more clearly demonstrate the different frequency contributions to the signal. 

A definition for our framework is, however, not immediate. It would perhaps 
be natural to define the spectrum of a signal s as 

lim \SN(co)\2 (2.57) 

but this limit fails to exist for many signals of practical interest. Another possibility 
would be to use the concept of the spectrum, or spectral density, of a stationary 
stochastic process as the Fourier transform of its covariance function. However, the 
processes that we consider here are frequently not stationary, for reasons that are 
described later. We shall therefore develop a framework for describing signals and 
their spectra that is applicable to deterministic as well as stochastic signals. 

A Common Framework for Deterministic and Stochastic Signals 

In this book we shall frequently work with signals that are described as stochastic 
processes with deterministic components. The reason is. basically, that we prefer to 
consider the input sequence as deterministic, or at least partly deterministic, while 
disturbances on the system most conveniently are described by random variables. In 
this way the system output becomes a stochastic process with deterministic compo
nents. For (2.20) we find that 

£ y ( 0 = G(q)uU) 

so {y(f)} is not a stationary process. 

,—ikt 

k = \ 

w(r)e'"" - VV.v(o)) 
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To deal with this problem, we introduce the following definition. 

Definition 2.1. Quasi-Stationary Signals A signal {s {t)} is said to be quasi-stationary 
if it is subject to 

(i) Es(t) = m , ( 0 . < C V/ 
(2.58) 

(ii) Es(t)sir) = RAt.r). \RsU.r): < C 

lim — > Rs(t.t - T) = RAr). VT (2.59) 

Here expectation E is with respect to the "stochastic components" of sKt>. If 
{.v(/)} itself is a deterministic sequence, the expectation is without effect and quasi-
stationarity then means that [s{t)} is a bounded sequence such that the limits 

R,(T) = lim — > s(t)s(t - z) 

exist. If {s{t)} is a stationary stochastic process. (2.58) and (2.59) arc trivially satisfied. 

since then Es(t)s{t — T) = /?>(r) does not depend on t. 
For easy notation we introduce the symbol E by 

1 v 

EfU) = lim — Y] Ef(T) (2.60) 
! = \ 

with an implied assumption that the limit exists when the symbol is used. Assumption 
(2.59). which simultaneously is a definition of / ? v ( r ) . then reads 

~Es(t)s(t - r ) = RS{T) (2.61) 

Sometimes, with some abuse of notation, we shall call R> (r) the covariance function 
of .v, keeping in mind that this is a correct term only if [sit)} is a stationary stochastic 
process with mean value zero. 

Similarly, we say that two signals \s(t)} and (ii'(f)} are jointly quasi-stationary 
if they both arc quasi-stationary and if. in addition, the cross-covariance function 

RSU(T) = EsU)wU - z) (2.62) 

exists. We shall say that jointly quasi-stationary signals are uncorrelated if their 
cross-covariance function is identically zero. 

Definition of Spectra 

When limits like (2.61) and (2.62) hold, we define the (power) spectrum of {s(t)} as 
oc 

4>Ao» = J] R.Ar)e-iTt" (2.63) 



and the cross spectrum between {sit)} and {wit)} as 

*su-M = RsAT)e~'TC0 (2.64) 
r = - i c 

provided the infinite sums exist. In the sequel, as wc talk of a signal's "spectrum." 
we always implicitly assume that the signal has all the properties involved in the 
definition of spectrum. 

While <J\ (co) always is real. <t>sll(co) is in general a complex-valued function of 
co. Its real part is known as the cospectrum and its imaginary part as the quadrature 
spectrum. The argument arg <!>,„. (w) is called the phase spectrum, while |<t>.,„.(&>) | 
is the amplitude spectrum. 

Note that, bv definition of the inverse Fourier transform, we have 

— 1 f71 

£.r(/) = RJO) = — <P, (co)dco (2.65) 

Example 2.3 Periodic Signals 

Consider a deterministic, periodic signal with period M. i.e.. sit) — s{t + M). We 
then have Es(t) = sit) and Es(t)s(r) = s(t)s(r) and: 

l i MK 1 ^ f 1 M 

— } s(t)sit T ) = — - • — > \ ~ ) s ( t + HM)s(t - x + IM] 

+ — > *(/)*(/ - r) 
;=A'.V/-1 

where A' is chosen as the maximum number of full periods, i.e.. N — MK < M. 
Due to the periodicity, the sum within braces in fact does not depend on L. Since 
there are at most M — I terms in the last sum. this means that the limit as Ar —• oc 
will exist with 

_ } 

Es(t)s(t - x) = Rs(x) = -—Ys(t)s(t - x) 
M z—' 

A periodic, deterministic signal is thus quasi-stationary. We clearly also have 
Rjx +kM) = RAx). 

For the spectrum we then have: 

oc x M-\ 

<PAa>) = X R ^ e ' i u T = X H R>ix + tM)e-i,uTe-it,*M 

T = — ZK. <=-OC T—*\ 
OC 

= <Df(£o) e ~ i ( M u > = <&p,(a>)F(co.M) 
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where 
oc 

<t>P{a>) = ^Rs(T)eian. F(co,M) = £ e~il*f"' 

T=0 ( = ~0C 

The function F is not well defined in the usual sense, but using the Dirac delta-
function, it is well known (and well in line with (2.39)) that: 

F(co,M) = ~ X 5 ^ ~ 2jrk/M). 0 < co < 2TT (2.66) 

This means that we can write: 

2it V / _ 1 

cp,(oj) = — V <i>ls(27ik/M)S(co - 2xk/M). 0 < co < 2TT (2.67) 
M , 

*=<) 

In tfQxk/M) we recognize the k :th Fourier coefficient of the periodic signal Rx ( r ) . 
Recall that the spectrum is periodic with period 2 j t . so different representations of 
(2.67) can be given. 

The spectrum of a signal that is periodic with period M has thus (at most) M 
delta spikes, at the frequencies InkjM'. and is zero elsewhere. Although the limit 
(2.63) does not exist in a formal sense in this case, it is useful to extend the spectrum 
concept for signals with periodic and constant components in this way. C 

Example 2.4 Spectrum of a Sinusoid 

Consider again the signal (2.45). now extended to the interval [1. oo) . We have 

1 , v 1 , V 

— Eu(k)u(k - T) = — V 1 A2 cos(a>o*) cos (couik - r)) . (2.68) 
N 1—' N f—' 

; - i k = i 

(Expectation is of no consequence since u is deterministic.) Now 

cos>(cOi)k) co$>{coo(k — r ) ) = - (cos(2a>ofc — CO^T) + cosoiof) 

which shows that 

A1 

Eu(t)u(t — r) = — COSWOT = R„(T) 

The spectrum now is 

A2 A2 

<t>l((co) = V — cos(co{)r)e-'(,>T = — (8(co - co0) + 8(co + co())) >2TT (2.69) 
< j 2 4 

T = — OC " 

This result fits well with the finite interval expression (2.46) and the general expression 
(2.67) for periodic signals. • 
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r = - o c A=max(0.r i 

oc oc 

= [k - T = S] = Xj2his>ei'UUJ2h(k)e'ik<l> = "A\H^\2 

S=U Jt=0 

using (2.18). This result is very important for our future use: 

The stochastic process described by v(t) = H(q)e(t), where {e{t)} is a 
sequence of independent random variables with zero mean values and covari-
ances a . has the spectrum 

4>v(ft>) = A. W " ) | 2 (2.70) 

This result, which was easy to prove for the special case of a stationary stochastic 
process, will be proved in the general case as Theorem 2.2 later in this section. Figure 
2.7 shows the spectrum of the process of Figures 2.5 and 2.6. while the periodogram 
of the realization of Figure 2.6 is shown in Figure 2.8. • 

Figure 2.7 The spectrum of the process vff) — l.5v(t — 1) + ().7r(f — 2) = 
e(l) +O..V(/ - i ) . \<?(t)\ being white noise. 

Example 2.5 Stationary Stochastic Processes 

Let {v(t)} be a stationary stochastic process with covariance function (2.14). Since 
(2.59) then equals (2.14). our definition of spectrum coincides with the conventional 
one. Suppose now that the process v is given as (2.9). Its covariance function is then 
given by (2.13). The spectrum is 

•oc oc 

4>v(u>) = X }'e~iTM X h(kW<k ~ t") 

r = - o c A—maxlO.n 

oc oc 

= a X X We~ikl°h(k - r)eiik-T)<" 
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Figure 2.8 The periodogram of the realization of Figure 2.6. 

Example 2.6 Spectrum of a Mixed Deterministic and Stochastic Signal 

Consider now a signal 

5 ( 0 = ii(f) + v(t) (2.71) 

where {w(0} is a deterministic signal with spectrum 4>M(o>) and {v{t)} is a stationary 
stochastic process with zero mean value and spectrum <t\.(ct>). Then 

~Es(t)s(t - r ) = Eu(t)u(t - x) + ~Eu(t)v(t - x) 

+ Ev(t)u(t - r ) + Ev(t)v(t - x) 

= Ru(x) + Rv(r) (2.72) 

since Ev(t)u(t — r ) = 0. Hence 

<Ma>) = <M<») + (2 .73) 

• 

Connections to the Periodogram 

While the original idea (2.57) does not hold, a conceptually related result can be 
proved; that is, the expected value of the periodogram converges weakly to the 
spectrum: 

E\SN(a>)\2-f <l>s{to) (2.74) 
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oc 

T=-OC 
E w 

Then (2.75) holds. 

Proof. 

E\SN(<o)\2 = 
*=1 *=1 

.V-L 
(2.76) 

= [l - k = r] = J ] *N{r)e-u 

R = - ( ; V - 1 ) 

where 

1 , v 

(2.77) 

with the convention that s(k) is taken as zero outside the interval [1. A 7]. Multiplying 
(2.76) by ^{co) and integrating over [—7r, IT] gives 

/ £ | 5 A : ( o ) ) | 2 ^ ( w ) ^ = X * v ( r K 
R=-( .V-L) 

By this is meant that 

lim / E|S lV(w)|2a>(a>)</<w = f <$>s(co)V(to) dco (2.75) 

for all sufficiently smooth functions We have 

Lemma 2.1. Suppose that {*(/)} is quasi-stationary with spectrum <J>5(a/). Let 

1 ' V 

and let V(co) be an arbitrary function for \co\ < jt with Fourier coefficients ax, such 
that 
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Problem 2D.5 now completes the proof. •_ 

Notice that for stationary stochastic processes the result (2.74) can be strength
ened to "ordinary" convergence (see Problem 2D.3). Notice also that, in our frame
work, results like (2.74) can be applied also to realizations of stochastic processes 
simply by ignoring the expectation operator. We then view the realization in ques
tion as a given "deterministic" sequence, and will then, of course, have to require 
that the conditions (2.58) and (2.59) hold for this particular realization [disregard 
" £ " also in (2.58) and (2.59)]. 

Transformation of Spectra by Linear Systems 

As signals are filtered through linear systems, their properties will change. We saw 
how the periodogram was transformed in Theorem 2.1 and how white noise created 
stationary stochastic processes in (2.70). For spectra we have the following general 
result. 

Theorem 2.2. Let {w(t)} be a quasi-stationary signal with spectrum <t>u.('a>). and 
let G(q) be a stable transfer function. Let 

Hence 

= J2 flr[%(r) 

5(f) = G(q)w(t) (2.78) 

Then {s(t)} is also quasi-stationary and 

= \G(eii0)\2 <t>w{co) (2.79) 

<DA.u.(o>) = G(e'w)<t>u,(co) (2.80) 

Proof. The proof is given in Appendix 2A. • 
Corollary. Let {y(r)} be given by 

v ( 0 = G(q)u(t) + H(q)e(t) (2.81) 

by the definition of ax. Similarly, allowing interchange of summation and integration, 
we have 
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where {«(/)} is a quasi-stationary, deterministic signal with spectrum <t>tl(co). and 
{e(t)\ is white noise with variance A. Let G and H be stable filters. Then {v(/)[ is 
quasi-stationary and 

<Mw) = j G ( O j 2
 + A . \ H ( e i % 2 (2.82) 

* V B M = G(eiM)4>H(co) (2.83) 

Proof. The corollary follows from the theorem using Examples 2.5 and 2.6. • 

Spectral Factorization 

Typically, the transfer functions G(q) and H(q) used here are rational functions of 
q. Then results like (2.70) and Theorem 2.2 describe spectra as real-valued rational 
functions of e"° (which means that they also are rational functions of cos co). 

In practice, the converse of such results is of major interest: Given a spectrum 
4> r ((w). can we then find a transfer function H(q) such that the process v(t) = 
H(q)e(t) has this spectrum with [e{t)} being white noise? It is quite clear that this 
is not possible for all positive functions <P ,.(&>). For example, if the spectrum is zero 
on an interval, then the function H(z) must be zero on a portion of the unit circle. 
But since by necessity H(z) should be analytic outside and on the unit circle for 
the expansion (2.18) to make sense, this implies that H(z) is zero everywhere and 
cannot match the chosen spectrum. 

The exact conditions under which our question has a positive answer are dis
cussed in texts on stationary processes, such as Wiener (1949)and Rozanov (1967). 
For our purposes it is sufficient to quote a simpler result, dealing only with spectral 
densities <&v(co) that are rational in the variable euo (or cos co). 

Spectral factorization: Suppose that <t>,.(co) > 0 is a rational function of cos 
co (or e'w). Then there exists a monic rational function o f ; . R(z), with no poles and 
no zeros on or outside the unit circle such that 

<M») = >>\R(ei<a)f 

The proof of this result consists of a straightforward construction of /?, and it can be 
found in standard texts on stochastic processes or stochastic control (e.g.. Rozanov, 
1967; Astrom. 1970). 

Example 2.7 ARM A Processes 

If a stationary process [v(t)} has rational spectrum 4>L (co). we can represent it as 

v(t) = R(q)e(t) (2.84) 

where {e(t)\ is white noise with variance A . Here R(q) is a rational function 

«*> = § M 
A(q) 

C(q) = 1 + c i t f - 1 + • • • + c„eq-"* 

A(q) = 1 +a]q~] + . . . + an<q-n" 
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so that we may write 

v(t) + ci)V{t - 1) + • • • + a„uv(t - na) 

= e(t) + cxe{t - 1) + • • • + c„te(t - nL) (2.85) 

for (2.84). Such a representation of a stochastic process is known as an ARM A model. 
If n( = 0. we have an autoregressive ( A R ) model: 

v(t) + - 1) + . . . + anav{t - na) - e(t) (2.86) 

And if na = 0, we have a moving average (MA) model: 

i.(f) = e(t) + c , e ( / - l ) + . . . + c„te(r - nc) (2.87) 

• 
The spectral factorization concept is important since it provides a way of representing 
the disturbance in the standard form v = H(q)e from information about its spectrum 
only. The spectrum is usually a sound engineering way of describing properties of 
signals: 'The disturbances are concentrated around 50 Hz*' or "We are having low-
frequency disturbances with little power over 1 rad/s.M Rational functions are able 
to approximate functions of rather versatile shapes. Hence the spectral factorization 
result will provide a good modeling framework for disturbances. 

Second-order Properties 

The signal spectra, as defined here, describe the second-order properties of the signals 
(for stochastic processes, their second-order statistics, i.e., first and second moments) . 
Recall from Section 2.1 that stochastic processes may have very different looking 
realizations even if they have the same covariance function (see Figures 2.5 and 2.6)! 
The spectrum thus describes only certain aspects of a signal. Nevertheless, it will 
turn out that many properties related to identification depend only on the spectra 
of the involved signals. This motivates our detailed interest in the second-order 
properties. 

2.4 S INGLE REALIZATION BEHAVIOR A N D ERGODICITY RESULTS ( * ) 

All the results of the previous section are also valid, as we pointed out. for the special 
case of a given deterministic signal {.>(?)}• Definitions of spectra, their transforma
tions (Theorem 2.2) and their relationship with the periodogram (Lemma 2.1) hold 
unchanged: we may just disregard the expectation E and interpret E/(/) as 

1 N 

lim - Y fit) 

t=l 

There is a certain charm with results like these that do not rely on a probabilistic 
framework: we anyway observe just one realization, so why should we embed this 
observation in a stochastic process and describe its average properties taken over an 
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ensemble of potential observations? There are two answers to this question. One is 
that such a framework facilitates certain calculations. Another is that it allows us to 
deal with the question of what would happen if the experiment were repeated. 

Nevertheless, it is a valid question to ask whether the spectrum of the signal 
as defined in a probabilistic framework, differs from the spectrum of the 

actually observed, single realization were it to be considered as a given, deterministic 
signal. This is the problem of ergodic theory, and for our setup we have the following 
fairly general result. 

Theorem 2.3. Let {sit)} be a quasi-stationary signal. Let Es(t) = m(t). Assume 
that 

oc 
sit) - mit) = v(t) = ^h,(k)e(t - k) = H,(q)e(t) (2.88) 

k=u 

where {eit)} is a sequence of independent random variables with zero mean values, 
Ee2it) — A f . and bounded fourth moments, and where {Ht(q). t — 1,2 } is a 
uniformly stable family of filters. Then, with probability 1 as N tends to infinity, 

1 V -
- YsiOsit — T ) • Es(t)s{t - r ) = RAr) (2.89a) 
N ' 

i=i 

1 N 

— £ [ • * ( ' ) « ( / - r ) - Es{t)mit - r)J 0 (2.89b) 

— V [ j ( f ) i « ( / - r) - Es(t)v(t — T ) ] —> 0 (2.89c) 
N 

The proof is given in Appendix 2B. 

The theorem is quite important. It says that, provided the stochastic part of 
the signal can be described as filtered white noise as in (2.88). then 

the spectrum of an observed single realization of {sit)), computed as for a 
deterministic signal, coincides, with probability 7, with that of the process 
{s(t)}, defined by ensemble averages iE) as in (2.61). 

This de-emphasizes the distinction between deterministic and stochastic signals 
when we consider second-order properties only. A signal {s(t)\ whose spectrum is 
<t>5(a>) = A may. for all purposes related to second-order properties, be regarded as 
a realization of white noise with variance A. 

The theorem also gives an answer to the question of whether our "theoretical" 
spectrum, defined in (2.63) using the physically unrealizable concepts of E and lim, 
relates to the actually observed periodogram (2.43). According to Theorem 2.3 and 
Lemma 2.1, , "smoothed , , versions of |5v(<w)|" will look like <t>s(w) for large N. 
Compare Figures 2.7 and 2.8. This link between our theoretical concepts and the 
real data is of course of fundamental importance. See Section 6.3. 
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2.5 MULTIVARIABLE S Y S T E M S ( * ) 

So far, we have worked with systems having a scalar input and a scalar output. In 
this section we shall consider the case where the output signal has p components 
and the input signal has m components. Such systems are called multivariable. The 
extra work involved in dealing with models of multivariable systems can be split up 
into two parts: 

1. The easy part: mostly notational changes, keeping track of transposes, and 
noting that certain scalars become matrices and might not commute. 

2. The difficult part: multioutput models have a much richer internal structure, 
which has the consequence that their parametrization is nontrivial. See Ap
pendix 4A. (Multiple-input, single-output, MISO, models do not expose these 
problems.) 

Let us collect the p components of the output signal into a p -dimensional column 
vector y(r) and similarly construct an m-dimensional input vector u(t). Let the dis
turbance e(t) also be a p-dimensional column vector. The basic system description 
then looks just like (2.20): 

y(t) = G(q)u{t) + H{q)e(t) (2.90) 

where now G(q) is a transfer function matrix of dimension p x m and H(q) has 
dimension p x p. This means that the / . j entry of G(q), denoted by G,j(q)< is 
the scalar transfer function from input number j to output number / . The sequence 
{e(t)\ is a sequence of independent random p-dimensional vectors with zero mean 
values and covariance matrices Ee{t)eT(t) = A . 

Now, all the development in this chapter goes through with proper interpreta
tion of matrix dimensions. Note in particular the following: 

• The impulse responses g(k) and h(k) will be p x m and p x p matrices, 
respectively, with norms 

\\g(k)\\ = ̂ E'^l'j <2-91) 
replacing absolute values in the definitions of stability. 

• The definitions of covariances become [cf. (2.59)] 

Es(t)sT(t - T ) = Rs(r) (2.92) 

Es(t)wT(t - T ) = RsuM (2.93) 

These are now matrices, with norms as in (2.91). 
• Definitions of spectra remain unchanged, while the counterpart of Theorem 

2.2 reads 
<t>5(a>) = G{eiM)^w{(o)GT(e-iw) (2.94) 
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This result will then also handle how cross spectra transform. If we have 

y(t) = G(q)u(t) + Hiq)w(i) = [G(q) H(q)]\Ui'\ 

where u and w are jointly quasi-stationary, scalar sequences, we have: 

<&v(<u) = [c(0 H(eio>) 

= \G(eit0)\2 4>u{a>) + \H(eiu))\2 Qw(a>) 

+ G(eiw)<l>utt.(co)H(e-ia>) + H (ei<0)<t>uu(-o>)G(e-io}) 

= \G(eiw)\2 <t>Jco) + \H(eia>)\2<t>w(co) 

+ 2 R e ( C ( O c D M W , ( w ) W ( ^ - ^ ) ) (2.95) 

where we used that G(el0>) and G(e~,(0) are complex conjugates as well as 
4>MU.(co) and 4 > u u . ( — T h e counterpart of the corollary to Theorem 2.2 for 
multivariable systems reads 

<Dv(a>) = G(ei<0)<Pu(co)GT(e-ia)) + H(eito)AHT(e-it0) (2.96) 

• The spectral factorization result now reads: Suppose that $v(co) is a p x p 
matrix that is positive definite for all co and whose entries are rational functions 
of cos co (or etM). Then there exists a p x p monic matrix function H (z) whose 
entries are rational functions of z (or ; - 1 ) such that the (rational) function 
det H(z) has no poles and no zeros on or outside the unit circle. (For a proof, 
see Theorem 10.1 in Rozanov, 1967). 

• The formulation of Theorem 2.3 carries over without changes. (In fact, the 
proof in Appendix 2B is carried out for the multivariable case). 

<Pu(co) <DBtt(a>) Gie-'n 
®uu(-co) <t>w(co) I H(e~i<u) 

2.6 S U M M A R Y 

We have established the representation 

y(r) = G(q)u(t) + H(q)e(t) (2.97) 

as the basic description of a linear system subject to additive random disturbances. 
Here \e(t)} is a sequence of independent random variables with zero mean values 
and variances A. (in the multioutput case, covariance matrices A ) . Also. 

G(q) = 2>(*)<r* 
k=l 

oc 

H(q) = 1 + X/K*)<T* 
k=l 
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The filter G(q) is stable if 
00 

£ > ( * ) ! < oc 
kr=\ 

As the reader no doubt is aware o£ other particular ways of representing linear 
systems, such as state-space models and difference equations, are quite common 
in practice. These can, however, be viewed as particular ways of representing the 
sequences {g(k)\ and {h(k)}, and they will be dealt with in some detail in Chapter 4. 

We have also discussed the frequency function G(el<v), bearing information 
about how an input sinusoid of frequency co is transformed by the system. Frequency-
domain concepts in terms of the frequency contents of input and output signals were 
also treated. The Fourier transform of a finite-interval signal was defined as 

1 N 

UN(co) = —J2u{t)e-la" (2.98) 
^ N ,=i 

A signal s(t) such that the limits 

Es(t)s(t - T ) = R5(r) 

exist is said to be quasi-stationary. Here 

* / < ' > = „ l ^ i X > ( ' > 
I 

Then the spectrum of s(t) is defined as 

oo 

<t>s(co) = X Rs(r)e-im

 ; (2.99) 
T=-OC 

For y generated as in (2.97) with {«(*)} and {e(t)\ independent, we then have 

* ¥(fl>) = \G(eio>)\2^u(co) + k\H(ei(0)\2 

2.7 BIBLIOGRAPHY 

The material of this chapter is covered in many textbooks on systems and signals. For 
a thorough elementary treatment, see Oppenheim and Willsky (1983). A discussion 
oriented more toward signals as time series is given in Brillinger (1981), which also 
contains several results of the same character as our Theorems 2.1 and 2.2. 

A detailed discussion of the sampling procedure and connections between the 
physical time-continuous system and the sampled-data description (2.6) is given in 
Chapter 4 of Astrom and Wittenmark (1984). Chapter 6 of that book also contains 
an illuminating discussion of disturbances and how to describe them mathematically. 
The idea of describing stochastic disturbances as linearly filtered white noise goes 
back to Wold (1938). 
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Fourier techniques in the analysis and description of signals go back to the 
Babylonians. See Oppenheim and Willsky (1983). Section 4.0. for a brief histori
cal account. The periodogram was evidently introduced by Schuster (1894)to study 
periodic phenomena without having to consider relative phases. The statistical prop
erties of the periodogram were first studied by Slutsky (1929). See also Brillinger 
(1983). Concepts of spectra are intimately connected to the harmonic analysis of 
time series, as developed by Wiener (1930). Wold (1938), Kolmogorov (1941). and 
others. Useful textbooks on these concepts (and their estimation) include Jenkins 
and Watts (1968) and Brillinger (1981). Our definition of the Fourier transform (2.37) 
with summation from 1 to N and a normalization with l/y/N suits our purposes, 
but is not standard. The placement of 2TT in the definition of the spectrum or in 
the inverse transform, as we have it in (2.65). varies in the literature. Our choice is 
based on the wish to let white noise have a constant spectrum whose value equals 
the variance of the noise. The particular framework chosen here to accommodate 
mixtures of stochastic processes and deterministic signals is apparently novel, but 
has a close relationship to the classical concepts. 

The result of Theorem 2.2 is standard when applied to stationary stochastic 
processes. See, for example, James. Nichols, and Phillips (1947)or Astrom (1970). 
The extension to quasi-stationary signals appears to be new. 

Spectral factorization turned out to be a key issue in the prediction of time 
series. It was formulated and solved by Wiener (1949)and Paley and Wiener (1934). 
The multivariable version is treated in Youla (1961). The concept is now standard in 
textbooks on stationary processes (see, e.g., Rozanov, 1967). 

The topic of single realization behavior is a standard problem in probability 
theory. See, for example, ibragimov and Linnik (1971), Billingsley (1965). or Chung 
(1974)for general treatments of such problems. 

2.8 PROBLEMS' 

2 G . 1 Let sit) be a p-dimensional signal. Show that 

E\SIT)\" = — / TR(<T>Aco)) dco 
271 J_RR 

2G.2 Let <J>.t (co) be the (power) spectrum of a scalar signal defined as in (2.63). Show that 

i. <P>(<*>) is real. 

ii. <PS(<*>) > OVco. 

iii. (—<w) — <Pj(a>). 

r v ( / ) l 
2 G . 3 Let $ ( / ) = " and let its spectrum be 

r , „ n 

* See the Preface for an explanation of the numbering system. 
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Show that 4>v(w) is a Hermitian matrix: that is. 

<t>,(co) - <&"(<*» 

where * denotes transpose and complex conjugate. What does this imply about the 
relationships between the cross spectra <f>YU(a>). <Puy((o). and 4>V H(—w)? 

2G.4 Let a continuous t ime system representat ion be given by 

y(f) = GAp)u(t) 

The input is constant over the sampling interval T. Show that the sampled input-output 
data are related by 

x{t) = Gr(q)u(t) 

where 

f i x e>T - 1 1 
GT{q) = / GAs) r=ds 

Js=-iy: * q - e T 

Hint: Use (2.5). 

2E.1 A stationary stochastic process has the spectrum 

1.25 -f- COS to 
<t>A<o) = 

1.64 + 1.6 cos to 

Describe [v(t)} as an A R M A process. 

2E.2 Suppose that {??(/)} and {£(/)} are two mutually independent sequences of independent 
random variables with 

Er](t) = ££( / ) = 0. Erf(t) = Xn. Ef-(t) = A? 

Consider 

wit) = J)(t) + $(?) + y$(t - I) 

Determine a M A ( 1 ) process 

v(t) = e(t) + ce(t - 1) 

where {e{t)} is white noise with 

Ee(t) = 0. Ee2(t) = ke 

such that {u'(f)J and {f(f)} have the same spectra: that is. find c and ke so that <t>, (<u) = 
<t>u(to). 

2E.3 (a) In Problem 2E.2 assume that {q(t)\ and {£(/)} are jointly Gaussian. Show that 
if {e(t)} also is chosen as Gaussian then the joint probability distribution of the 
process \w(t)} [i. e.. the joint PDFs of w{t]). u 'U:) w(ip) for any collec
tion of t ime instances /,•] coincides with that of the process {i ' (0}- Then, for all 
practical purposes, the processes {v(t)} and {w(t)} are indistinguishable. 
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(b) Assume now that q(t) e N(Q. kn), while 

1, w.p. 

— 1. w.p. 

A t 

y 

2 

0, W.p. 1 - A t 

Show that, although v and u: have the same spectra, we cannot find a distribu
tion for e(t) so that they have the same joint PDFS. Consequently the process 
w(t) cannot be represented as an MA(1) process, although it has a second-order 
equivalent representation of that form. 

2E.4 Consider the "state-space description" 

x(t + 1) = fxit) + w(t) 

y(t) = hx(t) + V(t) 

where x. / . h. w. and v are scalars. {u'(r)} and (v(f)} are mutually independent 
white Gaussian noises with variances R} and respectively. Show that y(t) can be 
represented as an A R M A process: 

y(f) + « iy ( r - 1) + h any(t - n) = e(t) + ae(t - 1) + • • • + cne(t - n) 

Determine n.a,.c,. and the variance of e(t) in terms of / , h. R\, and R2. What is the 
relationship between e(t). i f ( f ) , and v ( / )7 

2E.5 Consider the system 

y(f) = G(q)u(t) + i?(f) 

controlled by the regulator 

«(f) = - F : ( ? ) y ( / ) + Fi(<?)r(f) 

where (r(f)} is a quasi-stationary reference signal with spectrum <t>r((o). The distur
bance {v(t)} has spectrum <fc(,(a>). Assume that {r(t)} and {i'(f)} are uncorrelated and 
that the resulting closed-loop system is stable. Determine the spectra <J>v(a>). <t>M(w). 
and <t\„(a>). 

2E.6 Consider the system 
d 

— v(r) + flv(r) = u(t) (2.100) 
tff' 

Suppose that the input u(t) is piecewise constant over the sampling interval 

ii(f) = «*. * T < f < (A + \ )T 

(a) Derive a sampled-data system description for M*, y(kT). 

(b) Assume that there is a time delay of 7 seconds so that uU) in (2.100) is replaced 
by w(f — 7"). Derive a sampled-data system description for this case. 

(c) Assume that the time delay is 1.57 so that u(t) is replaced by n(r — 1.57/). Then 
give the sampled-data description. 
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2 E . 7 Consider a system given by 

y ( 0 + ay(t - 1) = buit - 1) + e(t) + c*(r - 1) 

where («(r)} and {*(*)} are independent white noises, with variances fi and X. re
spectively. Follow the procedure suggested in Appendix 2C to multiply the system 
description by e(t), e{t - 1), « ( / ) . u(t - 1), y ( r ) . and y ( / - 1). respectively, and take 
expectation to show that 

Rye{0) = k. RYAl) = (e - a)k 

R>u(0) = 0, R>u{\) = bu. 

Irfx + k + czk — lack 
RAO) = 

* v ( l ) = 

1 — a-

k(c — a + arc — acr) — abz\x 
1 - a-

2T.1 Consider a continuous time system (2.1): 

JT=V 
Let grit) be defined by (2.5), and assume that u(t) is not piecewise constant, but that 

\4-u(t)\ < Ci 
\dt I 

Let wjt = u ((it + \)T) and show that 

oc 
y(kT) = ̂ 2gT(t)uk^t + rk 

t=i 

where 

\ n \ <c2T2 

Give a bound for C2. 

2T.2 If the filters R\{q) and R2(q) are (strictly) stable, then show that R^(q)R2(q) is also 
(strictly) stable (see also Problem 3D.1). 

2T.3 Let G(q) be a rational transfer function: that is, 

<?" + uxq"-] +•••+«„ 
Show that if G{q) is stable, then it is also strictly stable. 

2T.4 Consider the time-varying system 

x(t + 1) = f (/)-*(/) + G{t)u{t) 

y(t) = H(t)x(t) 

Write 

i 
y(0 = J^gAk)u(t-k) 

k=l 
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[take g,(k) = 0 for k > / ] . Assume that 

Fit) —> T. a s / oc 

where F has all eigenvalues inside the unit circle. Show that the family of filters 
{g,(k),t = 1,2 } is uniformly stable. 

2 D . 1 Consider Us(to) denned by (2.37). Show that US{2JT - co) — Usico) = U\{<o) and 
rewrite (2.38) in terms of real-valued quantit ies only. 

2 D . 2 Establish (2.39). 

2 D . 3 Let [uit)\ be a stationary stochastic process with Ruiz) = Euit)uit — z). and let 
<Pu((o) be its spectrum. Assume that 

T) < OO 

Let UN(co) be denned by (2.37). Prove that 

E\Uxico)\2 -+ <Pui<o), as N oo 

This is a strengthening of Lemma 2.1 for stationary processes. 

2 D . 4 Let G(q) be a stable system. Prove that 

1 N 

lim ~r:Y,k\g(k)\ = 0 
k=l 

Hint: Use Kronecker 's lemma: Let a*, be sequences such that at is positive and 
decreasing to zero. Then Tctkbk < oc implies 

lim a\ > bir = 0 
1 

(see. e.g., Chung. 1974. for a proof of Kronecker ' s lemma). 

2 D . 5 Let b\(z) be a doubly indexed sequence such that, V r , 

b\{z) —• biz). as N —*• oc 

(but not necessarily uniformly in r ) . Let aT be an infinite sequence, and assume that 

< oc. \bir)\ < C VT 

Show that 

lim 
•v-

iV 

« r ( & v ( r ) - biz)) + a * b { r ) 

Hint: Study Appendix 2A. 

!r ! >.V 

= 0 
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APPENDIX 2A: PROOF OF T H E O R E M 2.2 

We carry out the proof for the multivariate case. Let wis) = 0 for s < 0, and 
consider 

1 N 

t=l 
(2A.1) 

j N t t-T 

= jjJ2J2Jl8(k)Ew{t -k)wT{t - r -i)gT{t) 

t=i k=o i-i) 

With the convention that wis) = 0 if s $ [0. N\, we can write 

.V .V ;V 

/ ? ; v ( r ) = £ £ * < * > ^ £ * * ' ( > - *)u? r (f - T - £ ) / ( £ ) (2A.2) 
A-0 ('=0 i=l 

If u.'(.v) # 0,.? < 0, then s(t) gets the negligible contribution 

oc 

lit) = *) 

*=/ 

Let 

1 ' V 

< ( r ) = - ^ £ u - ( / ) u ' r ( f - T) 
t=i 

We see that R%(T + £ — k) and the inner sum in (2A.2) differ by at most 
max (k, | r + i\) summands, each of which are bounded by C according to (2.58). 
Thus 

1 V 

tf*(r + I - k) - — Ew(* ~ k)wTU - r - €) 
;=i 

max (it, | r + t\) C , 

< C i - i ^ < ( * + r + i\) 
N N 

Let us define 

oc oc 

k=0 t=0 

(2A.3) 

(2A.4) 
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Then 

Rs(z) - /?;v(r) < H I * ( * ) I I * U ) I I ^ . ( T + i - k)\ 

.V ,v 
+ LL\g{k)\\8(t)\\K*{T + I - k) - / ? J (r + I - k)\ 

1=0 f=0 

~ A' .V 

A=0 «=() 

The first sum tends to zero as N —• oc since |/?«.(T) | < C and G(q) is stable. It 
follows from the stability of G(q) that 

1 A 

ff2l*W)\ °< a s W - > o c (2A.6) 

(see Problem 2D.4). Hence the last two sums of (2A.5) tend to zero as N —• oc. 
Consider now the second sum of (2A.5). Select an arbitrary e > 0, and choose 
N = Nr such that 

H < tr W h e r e C ' = £ l * v * > l ( 2 A ' ? ) 

This is possible since G is stable. Then select N'£ such that 

max \RU.(T + I - k) - rt£'(r + £ - * ) | < A -

for N > Ng. This is possible since 

R%(r) / ? u ( r ) . as A7 - > oc (2A.8) 



Chap. 2 Time-Invariant Linear Systems 

(w is quasi-stationary) and since only a finite number of Rw(s)*s are involved (no 
uniform convergence of (2A.8) is necessary). Then, for N > A^. we have that the 
second sum of (2A.5) is bounded by 

*=() ^=0 1 k=Ne+H=0 

+ E E I*<*>II*«>I • 2 C 

which is less than 5s, according to (2A.7). Hence, also, the second sum of (2A.5) 
tends to zero as N —• oc , and we have proved that the limit of (2A.5) is zero and 
hence that s(t) is quasi-stationary. 

The proof that Es(t)wT(t — r ) exists is analogous and simpler. 

For <J>5(w) we now find that 

oc oc oc 

< M * > ) = E EE*(*) /?«'(R + 1 - *>*R<€> E~H 

r = - o o \jk=0 £=0 

oc oc 
= Y , E ^ ^ ) ^ E ^ ' ( T + ^-^~ / ( T + '~* ) V(O^ 

T=-OC jt=o e=o 

= [r + € - k - s] 
oc oc 

&=0 J=-OC 

= G ( ^ ' J ) $ » G r ( r i w ) 

*=0 

Hence (2.79) is proved. The result (2.80) is analogous and simpler. 

For families of linear filters we have the following result: 

Corollary. Let {Ge(q), 9 € D) be a uniformly stable family of linear filters, and 
let {w(t)} be a quasi-stationary sequence. Let s#(t) = Ge(q)w(t) and /?.<(r, 9) — 
~Es0(t)sJ(t - r ) . Then: 

sup 
6eD 

1 N 

0 as A7 0 0 
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Proof. We only have to establish that the convergence in (2A.5) is uniform in 
0 e D. In the first step all the g(k)-terms carry an index 9 : go(k). Interpreting 

g(k) = sup \g9(k)\ 

(2A.5) will of course still hold. Since the family G$(q) is uniformly stable, the sum 
over g(k) will be convergent, which was the only property used to prove that (2A.5) 
tends to zero. This completes the proof of the corollary. • 

APPENDIX 2B: PROOF OF T H E O R E M 2.3 

In this appendix we shall show a more general variant of Theorem 2.3. which will be 
of value for the convergence analysis of Chapter 8. We also treat the multivariable 
case. 

Theorem 2B .L Let {Ge(q).0 € Do} and {Mo(q),9 e De) be uniformly stable 
families of filters, and assume that the deterministic signal {w(t)}, t = 1, 2 is 
subject to 

Let the signal so(t) be defined, for each 9 € Do, by 

se(t) = Geiq)v(t) + Me(q)w(t) 

(2B.1) 

(2B.2) 

where {v(t)} is subject to the conditions of Theorem 2.3 (see (2.88) and let Ee(t)eT{t) 
= At). Then 

sup 
t=] 

0 w.p. 1, as Af —• oc (2B.3) 

Remark. We note that with d i m s = 1, Do = {9*} (only one element), 
G*6{q) = 1, Ml(q) = 1 and w(t) = m(t), then (2B.3) implies (2.89). With 

" s(t) - " 1 " 'w(t)' 
m(t) — 0 v(t) + w(t) 

. v(t) . _ 1 _ 0 

the different cross products in (2B.3) imply all the results (2.89). 

To prove Theorem 2B.1, we first establish two lemmas. 
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Lemma 2B.1 . Let [v(t)} obey the conditions of Theorem 2.3 and let 

DC 

CH = y % u p | A , ( * ) | . C, = s u p £ k ( / ) | 4 , Cw = sup|u»(f) | 

Then, for all r, N. k. and / , 
•> 

- k)vT(t - I) - EvU - k)vT(t - l)\ 
L—R 

< 4 • Ce • C4

H • (N - r) (2B.5) 

< 4 • C , • Cjj, • C;. • (JV - r ) (2B.6) 

Proof of Lemma 2B.1. With no loss of generality, we may take k = / = 0. We 
then have 

N A' oc oc 

S? £ £ i ' < 0 » r ( 0 - Ev(t)vT(t) = * .<)*, 7 <€) (2B.7) 
/=r jt=0 f=0 

where 

(2B.8) a(f. *, *) = «(f - *)* T (f - € ) - A , ^ M 

For the square of the /, j entry of the matrix (2B.7), we have 

•V .V oo oc oo oc 

/=/• s=r kX=0 (i=0 k2=0 (.2=0 

with 

J . * I , * 2 , £ I . « 2 ) 

Superscript (/) indicates the / t h row vector. Since {e(t)\ is a sequence of independent 
variables, the expectation of y is zero, unless at least some of the time indexes 
involved in a(f , k\,C\) and a(s, £2) coincide, that is, unless 

t — k\ = s — ki or t — k\ = s — it or t —1\ ~ s — kj or t — l\ = s — I-
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For given values of / , &i, £ 2 , t\. and ii this may happen for at most four values of 
5 . For these we also have 

E y ( f . j , * i . * 2 . * i . « 2 ) < C , • |A(* i ) i • \h(k2)\ • | A ( £ , ) | • 

Hence 

E(S?(iJ))2 < £ | A < * , ) | • £ | A ( * 2 ) | • 

k:=0 

oc 

k2=0 

N 

(,=0 

which proves (2B.5) of the lemma. The proof of (2B.6) is analogous and simpler. 

Corollary to Lemma 2B.1. Let 

oo oo 

w{t) = £ a , ( * M r - * ) , v(t) = J2^)e(t - k) 
k=0 

Then 

< C • C * • Cl <(N - r ) ] T u ; ( ? M 0 - Ew(t)v(t) 
t=r 

oc 

A=0 i=<) 

Lemma 2B.2. Let 

RR = sup £ % 0 ( 7 ) 4 V ) - Es0it)sjit) 

Then 
E ( / ? ; v ) 2 < CiN - r ) 

Proof of Lemma 2B.2. First note the following fact: If 

<p = J^a(k)z(k) 

(2B.9) 

(2B.10) 

(2B.11) 

k=o 

where {aik)} is a sequence of deterministic matrices, such that 

k=0 
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and {z(k)} is a sequence of random vectors such that E \z(k)\2 < C: then: 

oc oc 
£ M 2 = YJ2tr[a(k)Ez(k)zT{e)aT{t)] 

k=0 t=0 
oc oc 

* £5Zll«<*>H • [E\z(k)\2]U2 • [E\z{l)\2]l/2 • ||fl(OII (2B.12) 
t-=u <=o 

< C- • £ > < * ) l l 
L*=o 

< c, • c 

Here the first inequality is Schwarz's inequality. We now have 

.v 

RfliN.r) = £ [ * j ( O . f r 0 < f ) - £ 5 f l ( r ) 4 ( r ) ] 
t-r 

A' oc oc 

= YJlJ2^k)[v{t
 - k ^ v T { t - l ) - E v ( t - k ) v T v - u]g*w 

t=r k=0 (=0 

A' oc oc + E E E ^ ^ ) T , ( F " *)W'7(R " i)mlW 
t=r k=n (.=0 

A' oc oc 

+ £ £ £ m » ( * ) t t » < r ~ k ) v T ( r ~ e)8e(0 (2B.13) 
f = r *=0 *=0 

This gives 

oo oc 

sup | | / fo ( /V . r ) | | < £ £ s u p | | # < * ) l l ^ u p • 
k=0 (=0 

+ 2 j ^ sup | | ^ (* ) | | sup | | i f i f l (£ ) | | 

with 5 * and 5 ; v defined by 

N 

(2B.14) 

A' 

5 ; V U \ 6) = £ \ ' ( r - it)M?7'</ - £ ) 
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Since G#(q) and Mn(q) are uniformly stable families of filters. 

sup | | /MA(*)| | < m(k). ^ / w ( A - ) = CM < oo 

*=1 

Applying (2B.11) and (2B.12) together with Lemma 2B.1 to (2B.14) gives 

sup \\Re(N.r)\\ <2<C4

G-4.Ce-C4

H.{N-r) 

+ 8 • C2

G • C2

M • 4 . C;r • C2

H • {N - r) < C • (N - r) 

which proves Lemma 2B.2, 

We now turn to the proof of Theorem 2B.1. Denote 

r(f .0) = st,(t)sj(t) - Es9(t)sl{t) 

and let 
= sup \\R0(N.r)\\ 

0€DA 

with R$(N. r) defined by (2B.13). According to Lemma 2B.2 

Chebyshev's inequality (LI9) gives 

Hence: 

< OC 

which, via Borel-Cantelli 's lemma [see (LI8)] , implies that 

1 
0, w.p. 1 as k —> oo 

Now suppose that 

sup - / ? * 
/V :<jt<(.V+ll2 K 

(2B.15) 

(2B.16) 

(2B.17) 
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is obtained for k = k\ and 0 = 0 v . Hence 

1 ,. 1 
sup 7 * 1 = ] -

A' 2<*<(A+1) 2 K K>\ : 

£ r ( / . 0 A . ) 
*,v 

r=A!2+l 

( 2 B . 1 8 ) 

*N *A/ +1 

Since fc,v > N 2 . the first term on the right side of (2B.18) tends to zero w.p.l in view 
of (2B.17). For the second one we have, using Lemma 2B.2, 

1 1 
< — • E max 

A r .v 2<*<dv+i) 2 

(A'+l)" 

R 

*F E s W k . f s j J . E c < * - * J ) < £ 
" *=A' :+1 

which using Chebyshev's inequality (L19) and the Borel-Cantelli lemma as before, 
shows that also the second term of (2B.18) tends to zero w.p.l. Hence 

1 
sup -Rk -> 0, w.p. l , asN'^y oc (2B.19) 

N2<k<(N'-r\)2 % 

which proves the theorem. 

Corollary to Theorem 2B.1. Suppose that the conditions of the theorems hold, but 
that (2.88) is weakened to 

E[e(t)\e(i - I ) e(0)] = 0, E[e2(t)\e(t - 1) e(0)] = k 

E\e(t)\A < C 

Then the theorem still holds. [That is: {e(t)} need not be white noise, it is sufficient 
that it is a martingale difference.] 

Proof. Independence was used only in Lemma 2B.1. It is easy to see that this lemma 
holds also under the weaker conditions. C 
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APPENDIX 2C: COVARIANCE F O R M U L A S 

For several calculations we need expressions for variances and covariances of signals 
in A R M A descriptions. These are basically given by the inverse formulas 

R,(r) = — f <t>Ao>)ei(0T dco (2C.la) 
2TT J_„ 

/? ,„( r ) = ^- f <t>sv(co)ei0>T dco (2C.lb) 

With the expressions according to Theorem 2.2 for the spectra, (2C.1) takes the form 

A r \ C(e'(l,)\2 • 
R%(z) = — / — — - e'WTdco = [z = elw] 

>• ICiz)C(l/zKx.ldz 

2JT J A(Z)A(\/Z) 

for an A R M A process. The last integral is a complex integral around the unit circle, 
which could be evaluated using residue calculus. Astrdm, Jury, and Agniel (1970)(see 
also Astrdm. 1970, Ch. 5) have derived an efficient algorithm for computing (2C.2) 
for r = 0. It has the following form: 

A(z) = a0z" + alZ

n-] + • - • 4- a„. C(z) = c0z" + Ciz"'1 + • • • + cn 

Let a" — cii and c" = c t and define a*, cj recursively by 

a 
.,n-k+\,,n-k+l _ „n-k+l n-k+1 

n-k _ " 0 ai an-k+lan-k+l-i 

" 0 
re-Jt+1Jt-k+\ _ n-k+\ n-k+\ 

n-k __ "Q Ci cn-k+]an-k+\-i 

" 0 

i = 0 ,1 n — k. k = 1, 2 , . . . , n 

Then for (2C.2) 
1 " 

Rs(0) = ~J2 
,k\2 

< 1 > (2C.3) 

An explicit expression for the variance of a second-order A R M A process 

y(f) + a ,y ( r - 1) + a2y(( - 2) = e(t) + cxe(t - 1) + c2e(t - 2) 

Ee2(t) = 1 (2C.4) 

is 

(1 + a2) (1 + ( c i ) 2 + ( c 2 ) 2 ) - 2 f l , C ! ( l + cz) - 2c 2 (a2 - (a} ) 2 + (a2)2) 
Var y(r ) = 

(1 — A2)(\ — A \ + a 2 ) ( l +CI\ + «•>) 
(2C.5) 
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To find Ry{r) and the cross covariances Rve(r) by hand calculations in simple ex
amples, the easiest approach is to multiply (2C.4) by e(t), e(t — \ ) , e(t — 2 ) , y(t). 
y(t — 1), and y(t — 2) and take expectation. This gives six equations for the six 
variables /? y <>(r), / ? v ( r ) , or T = 0, 1, 2. Note that Rye{r) - 0 for r < 0. 

For numerical computation in MATLAB it is easiest to represent the A R M A 
process in state-space form, with 

[>•(;-!) ... >•(/-«) e(t - 1) . . . e(t-n)]T 

as states, and then use dlyap to compute the state covariance matrix. This will 
contain all variances and covariances of interest. 



3 

SIMULATION AND PREDICTION 

The system descriptions given in Chapter 2 can be used for a variety of design prob
lems related to the true system. In this chapter we shall discuss some such uses. The 
purpose of this is twofold. First, the idea of how to predict future output values will 
turn out to be most essential for the development of identification methods. The 
expressions provided in Section 3.2 will therefore be instrumental for the further 
discussion in this book. Second, by illustrating different uses of system descriptions, 
we will provide some insights into what is required for such descriptions to be ad
equate for their intended uses. A leading idea of our framework for identification 
will be that the effort spent in developing a model of a system must be related to the 
application it is going to be used for. Throughout the chapter we assume that the 
system description is given in the form (2.97): 

y( / ) = G(q)u(t) + H(q)e(t) (3.1) 

3.1 S I M U L A T I O N 

The most basic use of a system description is to simulate the system's response 
to various input scenarios. This simply means that an input sequence u*(t). t = 
1.2 A7, chosen by the user is applied to (3.1) to compute the undisturbed out-
put 

v * ( 0 = G(q)u*(t), t = 1.2 N (3.2) 

This is the output that the system would produce had there been no disturbances, 
according to the description (3.1). To evaluate the disturbance influence, a random-
number generator (in the computer) is used to produce a sequence of numbers e*(t). 
t = 1, 2, . . . . A7, that can be considered as a realization of a white-noise stochastic 
process with variance X. Then the disturbance is calculated as 

v*(l) = H(q)e*(t) (3.3) 

By suitably presenting y*(t) and v*(t) to the user, an idea of the system's response 
to {u*(t)} can be formed. 

63 
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This way of experimenting on the model (3.1) rather than on the actual, physical 
process to evaluate its behavior under various conditions has become widely used 
in engineering practice of all fields and no doubt reflects the most common use 
of mathematical descriptions. To be true, models used in, say, flight simulators or 
nuclear power station training simulators are of course far more complex than (3.1), 
but they still follow the same general idea (see also Chapter 5). 

3.2 PREDICTION 

We shall start by discussing how future values of v(t) can be predicted in case it is 
described by 

oc 

v(t) = H{q)e(t) = - k) (3.4) 
t = o 

For (3.4) to be meaningful, we assume that H is stable: that is, 

oc 

£ | A ( J t ) | < oc (3.5) 
*=o 

Invertibility of the Noise Model 

A crucial property of (3.4). which we will impose, is that it should be invertible: that 
is. ifv(s).s < r, are known, then we shall be able to compute e(t) as 

oc 

eit) = H(q)v{t) = £ j i ( * ) i ' ( f - k) (3.6) 

with 

Y\h(k) < oc 
Jt=0 

How can we determine the filter H{q) from H{q)l The following lemma gives the 
answer. 

Lemma 3.1. Consider {v(t)} defined by (3.4) and assume that the filter H is stable. 
Let 

oc 

H(z) = Yh{Vz~k <3J> 
*=() 

and assume that the function 1 /H(z) is analytic in \z\ > 1: 

7/7TT = £ > ^ ' ( 38 ) 
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Define the filter H~l(q) by 

DC 

Then H(q) = H~l{q) satisfies(3.6). 

Remark. That (3.8) exists for \z\ > 1 also means that the filter H ](q) is 
stable. For convenience, we shall then say that H{q) is an inversely stable filter. 

Proof. From (3.7) and (3.8) it follows that 

DC DC DC t 

1 = YJ2h(k^ts)z~{k+S> = I* + * = = £ £ / K * ) A ( £ - k)z~* 
k=0 s=0 1 = 0 * = ( ) 

which implies that 
( 

A=0 

Now let be defined by (3.4) and consider 

DC DC OC 

£ / ? ( * ) u ( r - A) = Y^Ylh{s)e^ ~ k ~ s) 

k=i) k=0 5=0 

oo oc 

= J2Y^^{k)h^)e(t - k - s) = [k + s = i] 
k=0 5=0 

.k=0 

e{t - £) = 

according to (3.10), which proves the lemma. 

Note: The lemma shows that the properties of the filter H {q) are quite analo
gous to those of the function H{z). It is not a triviality that the inverse filter H~l{q) 
can be drived by inverting the function H(z): hence the formulation of the result as 
a lemma. However, all similar relationships between H(q) and H(z) will also hold, 
and from a practical point of view it will be useful to switch freely between the filter 
and its ^-transform. See also Problem 3D.1. 

The lemma shows that the inverse filter (3.6) in a natural way relates to the 
original filter (3.4). In view of its definition, we shall also write 
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for this filter. All that is needed is that the func t ion \ /H ( z ) be analytic in \z\ > 1; that 
is, it has no poles on or outside the unit circle. We could also phrase the condition as 
H(z) must have no zeros on or outside the unit circle. This ties in very nicely with the 
spectral factorization result (see Section 2.3) according to which, for rational strictly 
positive spectra, we can always find a representation H(q) with these properties. 

Example 3.1 A Moving Average Process 

Suppose that 
V(t) = e{t) + ce(t - 1) (3.12) 

That is, 
Hiq) = 1 + cq~l 

According to (2.87), this process is a moving average of order i , MA(1) . Then 

H(z) = 1 + cz~l = ^ £ T <. 

has a pole in z = 0 and a zero in z = —c, which is inside the unit circle if \c\ < 1. If 
so, the inverse filter is determined as 

and e(t) is recovered from (3.12) as 

-k 

k=0 • 

One-step-ahead Prediction of v 

Suppose now that we have observed v(s) for s < t — 1 and that we want to predict 
the value of v(t) based on these observations. We have, since H is monic, 

oo oc 

v(t) = X*(*M/ - k) = e{t) + £ ^ - k) (3.13) 
k=0 k=\ 

Now, the knowledge of v(s), s < t — 1 implies the knowledge of e{s), s < t — 1, 
in view of (3.6). The second term of (3.13) is therefore known at time t — 1. Let us 
denote it, provisionally, by m(t — 1): 

OC' 

m(t - 1) = ^ A ( * ) e ( f - *) 
k=l 

Suppose that (e(t)} are identically distributed, and let the probability distribution of 
e(t) be denoted by fe(x): 

P(x < e(t) < x -f Ax) ^ fe(x)Ax 



Sec. 3.2 Prediction 67 

This distribution is independent of the other values of e(s), s ^ / . s ince {e(t)} is a 
sequence of independent random variables. What we can say about v(t) at time t — l 
is consequently that the probability that v(t) assumes a value between m(t — 1) + x 
and m(t — 1) + x + A x is fe(x)Ax. This could also be phrased as 

the (posterior) probability density function of v(t), given observations up 
to time t — 1, is fv(x) = fe(x — m(t — 1)). 

Formally, these calculations can be written as 

/ , .( .*)Ax « P(x < v(t) < x + Ax\v'-^) 

= P (x < m(t - 1) + <?(/) < .v + Ax) 

= P(x - m(t - 1) < e ( / ) < x + A x - m(t ~ 1)) 

~ (x — m(r — 1)) Ax 

Here />(A|i ,L~^:) means the conditional probability of the event A, given t ' ^ . 
This is the most complete statement that can be made about v(t) at time t — 1. 

Often we just give one value that characterizes this probability distribution and hence 
serves as a prediction of v(t). This could be chosen as the value for which the P D F 
fe (x — m(t — 1)) has its maximum, the most probable value of v(t), which also is 
called the maximum a posteriori (MAP) prediction. We shall, however, mostly work 
with the mean value of the distribution in question, the conditional expectation of 
v(t) denoted by t '(r |/ — 1). Since the variable e(t) has zero mean, we have 

It is easy to establish that the conditional expectation also minimizes the mean-square 
error of the prediction error: 

where the minimization is carried out over all functions v(t) of v!_^. See Problem 

Let us find a more convenient expression for (3.14). We have, using (3.6) and 

v(t\t - 1) = m(t - 1) = - k) (3.14) 

min £ (v(t) - v(t))2 => 0(f) = v(t\t - 1) 

3D.3. 

(3.11). 

v(t\t - 1) e(t) [H(q) - l]e(t) 
Lk=\ 

(3.15) 

H(q) - 1 

H(q) 

OO 

V(t) = [1 U-\q)} v(t) = £ - / i(Jfc ) i / ( / - k) 
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v(t\t - 1) = - £ < - c ) * t ; ( r - * ) 

Example 3.3 An Autoregressive Process 

Consider a process 

oc 

v(t) = X X ^ ' ~ * > " | a | < 1 

Then 

which gives 

1 ~ ^ 
Jk=0 

H~l(z) = 1 - a ; - 1 

and the predictor, according to (3.15), 

v(t\t - 1) = av(t - 1) (3.18) 

• 
One-step-ahead Prediction of y 

Consider the description (3.1), and assume that y ( j ) and 11(5) are known for s < t—\. 
Since 

= y(s) - G{q)u(s) (3.19) 

this means that also v(s) are known for s < t — 1. We would like to predict the 
value 

y(/) = G{q)u(t) + i>(f) 

Applying H(q)Xo both sides gives the alternative expression 

OO 

H(.q)v{t\t - 1) = [H(q) - i]v(t) = £/i(Jfc)u(f ~ *) ( 3 - 1 6 > 

Example 3.2 A Moving Average Process 

Consider the process (3.12). Then (3.16) shows that the predictor is calculated as 

v(t\t - 1) + cv(t - \\t - 2) = cv(t - 1) (3.17) 

Alternatively we can determine / / - 1 ( < ? ) from Example 3.1 and use (3.15): 
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using (3.15) and (3.19). respectively. Collecting the terms gives 

y( / | r - 1) = H-\q)G{q)it(t) + [l - tf_1<<7)] y ( / ) (3.20) 

or 

H(q)y{t\t - 1) = C(^)«(f) + [//(<?) - l ] y ( / ) (3.21) 

Remember that these expressions are shorthand notation for expansions. For exam
ple, let {£{k)\ be defined by 

m = Plk)z'k (322) 

[This expansion exists for |c | > 1 if H(z) has no2erosand Giz) no poles in \z\ > 1.] 
Then (3.20) means that 

oc oc 

y(t\t - 1) = X - *) + X -^^'>.v(f - *> (3-23) 

Unknown Initial Conditions 

In the reasoning so far we have made use of the assumption that the whole data 
record from time minus infinity to t — 1 is available. Indeed, in the expression (3.20) 
as in (3.23) all these data appear explicitly. In practice, however, it is usually the case 
that only data over the interval [0. t — 1] are known. The simplest thing would then 
be to replace the unknown data by zero (say) in (3.23): 

y(t\t - 1) ^ £ * ( J f c ) i i ( f - k) + £ - A ( J t ) y ( r ~ * ) (3-24) 
A=1 £=l 

based on this information. Clearly, the conditional expectation of y ( r ) . given the 
information in question, is 

y</|/ - 1) = G(q)u(t) + v(t\t - 1) 

= G(q)uU) + [ l - H~l(q)]v(t) 

= G(q)u(t) + [ l - / / - , ( ^ ) ] [ y ( r ) - G{q)u(r)] 
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One should realize that this is now only an approximation of the actual condi
tional expectation of y(t), given data over [0, t — 1]. The exact prediction involves 
time-varying filter coefficients and can be computed using the Kalman filter [see 
(4.94)]. For most practical purposes, (3.24) will, however, give a satisfactory solution. 
The reason is that the coefficients {t(k)} and {h(k)} typically decay exponentially 
with k (see Problem 3G.1). 

The Prediction Error 

From (3.20) and (3.1), we find that the prediction error y(r) — y(t\t — 1) is given by 

y(t) - y( r | r - 1) = -H-\q)G{q)u{t) + H~\q)y(t) = e(t) (3.25) 

The variable e(t) thus represents that part of the output y{t) that cannot be predicted 
from past data. For this reason it is also called the innovation at time t. 

k -step-ahead Prediction of y (*) 

Having treated the problem of one-step-ahead prediction in some detail, it is easy to 
generalize to the following problem: Suppose that we have observed v(s) for s < t 
and that we want to predict the value v(t + k). We have 

v(t + k) = X / j ( £ M r + * -

k-l oo * 

Let us define 

«=0 C=k 

Jt-1 

£=0 (=k 

The second sum of (3.26) is known at time time t, while the first sum is independent 
of what has happened up to time / and has zero mean. The conditional mean of 
vit + k). given vLx is thus given by 

oc 
v(t + k\t) = £ * ( 0 * ( f = Hk(q)e{t) = Hk(q) • H~\q)v(t) 

e=k 

This expression is the k-step-ahead predictor of v. 



Sec. 3.2 Prediction 7 1 

y(r | r - *) = Wk(q)G(q)u(t) + [1 - W*(^)]>-(f) (3.31) 

This expression, together with (3.27) and (3.29), defines the k-step-ahead pre
dictor for y . Notice that this predictor can also be viewed as a one-step-ahead 
predictor associated with the model 

y(f) = G(q)u{t) + Wk-\q)e(t) (3.32) 

The prediction error is obtained from (3.30) as 

ek(t + k) = y(t + k) - y(t + k\t) = -Wk(q)G(q)u(t + k) 

+ [qk - Hk(q)H-\q)]y(t) 
(3.33) 

= Wk{q)[y(t + k) — G(q)u(t + k)) = Wk(q)H(q)e(t + *) 

= Hk(q)e(t + k) 

Here we used (3.29) in the second and fourth equalities. According to (3.27), Hk(q) 
is a polynomial in q~l of order k — 1. Hence the prediction error is a moving average 
of e(t + k), ...,e(t + 1). 

Now suppose that we have measured y'_x and know w'J^T 1 and would like to 
predict y(t + k). We have, as before 

v(i + k) = G(q)u(t + *) + v(t + k) 

which gives 

y(l + * | y U t V _ H £ ' 1 ) = \U + *|0 = G(q)u(t + * ) + D( / + * | r ) 

= Gfa) i i ( / + k) + Hk(q)H-\q)v(t) (3.28) 

= G(fl)«(f + *) + Hk{q)H-\q)[y{t) - G(q)u(t)] 

Introduce 

= 1 - q-kHk(q)H-l(q) = \H(q) - q'k Hk(q)] H~l(q) 
1 J (3.29) 

= Hk(q)H-\q) 

Then simple manipulation on (3.28) gives 

y(f + k\t) = Wk(q)G(q)u(t + *) + Hk(q)H~\q)y(t) (3.30) 

or, using the first equality in (3.29), 
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The Multivariable Case <*) 
For a multivariable system description (3.1) (or 2.90). we define the p x p matrix 
filter H~\q) as 

oo 

H~l(q) = ^2h(k)q'k 

k=0 

Here h(k) are the p x p matrices defined by the expansion of the matrix function 
oc 

[ / / ( - ) ] - ' = (3.34) 

This expansion can be interpreted entrywise in the matrix [H(z)]~l (formed by 
standard manipulations for matrix inversion). It exists for |-[ > 1 provided the 
function det H(z) has no zeros in \z\ > 1. With H~](q) thus defined, all calculations 
and formulas given previously are valid also for the multivariable case. 

3.3 OBSERVERS 

In many cases in systems and control theory, one does not work with a full description 
of the properties of disturbances as in (3.1). Instead a noise-free or "deterministic" 
model is used: 

y ( / ) = G(q)u(t) (3.35) 

In this case one probably keeps in the back of one's mind, though, that (3.35) is not 
really the full story about the input-output properties. 

The description (3.35) can of course also be used for "computing," ''guessing,' 1 

or "predicting" 1 future values of the output. The lack of noise model, however, 
leaves several possibilities for how this can best be done.-The concept of observers 
is a key issue for these calculations. This concept is normally discussed in terms of 
state-space representations of (3.35) (see Section 4.3): see, for example. Luenberger 
(1971)or Astrom and Wittenmark (1984), but it can equally well be introduced for 
the input-output form (3.35). 

An Example 
Let 

0 0 b-~l 

G(z) = fcVW-'r* = — ^ r (3.36) 

This means that the input-output relationship can be represented either as 
oc 

>•(/) = b^{a)k-lu{t - k) (3.37) 

that is 
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or as 
(1 - aq-l)y(t) = bq']u(t) 

i.e. 
y(f) - ay(t - 1) = bu(t - 1) (3.38) 

Now. if we are given the description (3.35) and (3.36) together with data y(s). u(s). 
s < t — 1. and are asked to produce a "'guess" or to "calculate' ' what y{t) might be, 
we could use either 

oc 

y(t\t - 1) = b^(a)k-lu(t - *) (3.39) 
k=l 

or 

y(/|f - 1) = ay{t - 1) + M ' - 1) (3.40) 

As long as the data and the system description are correct, there would also be 
no difference between (3.39) and (3.40): they are both "observers" (in our setting 
"predictors" would be a more appropriate term) for the system. The choice between 
them would be carried out by the designer in terms of how vulnerable they are to 
imperfections in data and descriptions. For example, if input-output data are lacking 
prior to time 5 = 0, then (3.39) suffers from an error that decays like a' (effect of 
wrong initial conditions), whereas (3.40) is still correct for t > 1. On the other hand, 
(3.39) is unaffected by measurement errors in the output, whereas such errors are 
directly transferred to the prediction in (3.40). From the discussion of Section 3.2, it 
should be clear that, if (3.35) is complemented with a noise model as in (3.1), then 
the choice of predictor becomes unique (cf. Problem 3E.3). This follows since the 
conditional mean of the output , computed according to the assumed noise model, is 
a uniquely defined quantity. 

A Family of Predictors for ( 3 . 3 5 ) 

The example (3.36) showed that the choice of predictor could be seen as a trade-off 
between sensitivity with respect to output measurement errors and rapidly decaying 
effects of erroneous initial conditions. To introduce design variables for this trade-off, 
choose a filter W(q) such that 

oc 

W(q) = 1 + J2wt«~l (3-41> 
t=k 

Apply it to both sides of (3.35): 

W(q)y(t) = W(q)G(q)u(t) 

which means that 

>•( / ) = [1 - W(q)]yU) + W(q)G(q)u(t) 
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In view of (3.41), the right side of this expression depends only on y(s). s < t — k. 
and u{s). s < t — 1. Based on that information, we could thus produce a "guess" or 
prediction of y(t) as 

y(t\t - k) = [1 - W(q)]y(t) + W(q)G(q)u(t) (3.42) 

The trade-off considerations for the choice of W would then be: 

1. Select W(q) so that both W and WG have rapidly decaying filter 
coefficients in order to minimize the influence of erroneous initial 
conditions. (3 43) 

2. Select W{q) so that measurement imperfections in y(f) are max
imally at tenuated. 

The later issue can be illuminated in the frequency domain: Suppose that y{t) = 
y ; w(f )+L ' ( / ) . where y iv/(/) = G(q)u(t) is the useful signal and v(t) is a measurement 
error. Then the prediction error according to (3.42) is 

s{t) = y(f) - y(f|/ - k) = W(q)v(t) (3.44) 

The spectrum of this error is, according to Theorem 2.2, 

Qe(<o) = \W(ei<a)\2 <t>v(o>) (3.45) 

where <J\,(o>) is the spectrum of i'. The problem is thus to select W, subject to (3.41). 
such that the error spectrum (3.45) has an acceptable size and suitable shape. 

A comparison with the &-step prediction case of Section 3.2 shows that the 
expression (3.42) is identical to (3.31) with W(q) — Wk{q). It is clear that the 
qualification of a complete noise model in (3.1) allows us to analytically compute 
the filter W in accordance with aspect 2. This was indeed what we did in Section 
3.2. However, aspect 1 was neglected there, since we assumed all past data to be 
available. Normally, as we pointed out, this aspect is also less important. 

Fundamental Role of the Predictor Filter 
It turns out that for most uses of system descriptions it is the predictor form (3.20), 
or as in (3.31) and (3.42). that is more important than the description (3.1) or (3.35) 
itself. We use (3.31) and (3.42) to predict, or "guess," future outputs; we use it for 
control design to regulate the predicted output , and so on. Now. (3.31) and (3.42) are 
just linear filters into which sequences {u(t)} and |y(f)} are fed, and that produce 
y(t\t — k) as output. The thoughts that the designer had when he or she selected 
this filter are immaterial once it is put to use: The filter is the same whether W = 
was chosen as a trade-off (3.43) or computed from H as in (3.27) and (3.29). The 
noise model H in (3.1) is from this point of view just an alibi for determining the 
predictor. This is the viewpoint we are going to adopt. The predictor filter is the 
fundamental system description (Figure 3.1). Our rationale for arriving at the filter 
is secondary. This also means that the difference between a "stochastic system" 
(3.1) and a "deterministic" one (3.35) is not fundamental. Nevertheless, we find it 
convenient to use the description (3.1) as the basic system description. It is in a 
one-to-one correspondence with the one-step-ahead predictor (3.20) (see Problem 
3D.2) and relates more immediately to traditional system descriptions. 
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v 

it v 

Figure 3.1 The predictor filter. 

3.4 S U M M A R Y 

Starting from the representation 

y(t) = G(q)u(t) + H(q)eU) 

we have derived an expression for the one-step-ahead prediction of y ( / ) [i.e., the 
best "guess" of y(t) given u(s) and y ( 5 ) , s < t — 1J. This expression is given by 

We also derived a corresponding k -step-ahead predictor (3.31). We pointed 
out that one can arrive at such predictors also through deterministic observer con
siderations, not relying on a noise model H. We have stressed that the bottom line in 
most uses of a system description is how these predictions actually are computed; the 
underlying noise assumptions are merely vehicles for arriving at the predictors. The 
discussion of Chapters 2 and 3 can thus be viewed as a methodology for "guessing" 
future system outputs. 

It should be noted that calculations such as (3.46) involved in determining 
the predictors and regulators are typically performed with greater computational 
efficiency once they are applied to transfer functions G and H with more specific 
structures. This will be illustrated in the next chapter. 

3.5 BIBLIOGRAPHY 

Prediction and control are standard textbook topics. Accounts of the k -step-ahead 
predictor and associated control problems can be found in Astrdm (1970)and Astrom 
and Wittenmark (1984). Prediction is treated in detail in, for example, Anderson and 
Moore (1979)and Box and Jenkins (1970). An early account of this theory is Whittle 

Prediction theory was developed by Kolmogorov (1941), Wiener (1949), 
Kalman (1960), and Kalman and Bucy (1961). The hard part in these problems 
is indeed to find a suitable representation of the disturbance. Once we arrive at 
(3.1) via spectral factorization, or at its time-varying counterpart via the Riccati 
equation [see (4.95) and Problem 4G.3], the calculation of a reasonable predictor 
is, as demonstrated here, easy. Note, however (as pointed out in Problem 2E.3). 
that for non-Gaussian processes normally only the second-order properties can be 
adequately described by (3.1), which consequently is too simple a representation to 
accommodate more complex noise structures. The calculations carried out in Sec
tion 3.2 are given in Astrom (1970)for the case where G and H are rational with 

y(t\t - 1) = H-\q)G(q)u(t) + [ l - f T 1 (<?)] y ( f ) (3.46) 

(1963). 
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the same denominators. Rissanen and Barbosa (1969)have given expressions for the 
prediction in input-output models of this kind when the lack of knowledge of the 
infinite past is treated properly [i.e., when the ad hoc solution (3.24) is not accepted]. 
The result is, of course, a time-varying predictor. 

3.6 PROBLEMS 

3G.1 Suppose that the transfer function G(z) is rational and that its poles are all inside 
|cl < p. where ft < 1. Show that 

\g(k)\ < c • t*k 

where g(k) is defined as in (2.16). 

3G.2 Let A(q) and B(q) be two monic stable and inversely stable filters. Show that 

\B(eiM)f dw > 1 

with equality only if A{q) = \JB(q). 
3 E . 1 Let 

H(q) = 1 - lAq-1 + 0.3q 
Compute H~x{q) as an explicit infinite expansion. 

3 E . 2 De te rmine the 3-step-ahead predictors for 

1 

- 2 

y(t) = 
1 — aq 

and 

,-(r) = (1 + cq-l)e{t) 
respectively. What are the variances of the associated prediction errors? 

3 E . 3 Show that if (3.35) and (3.36) are complemented with the noise model H(q) = 1 then 
(3.39) is the natural predictor, whereas the noise model 

H(q) = £>*)<?"* 

leads to the predictor (3.40). 

3E.4 Let e(t) have the distribution 

e(t) = 
1. w.p. 0.5 

-0.5, w.p. 0.25 

-1.5, w.p. 0.25 

Let 

v(t) = H{q)e{t) 
and let v(t\t — 1) be defined as in the text. What is the most probable value ( M A P ) of 
v(t) given the information v(t \t — 1)? What is the probability that v(t) will assume a 
value between v{t\t - 1) - J and v(t\t -!) + £? 
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3X1 Suppose that A(q) is inversely stable and monic. Show that A 1 {q) is monic. 

3X2 Suppose the measurement error spectrum of r in (3.44) and (3.45) is given by 

<Ma>) = k\R(eie")\2 

for some monic stable and inversely stable filter R(q). Find the filter W. subject to 
(3.41) with k = 1. that minimizes 

Ee2{t) 

Hint: Use Problem 3G.2. 

3X3 Consider the system description of Problem 2E.4: 

x{t + 1) = fx{t) + U'(F) 

y(0 = hx(t) + v(t) 

(x scalar). Assume that {v(t)\ is white Gaussian noise with variance R2 and that {ir(r)} 
is a sequence of independent variables with 

( 1, w.p. 0.05 
- 1 , w.p. 0.05 

0, w.p. 0.9 

Determine a monic filter W{q) such that the predictor 

y(f) = (1 - W(q))y(t) 

minimizes 

E(y(0 - y(t))z 

What can be said about 

£(y( ' ) ivL - 1 )? 

3X4 Consider the noise description 

v(t) = e(t) + ce(t - 1). | c | > 1. Ee2(t) = X (3.47) 

Show that e(t) cannot be reconstructed from v' by a causal, stable filter. However, show 
that e(t) can be computed from ty^j by an anticausal. stable filter. Thus construct a 
stable, anticausal predictor for v(t) given v{s), s > t + 1. 

Determine a noise U(r) with the same second-order properties as v(t), such that 

t?(r) = e{t) + c*e(t - 1). |c* | < 1. Ee2(t) - >S (3.48) 

Show that v(t) can be predicted from U f _ 1 by a stable, causal predictor. [Measuring 
just second-order properties of the noise, we cannot distinguish between (3.47) and 
(3.48). However , when e{t) in (3.47) is a physically well defined quantity (although not 
measured by us), we may be interested in which one of (3.47) and (3.48) has generated 
the noise. See Benveniste, Goursat , and Ruget (1980).] 
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3D.1 In the chapter we have freely multiplied, added, subtracted, and divided by transfer-
function operators G(q) and H{q). Division was formalized and justified by Lemma 
3.1 and (3.11). Justify similarly addition and multiplication. 

3D.2 Suppose a one-step-ahead predictor is given as 

y(r | r - 1) = Lx(q)u{t - 1) + L2(q)y(t - 1) 

Calculate the system description (3.1) from which this predictor was derived. 

3 D . 3 Consider a stochastic process {v(t)} and let 

v(t) = E(v(t)\v'-X) 

Define 

eit) = v{t) - v(t) 

Let v(t) be an arbitrary function of v'~l. Show that 

E (v{t) - v(t)f > Ee\t) 

Hint: Use Ex2 = EzE(x2\z). 
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MODELS OF LINEAR 
TIME-INVARIANT SYSTEMS 

A model of a system is a description of (some of) its properties, suitable for a certain 
purpose. The model need not be a true and accurate description of the system, nor 
need the user have to believe so, in order to serve its purpose. 

System identification is the subject of constructing or selecting models of dy
namical systems to serve certain purposes. As we noted in Chapter 1, a first step is 
to determine a class of models within which the search for the most suitable model 
is to be conducted. In this chapter we shall discuss such classes of models for linear 
time-invariant systems. 

4.1 LINEAR M O D E L S A N D SETS OF LINEAR M O D E L S 

A linear time-invariant model is specified, as we saw in Chapter 2, by the impulse 
response {g(k)}^, the spectrum <PL (co) = k \H(e,(0)\ of the additive disturbance, 
and. possibly, the probability density function (PDF) of the disturbance e(t). A 
complete model is thus given by 

A particular model thus corresponds to specification of the three functions G, 
H, and fe. It is in most cases impractical to make this specification by enumerating 
the infinite sequences {g(k)}. {h(k)\ together with the function fe(x). Instead one 
chooses to work with structures that permit the specification of G and H in terms of a 
finite number of numerical values. Rational transfer functions and finite-dimensional 
state-space descriptions are typical examples of this. Also, most often the P D F fe is 

y(f) = G{q)u{t) + H{q)e{t) 

fA-), the P D F of e 
(4 .1) 

with 

(4.2) 

7 9 
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not specified as a function, but described in terms of a few numerical characteristics, 
typically the first and second moments: 

Ee(t) = ( xfe(x)dx = 0 

(4-3) 

Ee\t) = / x2fe(x)dx = X 

It is also common to assume that e(t) is Gaussian, in which case the P D F is entirely 
specified by (4.3). The specification of (4.1) in terms of a finite number of numerical 
values, or coefficients, has another and most important consequence for the purposes 
of system identification. Quite often it is not possible to determine these coefficients 
a priori from knowledge of the physical mechanisms that govern the system's be
havior. Instead the determination of all or some of them must be left to estimation 
procedures. This means that the coefficients in question enter the model (4.1) as pa
rameters to be determined. We shall generally denote such parameters by the vector 
9. and thus have a model description 

v(f) = G(q.9)u(t) + H(q,9)e(t) (4.4a) 

fe(x, 9). the P D F of e(t); {e{t)} white noise (4.4b) 

The parameter vector 9 then ranges over a subset of Rd, where d is the dimension 
of 9: 

9 € DM C Rd (4.5) 

Notice that (4.4) to (4.5) no longer is a model: it is a set of models, and it is for 
the estimation procedure to select that member in the set that appears to be most 
suitable for the purpose in question. [One may sometimes loosely talk about "the 
model (4.4)." but this is abuse of notation from a formal point of view.] Using (3.20). 
we can compute the one-step-ahead prediction for (4.4). Let it be denoted by \ (t\9) 
to emphasize its dependence on 9. We thus have 

y{t\9) = H-\q,9)G(q,9)u{t) + [ l - # ) ] >'(') (4.6) 

This predictor form does not depend on fe (x .9). In fact, as we stressed in Section 3.3, 
we could very well arrive at (4.6) by considerations that are not probabilistic. Then the 
specification (4.4) does not apply. We shall use the term predictor models for models 
that just specify G and H as in (4.4) or in the form (4.6). Similarly, probabilistic 
models will signify descriptions (4.4) that give a complete characterization of the 
probabilistic properties of the system. A parametrized set of models like (4.6) will be 
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called a model structure and will be denoted by M. The particular model associated 
with the parameter value 9 will be denoted by M(9). (A formal definition is given 
in Section 4.5.) 

In the following three sections, different ways of describing (4.4) in terms of 9 
(i.e., different ways of parametrizing the model set) will be discussed. A formalization 
of the concepts of model sets, parametrizations. model structures, and uniqueness of 
parametrization will then be given in Section 4.5. while questions of identifiabilitv 
are discussed in Section 4.6. 

4.2 A FAMILY O F T R A N S F E R - F U N C T I O N M O D E L S 

Perhaps the most immediate way of parametrizing G and H is to represent them as 
rational functions and let the parameters be the numerator and denominator coeffi
cients. In this section we shall describe various ways of carrying out such parametriza
tions. Such model structures are also known as black-box models. 

Equation Error Model Structure 

Probably the most simple input-output relationship is obtained by describing it as a 
linear difference equation: 

v(f) + fli.v(/ - 1) + • • • + an<ly(t - na) 

= bm(t - l ) + • • • + b„bu(t - nb) + e(t) (4.7) 

Since the white-noise term e (t) here enters as a direct error in the difference equation, 
the model (4.7) is often called an equation error model (structure). The adjustable 
parameters are in this case 

9 = [at a2...ana I7" (4-8) 

If we introduce 

and 
B(q) = b,q~l + • • • + b„hq-n" 

we see that (4.7) corresponds to (4.4) with 

A(q) A(q) 

Remark. It may seem annoying to use q as an argument of A(q). being a 
polynomial in q~l. The reason for this is. however, simply to be consistent with the 
conventional definition of the c-transform: see (2.17). 

We shall also call the model (4.7) an A R X model, where A R refers to the 
autoregressive part A{q)y(t) and X to the extra input B(q)u(t) (called the exoge-
neous variable in econometrics). In the special case where na = 0, y(f) is modeled 
as a finite impulse response (FIR) . Such model sets are particularly common in 
signal-processing applications. 
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The signal flow can be depicted as in Figure 4.1. From that picture we see that 
the model (4.7) is perhaps not the most natural one from a physical point of view: 
the white noise is assumed to go through the denominator dynamics of the system 
before being added to the output. Nevertheless, the equation error model set has 
a very important property that makes it a prime choice in many applications: The 
predictor defines a linear regression. 

I e 
i 

i 
A 

Figure 4.1 The ARX model structure. 

Linear Regressions 

Let us compute the predictor for (4.7). Inserting (4.9) into (4.6) gives 

y(t\$) = B(q)u(t) + [1 - A(q)]y(t) (4.10) 

Clearly, this expression could have more easily been derived directly from (4.7). 
Let us reiterate the view expressed in Section 3.3: Without a stochastic framework, 
the predictor (4.10) is a natural choice if the term e(t) in (4.7) is considered to be 
"insignificant" or "difficult to guess." It is thus perfectly natural to work with the 
expression (4.10) also for "deterministic" models. 

Now introduce the vector 

<p(t) = [-yit - 1 ) . . . - y ( r - na) u{t - l)...u(t - nb))T (4.11) 

Then (4.10) can be rewritten as 

yit\9) = 6T<pit) = <pTit)0 (4.12) 

This is the important property of (4.7) that we alluded to previously. The predictor 
is a scalar product between a known data vector <p(t) and the parameter vector 0. 
Such a model is called a linear regression in statistics, and the vector <pit) is known 
as the regression vector. It is of importance since powerful and simple estimation 
methods can be applied for the determination of 0. 
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In case some coefficients of the polynomials A and B are known, we arrive at 
linear regressions of the form 

y(t\9) = <pT{t)0 + fi(t) (4.13) 

where fi(t) is a known term. See Problem 4E.1 and also (5.67). The estimation of 9 
in linear regressions will be treated in Section 7.3. See also Appendix II. 

A R M A X Model Structure 

The basic disadvantage with the simple model (4.7) is the lack of adequate freedom 
in describing the properties of the disturbance term. We could add flexibility to that 
by describing the equation error as a moving average of white noise. This gives the 
model 

y ( 0 + fli.v(f - 1) + • • • + a„ay(t - na) = bxu{t - 1 ) + • • • 

-I- b„bu{t - nb) + e(t) + cie(t — !) + ••• + c„fe(t - nc) (4.14) 

With 

C(q) = L + C I ? - 1 + • • • + C ^ - " ' 

it can be rewritten 

A(q)y(t) = B(q)u(t) + C(q)eit) (4.15) 

and clearly corresponds to (4.4) with 

G ( , . * > - ^ . » ( , . « > = g*J ( 4 . 1 6 ) 

A(q) A(q) 

where now 

9 = [ai...anob]...bHhc\... c„(.]T (4.17) 

In view of the moving average ( M A ) part C(q)e(t). the model (4.15) will 
be called A R M A X . The A R M A X model has become a standard tool in control 
and econometrics for both system description and control design. A version with 
an enforced integration in the noise description is the A R I M A ( X ) model (I for 
integration, with or without the X-variable w), which is useful to describe systems 
with slow disturbances; see Box and Jenkins (1970). It is obtained by replacing y(t) 
and u(t) in (4.15) by their differences Ay (r) = y (/)—y (t — 1) and is further discussed 
in Section 14.1. 
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Pseudolinear Regressions 

The predictor for (4.15) is obtained by inserting (4.16) into (4.6). This gives 

A(qY 
C{q) 

1 -
C(q)j' y(0 

or 

C(q)y(t\9) = flfa)w(/) + [C(q) - A(q)]y(t] (4.18) 

This means that the prediction is obtained by filtering u and y through a filter with 
denominator dynamics determined by C(q). To start it up at time t = 0 requires 
knowledge of 

y ( O | 0 ) . . . y ( - n c + 1|0) 

y ( 0 ) . . . y(— n* + 1). n* = m a x ( n r . na) 

u(0)...u{-nb + 1) 

If these are not available, they can be taken as zero, in which case the prediction 
differs from the true one with an error that decays asc- p'. where p is the maximum 
magnitude of the zeros of C{z). It is also possible to start the recursion at time 
max(w*. nb) and include the unknown initial conditions y(k\6). k = 1 n(, in 
the vector 0, 

The predictor (4.18) can be rewritten in formal analogy with (4.12) as follows. 
Adding [1 - C(q)] y{t\0) to both sides of (4.18) gives 

y(f |0) = B{q)u(t) + [1 - A{q)]y(t) + [CO?) - l ] [ y ( r ) - y(t\0)] (4.19) 

Introduce the prediction error 

eit.6) = y(t) - y(t\0) 

and the vector 

<p(t, B) = [ - y ( r - 1 ) . . . - y(t - na) u(t - 1 ) . . . 

u{t-nb) £(t - U0)...£it - nc.$)]T (4.20) 

Then (4.19) can be rewritten as 

y(t\0) = (pT(t,0)0 (4.21) 

Notice the similarity with the linear regression (4.12). The equation (4.21) itself is, 
however, no linear regression, due to the nonlinear effect of 9 in the vector <p(t. 9). 
To stress the kinship to (4.12), we shall call it a pseudolinear regression. 
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Other Equation-Error-Type Model Structures 

Instead of modeling the equation error in (4.7) as a moving average, as we did in 
(4.14), it can of course be described as an autoregression. This gives a model set 

1 
A{q)y(t) = B{q)u(t) + 

with 
D(q) = 1 + dxq-x + 

e(t) 
D{q) 

+ dndq-*4 

(4.22) 

which, analogously to the previous terminology, could be called A R A R X . More 
generally, we could use an A R M A description of the equation error, leading to an 
" A R A R M A X " structure 

A(q)y{t) = B(q)u(t) + ^ry\e[t) 
D(q) 

(4.23) 

which of course contains (4.7). (4.15), and (4.22) as special cases. This would thus 
form the family of equation-error-related model sets, and is depicted in Figure 4.2. 
The relationship to (4.4) as well as expressions for the predictions are straightforward. 

C 
D 

v 

Figure 4.2 The equation error model family: The model structure (4.23). 

Output Error Model Structure 

The equation error model structures all correspond to descriptions where the transfer 
functions G and H have the polynomial A as a common factor in the denominators. 
See Figure 4.2. From a physical point of view it may seem more natural to parametrize 
these transfer functions independently. 

If we suppose that the relation between input and undisturbed output w can 
be written as a linear difference equation, and that the disturbances consist of white 
measurement noise, then we obtain the following description: 

w(t) + f\w{t - 1 ) + ••• + fn/w(t - nf) 

= bMt - 1 ) H h b„hu(t - nb) (4.24a) 

yd) = w(t) + e(t) (4.24b) 
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W i t h 

F(q) = 1 + fxq~X + + /„,<?-"' 

we can write the model as 

B(q) 

F(q) 

The signal flow of this model is shown in Figure 4.3. 

(4.25) 

u B 
F 

Figure 4.3 The output error model structure. 

We call (4.25) an output error (OE) model (structure). The parameter vector 
to be determined is 

(4.26) 

Since w(t) in (4.24) is never observed, it should rightly carry an index 0 , since it is 
constructed from u using (4.24a). That is, 

w(tt9) + ftwit - 1.0) + + fnfw{t - n / , 0 ) 

= bxu{t - 1) + • • • + b„bu(t - nb) (4.27) 

Comparing with (4.4), we find that H(q.O) = 1, which gives the natural predictor 

F(q) 
(4.28) 

Note that y{t\9) is constructed from past inputs only. With the aid of the vector 

<p(t,6) = [u(t - l ) . . . M ( f - nb) -w(t - 1,$)... -w(t - nf,9)]T (4.29) 

this can be rewritten as 

5-(r|0) = <pT(t,9)0 (4.30) 

which is in formal agreement with the ARMAX-mode l predictor (4.21). Note that 
in (4.29) the w(t — 1,0) are not observed, but, using (4.28), they can be computed: 
w{t - k. 9) = y(t - k\0), k = 1 , 2 , . . . . nf. 
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Box-Jenkins Model Structure 

A natural development of the output error model (4.25) is to further model the 
properties of the output error. Describing this as an A R M A model gives 

F(q) D(q) 

In a sense, this is the most natural finite-dimensional parametrization, starting from 
the description (4.4): the transfer functions G and H are independently parametrized 
as rational functions. The model set (4.31) was suggested and treated in Box and Jenk
ins (1970). This model also gives us the family of output-error-related models. See 
Figure 4.4 and compare with Figure 4.2. According to (4.6), the predictor for (4.31) 

H m m + SlsLim^ ( 4 , 2 ) 
C(q)F(q) C(q) 

1 
C 
D 

Figure 4.4 The BJ-model structure (4.31). 

A General Family of Model Structures 

The structures we have discussed in this section actually may give rise to 32 different 
model sets, depending on which of the five polynomials A, B, C , D, and F are used. 
(We have, however, only explicitly displayed six of these possibilities here.) Several 
of these model sets belong to the most commonly used ones in practice, and we 
have therefore reason to return to them both for explicit algorithms and for analytic 
results. For convenience, we shall therefore use a generalized model structure 

Mq)y(t) = mu{t) + meit) 
Fiq) D(q) 

(4.33) 
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y(t\9) = ———— u{t) + -C(q)F{q) L C(q) 

The common special cases of (4.33) are summarized in Table 4.1. 

y ( 0 (4.35) 

TABLE 4.1 Some C o m m o n Black-box S1SO Models as Special Cases  
of (4.33)  

Polynomials Used in (4.33) Name of Model Structure 

B FIR (finite impulse response) 

AB A R X 

ABC A R M A X 

AC A R M A 

ABD A R A R X 

ABCD A R A R M A X 

BF O E (output error) 

BFCD BJ (Box-Jenkins) 

A Pseudolinear Form for (4.35) { * ) 

The expression (4.35) can also be written as a recursion: 

C(q)F(q)y(t\0) = F(q)[C(q) - D(q)A(q)] y(t) + D(q)B(q)u(t) (4.36) 

Sometimes the dynamics from u to y contains a delay of nk samples, so some 
leading coefficients of B are zero; that is. 

B(q) = ^ - " i + * I I J + l f l - " ' - , + . . . + 6 I I J l + ^ _ l 9 - " ' - , , * + 1 =q-^~B(q). b,n. ^ 0 

It may then be a good idea to explicitly display this delay by 

A(q)y(t) = q-^-^-u(t) + —^eit) (4.34) 
F(q) D(q) 

For easier notation we shall, however, here mostly use nk = 1 and (4.33). From 
expressions for (4.33) we can always derive the corresponding ones for (4.34) by 
replacing u(t) by u(t — nk + 1). 

The structure (4.33) is too general for most practical purposes. One or several of 
the five polynomials would be fixed to unity in applications. However, by developing 
algorithms and results for (4.33), we also cover all the special cases corresponding to 
more realistic model sets. 

From (4.6) we know that the predictor for (4.33) is 
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From (4.36) we find that the prediction error 

eit.O) = y(t) - y ( / | 0 ) 

can be written 

£(<?) L F(q) 

It is convenient to introduce the auxiliary variables 

(4.37) 

wit.9) = -^-Mt) (4.38a) 

and 

u ( f , 0 ) = A(q)y(t) - wit. 9) (4.38b) 

Then 

e(t,0) = y ( r ) - y ( r | 0 ) = ^ v ( t . O ) (4.39) 

Let us also introduce the "state vector" 

<p{t. 9) = [-yit - 1) -yit - na),u(t - 1) u(t - nb), 

- wit -1.9) -wit - nf.0), sit -1.9) sit - nc. 9), 

-vit - 1 . 0 ) -vit - nd. 9)]T (4.40) 

With the parameter vector 

0 = [ai... a n a b x . . . b„b ... f„f cx... c„, . . . (4.41) 

and (4.40) we can give a convenient expression for the prediction. To find this, we 
proceed as follows: From (4.38a) and (4.39) we obtain 

wit. 9) = biuit _!) + ...+ bnbuit - nb) 

- fxw{t -1.9) fHfW{t -nf.9) (4.42) 

and 

e(t,9) = vit.9) + dxvit - 1.0) + . . . + dnjv(t - nd,0) 

- c\e(t - 1 , 0 ) - . . . - c„re(t - nc. 9) (4.43) 

Now inserting 

vit, 9) = yit) + axyit - ! ) + •••+ aKayit - na) - wit. 9) 
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into (4.43) and substituting w(t. 9) with the expression (4.42), we find that 

e(t,0) = \(t) - 0T<p{t,9) (4.44) 

Hence 

y{t\0) = dT<p(t.Q) = <pTV.9)0 (4.45) 

The two expressions, (4.36) and (4.45) can both be used for the calculation of 
the prediction. It should be noticed that the expressions simplify considerably in the 
special cases of the general model (4.33) that have been discussed in this section. 

Other Model Expansions 

The FIR model structure 

Giq.B) = Y^bkq~k (4.46) 

has two important advantages: it is a linear regression (being a special case of A R X ) 
and it is an output error model (being a special case of O E ) . This means, as we shall 
see later, that the model can be efficiently estimated and that it is robust against noise. 
The basic disadvantage is that many parameters may be needed. If the system has a 
pole close to the unit circle, the impulse response decays slowly, so n has then to be 
large to approximate the system well. This leads to the question whether it would 
be possible to retain the linear regression and output error features, while offering 
better possibilities to treat slowly decaying impulse responses. Generally speaking, 
such models would look like 

W 

G(q.9) = £ > L A . ( « 7 , a ) (4.47) 
k=\ 

where Lk(q, a) represents a function expansion in the delay operator, which may 
contain a user-chosen parameter a. This parameter would be treated as fixed in the 
model structure, in order to make (4.47) a linear regression. A simple choice would 
be 

Lk(q.a) = 
q — ct 

where a is an estimate of the system pole closest to the unit circle. More sophisticated 
choices in terms of or thonormal basis expansions, see. e.g.. Van den Hof, Heuberger. 
and Bokor (1995). have attracted wide interest. In particular, Laguerre polynomials 
have been used in this context, (Wahlberg, 1991): 

Lk(q,a) = — — ( i — ^ 2 ) (4.48) 
q - a \ q - a } 
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where, again, it is natural to let a be an estimate of the dominating pole (time 
constant). 

Continuous-time Black-box Models (*) 

The linear system description could also be parameterized in terms of the continuous-
time transfer function (2.22): 

yd) = GAp.O)u(t) (4.49) 

Adjustments to observed, sampled data could then be achieved either by solving the 
underlying differential equations or by applying an exact or approximate sampling 
procedure (2.24). The model (4.49) could also be fitted in the frequency domain, to 
Fourier transformed band-limited input-output data, as described in Section 7.7. 

In addition to obvious counterparts of the structures already discussed, two 
specific model sets should be mentioned. The first-order system model with a time 
delay 

Gc(s. 9) = 0 = [K. r r . r]T (4.50) 
{ST + 1) 

has been much used in process industry applications. Orthonormal function series 
expansions 

GAs.9) = 9 = [ao. - - - .ar f - . ] 7 ' (4.51) 

have been discussed in the early literature, and also, e.g., by Belanger (1985). Like 
for discrete-time models. Laguerre polynomials appear to be a good choice: 

/r— (s — a)k 

Ms) = V 2 a 
(s -f- a)h + > 

a being a time-scaling factor. Clearly, the model (4.49) can then be complemented 
with a model for the disturbance effects at the sampling instants as in (2.23). 

Multivariable Case: Matrix Fraction Descriptions (*) 

Let us now consider the case where the input u{t) is an m-dimensional vector and 
the output y(t) is a /?-dimensional vector. Most of the ideas that we have described 
in this section have straightforward multivariable counterparts. The simplest case is 
the generalization of the equation error model set (4.7). We obtain 

y{t) + AiyU - 1) + ••• + A„ay(t - na) 

= Bxud - 1) + • • • + Bnbud - nh) + ed) (4.52) 

where the Aj are p x p matrices and the # , are p x m matrices. 

http://ao.---.arf-.%5d7'
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Analogous to (4.9), we may introduce the polynomials 

A(q) = I + A,q~x + ••• + AHaq-n-

B(q) = Bxq~l + ... + Bnhq-n" 
(4.53) 

These are now matrix polynomials in q 1 meaning that A(q) is a matrix whose 
entries are polynomials in q~l. We note that the system is still given by 

>•(/) = G{q,9)u(t) + H(q.6)e{t) (4.54) 

with 
G{q,0) = A~\q)B{q), H{q,9) = A~\q) (4.55) 

The inverse A~l(q) of the matrix polynomial is interpreted and calculated in a 
straightforward way as discussed in connection with (3.34). Clearly. G(q.O) will be 
a p x m matrix whose entries are rational functions of q~1 (or q). The factorization 
in terms of two matrix polynomials is also called a (left) matrix fraction description 
(MFD). A thorough treatment of such descriptions is given in Chapter 6 of Kailath 
(1980). 

We have not yet discussed theparametrization of (4.52) (i.e., which elements of 
the matrices should be included in the parameter vector 0 ). This is a fairly subtle issue, 
which will be further discussed in Appendix 4A. An immediate analog of (4.8) could, 
however, be noted: Suppose all matrix entries in (4.52) (a total of na- p2 + nb- p- m) 
are included in 0 . We may then define the [na • p -f nb • m] x p matrix 

0 = [ A i A 2 - - - A n . B i . . . B ( l f t ] 7 ' 

and the [na • p + nb- tn]-dimensional column vector 

- v ( r - 1) 

(4.56) 

(pit) = 
-yit - na) 

uit - 1 ) 
(4.57) 

to rewrite (4.52) as 

_ uit - nb) _ 

yit) = tfcpit) + eit) (4.58) 

in obvious analogy with the linear regression (4.12). This can be seen as p different 
linear regressions, written on top of each other, all with the same regression vector. 

When additional structure is imposed on the parametrization. it is normally no 
longer possible to use (4.58), since the different output components will not employ 
identical regression vectors. Then a d-dimensional column vector 9 and a p x d 
matrix tpT{t) has to be formed so as to represent (4.52) as 

}.(/) = <pTit)9 + e{t) 

See Problems 4G.6 and 4E.12 for some more aspects on (4.58) and (4.59). 

(4.59) 
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In light of the different possibilities for SISO systems, it is easy to visualize a 
number of variants for the M1MO case, like the vector difference equation (VDE) 

y(f) + /4,y</ - 1) + • • • + A^yU - na) 

= B]U(t - ! ) + ••• + Bn.u(t - nb) 

+ e(t) + t > ( f - 1) + • • • + C„ce(t - nc) (4.60a) 

or 

Giq.9) = A~\q)B{q). H(q.O) = A~l(q)C(q) (4.60b) 

which is the natural extension of the A R M A X model. A multivariable Box-Jenkins 
model takes the form 

G(q,0) = F~l(q)B(q). H(q.O) = D~l(q)C(q) (4.61) 

and so on. The parametrizations of these MFD-descriptions are discussed in Ap
pendix 4A. 

4.3 STATE-SPACE M O D E L S 

In the state-space form the relationship between the input, noise, and output signals 
is written as a system of first-order differential or difference equations using an 
auxiliary state vector xit). This description of linear dynamical systems became 
an increasingly dominating approach after Kalman's (I960) work on prediction and 
linear quadratic control. For our purposes it is especially useful in that insights into 
physical mechanisms of the system can usually more easily be incorporated into 
state-space models than into the models described in Section 4.2. 

Continuous-time Models Based on Physical Insight 

For most physical systems it is easier to construct models with physical insight in 
continuous time than in discrete time, simply because most laws of physics (Newton's 
law of motion, relationships in electrical circuits, etc.) are expressed in continuous 
time. This means that modeling normally leads to a representation 

x(t) = F{9)x(t) + G(9)u(t) (4.62) 

Here F and G are matrices of appropriate dimensions (n x n and n x m, respectively, 
for an n -dimensional state and an m -dimensional input). The overdot denotes dif
ferentiation with respect to (w.r.t) time t. Moreover. 9 is a vector of parameters that 
typically correspond to unknown values of physical coefficients, material constants, 
and the like. The modeling is usually carried out in terms of state variables x that 
have physical significance (positions, velocities, etc.), and then the measured outputs 
will be known combinations of the states. Let 77(f) be the measurements that would 
be obtained with ideal, noise-free sensors: 

flit) = Hxit) (4.63) 
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Using p for the differentiation operator . (4.62) can be written 

[pi - F{9)]x(t) = G{9)u(t) 

which means that the transfer operator from u to n in (4.63) is 

n(f) = Ge(p,$)u{t) 

G,(/>, 0) = H [pi - F(9)\~] G(9) (4.64) 

We have thus obtained a continuous-time transfer-function model of the system, as 
in (2.22), that is parametrized in terms of physical coefficients. 

In reality, of course, some noise-corrupted version of t){t) is obtained, resulting 
from both measurement imperfections and disturbances acting on (4.62). There are 
several different possibilities to describe these noise and disturbance effects. Here 
we first take the simplest approach. Other cases are discussed in (4.84) and (4.96) to 
(4.99), in Problem 4G.7. and in Section 13.7. Let the measurements be sampled at 
time instants t = kT. k = 1.2, • • \ and the disturbance effects at those time instants 
be Vr(kT). Hence the measured output is 

y(kT) = Hx(kT) + vT(kT) = Gc(p,9)u{t) + vr(kT) (4.65) 

Sampling the Transfer Function 

As we discussed in Section 2.1, there are several ways of transporting Gc(p> 9) to 
a representation that is explicitly discrete time. Suppose that the input is constant 
over the sampling interval T as in (2.3): 

u(t) = uk = u(kT). kT < t < (k + 1 ) 7 (4.66) 

Then the differential equation (4.62) can easily be solved from t = kT t o r = kT-\-T. 
yielding 

x(kT + T) = AT(0)x(kT) + BT(B)u{kT) (4.67) 

where 

AT(9) - e F ( d ) T (4.68a) 

BT{9) = / eF{$)TG(9)dT (4.68b) 
JT=0 

(See, e.g., Astrom and Wittenmark, 1984.) 

Introducing q for the forward shift of T time units, we can rewrite (4.67) as 

[ql - AT{9)]x{kT) = BT(9)u(kT) (4.69) 

or 

rj(kT) = GT(q,9)u(kT) (4.70) 

GT{q,9) = H[ql - AT(9))-} BT{9) (4.71) 
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Example 4.1 D C Servomotor 

In this example we shall study a physical process, where we have some insight into 
the dynamic properties. Consider the dc motor depicted in Figure 4.5 with a block 
diagram in Figure 4.6. The input to this system is assumed to be the applied voltage. 
u, and the output the angle of the motor shaft, r). The relationship between applied 
voltage it and the resulting current i in the rotor circuit is given by the well-known 
relationship 

u{t) = Rai(t) + + sit) (4.73) 
at 

where 5 ( 0 is the back electromotive force, due to the rotation of the armature circuit 
in the magnetic field: 

sit) = k^tiit) 
at 

The current / gives a turning torque of 

Tait) = ka • i(t) 

Figure 4.5 The dc motor. 

Hence (4.65) can equivalently be given in the sampled-data form 

y(t) = GT{q. B)u(t) + vT(t), t = T, 2 7 \ 3 7 \ . . . (4.72) 

When (4.66) holds, no approximation is involved in this representation. Note, how
ever, that in view of (4.68) Gjiq,B) could be quite a complicated function of 0. 
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Figure 4.6 Block diagram of the dc motor. 

where J is the moment of inertia of the rotor plus load and / represents viscous 
friction. Assuming that the inductance of the armature circuit can be neglected. 
La 0, the preceding equations can be summarized in state-space form as 

d 0 1 0 0 

0 - 1 / T 
x{t) + «( / ) + 

_Y'/r_ 
T((t) (4.75) 

»?(') = [ l O]-v(f) 

with 

x(t) = 

x = 

nit) 

L£*<'>J 
JRa 

fRa + kakx: 

R, 
y /= - fRa + kakv 

Assume now that the torque T( is identically zero. To determine the dynamics of 
the motor, we now apply a piecewise constant input and sample the output with the 
sampling interval 7 \ The state equation (4.75) can then be described by 

*(/ + T) = AT(0)x(t) + BT{9)u{t) (4.76) 

where 

and. according to (4.68), 

[ 1 r(l -e-T")l \P(Te~T* - T + T) 
(4.77) 

Also assume that y ( / ) , the actual measurement of the angle n(t). is made with a 
certain error v{t): 

v(/) = n(f) + v(t) (4.78) 
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This error is mainly caused by limited accuracy (e.g.. due to the winding of a po
tentiometer) and can be described as a sequence of independent random variables 
with zero mean and known variance Ri (computed from the truncation error in the 
measurement) , provided the measurements are not too frequent. We thus have a 
model 

y(t) = Gr(q.0)u{t) + v(t) 

with v(t) being white noise. The natural predictor is thus 

y(t\8) = GT(q.0)u(t) = [1 0][ql ~ AT(0)]~{ BT(9)u(t) (4.79) 

This predictor is parametrized using only two parameters and T . Notice that if 
we used our physical insight to conclude only that the system is of second order 
we would use. say. a second-order A R X or O E model containing four adjustable 
parameters. As we shall see. using fewer parameters has some positive effects on the 
estimation procedure: the variance of the parameter estimates will decrease. The 
price is, however, not insignificant. The predictor (4.79) is a far more complicated 
function of its two parameters than the corresponding A R X or O E model of its four 
parameters. • 

Equations (4.67) and (4.65) constitute a standard discrete-time state-space 
model. For simplicity we henceforth take T = 1 and drop the corresponding in
dex. We also introduce an arbitrary parametrization of the matrix that relates x to 
rj: H = C(0). We thus have 

x(t + 1) = A(9)x(t) + B(9)u(t) (4.80a) 

v(/) = C(9)x(t) + vit) (4.80b) 

corresponding to 

v( / ) = G{q.0)uit) + vit) (4.81) 

G{q.$) = C(9)[ql - A(9)]~l B(9) (4.82) 

Although sampling a time-continuous description is a natural way to obtain the model 
(4.80). it could also for certain applications be posed directly in discrete time, with 
the matrices A. B, and C directly parametrized in terms of 9. rather than indirectly 
via (4.68). 

Noise Representation and the Tune-invariant Kalman Filter 

In the representation (4.80) and (4.81) we could further model the properties of 
the noise term {r(f)}. A straightforward but entirely valid approach would be to 
postulate a noise model of the kind 

= H(q.9)e(t) (4.83) 

with {^(0} being white noise with variance A. The ^-parameters in H{q. 9) could 
be partly in common with those in G(q.9) or be extra additional noise model pa
rameters. 
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For state-space descriptions, it is, however, more common to split the lumped 
noise term vit) into contributions from measurement noise v(t) and process noise 
wit) acting on the states, so that (4.80) is written 

x(t + 1) = A{0)x(t) + B(9)u(t) + w(t) 

= C(0)x{t) + vit) 
(4.84) 

v(0 = C(0)x{t) + vit) 
(4.84) 

Here {tt'(0} and {v{t)} are assumed to be sequences of independent random vari
ables with zero mean values and covariances 

Ew{t)wTit) = /?,(0) 

Evit)vTit) = R2(9) (4.85) 

Ew(t)vT(t) = Rn(9) 

The disturbances wit) and v(t) may often be signals whose physical origins are 
known. In Example 4.1 the load variation Ttit) was a "process noise," while the 
inaccuracy in the potent iometer angular sensor vit) was the "measurement noise." 
In such cases it may of course not always be realistic to assume that these signals 
are white noises. To arrive at (4.84) and (4.85) will then require extra modeling and 
extension of the state vector. See Problem 4G.2. 

Let us now turn to the problem of predicting y(f) in (4.84). This state-space 
description is one to which the celebrated Kalman filter applies (see. e.g., Anderson 
and Moore, 1979, for a thorough t reatment) . The conditional expectation of yit). 
given data y ( s ) , uis), s < 1 (i.e., from the infinite past up to time t — 1), is, provided 
v and w are Gaussian processes, given by 

x{t + 1,0) = A ( 0 ) * ( / , 0 ) + B{9)u{t) + K(9)[y(t) - C (0 ) . v ( r , 0 ) ] 

yit\9) = C{9)x(t,9) (4.86) 

Here Ki9) is given as 

K{9) = [ A ( 0 ) P ( 0 ) C r ( 0 ) + ^ i 2 ( 0 ) ] [ C ( 0 ) ^ ( 0 ) C r ( 0 ) + / ? 2 ( 0 ) ] _ 1 (4.87a) 

where Pi9) is obtained as the positive semidefinite solution of the stationary Riccati 
equation: 

P{9) = A(0)P(0)A 7 " (0 ) + /? 1 (0) - [A(9)P(9)CTi9) + Rl2(9)] 

x [Ci9)Pi9)CTi9) + R2(9)]~l[A(9)Ti9)CT{0) + / ? 1 2 ( 0 ) ] r ( 4 . 8 7 b ) 
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in (4.86) amounts to that part of y(t) that cannot be predicted from past data: " the 
innovation.' ' Denoting this quantity by e(t) as in (3.25), we find that (4.86) can be 
rewritten as 

x(t + LB) = A(B)x(t,B) + B(B)u(t) + K(9)e(t) 
(4.91a) 

y(0 = C{B)x{t,B) + e(t) 

The covariance of e(t) can be determined from (4.90) and (4.89): 

Ee(t)eT(t) = A(B) = C(B)P(B)CT{9) + R2(B) (4.91b) 

Since e(t) appears explicitly, this representation is known as the innovations form 
of the state-space description. Using the shift operator q, we can clearly rearrange 
it as 

y(t) = G(q, B)u(t) + H(qt B)e(t) (4.92a) 

G(q,B) = C(9)[ql - Atf)]-1 B(B) 
(4.92b) 

H(q,9) = C(B)[qI ~ A(B)]~l K(B) + 1 

showing its relationship to the general model (4.4) and to a direct modeling of v(t) 
as in (4.83). See also Problem 4G.3. 

Directly Parametrized Innovations Form 

In (4.91) the Kalman gain K{8) is computed from A(B), C(B), R{(&), RU(B), and 
R2{9) in the fairly complicated manner given by (4.87). It is an attractive idea to 
sidestep (4.87) and the parametrization of the R-matrices by directly parametrizing 
K (9) in terms of 9. This has the important advantage that the predictor (4.88) 
becomes a much simpler function of 0. Such a model structure we call a directly 
parametrized innovations form. 

The predictor filter can thus be written as 

y(t\0) = C(6)[ql - A{9) + K(9)C(0)]-1 B(B)u(t) 

+ C(0)[ql - A(B) + K(B)C(B)]~l K(9)y(t) (4.88) 

The matrix P(9) is the covariance matrix of the state estimate error: 

P(B) = E[x(t) - x{tyB)}[x(t) - x{t,0)]T (4.89) 

Innovations Representation 

The prediction error 

y ( 0 - C(B)x(t.B) = C(B)[x{t) - x(t,9)] + v(t) (4.90) 
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The fl-matrices describing the noise properties contain \n{n + 1)4-/1/? + 
\p{p + 1) matrix elements (discounting symmetric ones), while the Kalman gain 
K contains np elements (p = dim y . n = dim x). If we have no prior knowledge 
about the /^-matrices and thus would need many parameters to describe them, it 
would therefore be a better alternative to parametrize K(0). also from the point 
of view of keeping dim 9 small. On the other hand, physical insight into (4.84) 
may entail knowing, for example, that the process noise affects only one state and is 
independent of the measurement noise, which might have a known variance. Then 
the parametrization of K{9) via (4.85) and (4.87) may be done using less parameters 
than would be required in a direct parametrization of K(9). 

Remark. The parametrization in terms of (4.85) also gives a parametrization 
of the p{p + l ) / 2 elements of A(9) in (4.91). A direct parametrization of (4.91) 
would involve extra parameters for A. which, however, would not affect the predic
tor. (Compare also Problems 7E.4 and 8E.2.) 

Directly parametrized innovations forms also contain black-box models that 
are in close relationship to those discussed in Section 4.2. 

Example 4.2 Companion Form Parametrizations 

In (4.91) let 

and 

0? bi 

1 O " 

A(9) = —a2 0 1 

-ay 0 0 

B(0) = b2 K{9) = 
V 

k2 

k-K 

C(9) = [ l 0 0 ] 

These matrices are said to be in companion form or in observer canonical form (see, 
e.g.. Kailath, 1980). It is easy to verify that with these matrices 

- 3 

C(9)[ql - MO)]'1 B(9) = 

and 

C(9)[ql - A(9)]-1 K{0) = 

b\q 1 + b2q 2 + b:,g 
1 + a\q~x + a2q~2 + a3q-3 

kiq~l + k2q~2 + k3q~y 

1 + aiq~] + a2q~2 + a:,q~3 
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so that 

1 + C(0)[ql - A{0)]~] K(0) = 1 + ciq + c2q * + cyq 
1 + aiq~] + a2q 2 + ciyq 3 

with 

Cj = tf; 4- A7. i = 1 .2 ,3 

With this we have consequently obtained a parametrization of the A R M A X model 
set (4.15) and (4.16) for nu = nb — nt. = 3 . • 

The corresponding parametrization of a multioutput model is more involved 
and is described in Appendix 4A. 

Time-varying Predictors (*) 

For the predictor filter (4.86) and (4.87) we assumed all previous data from time 
minus infinity to be available. If data prior to time t = 0 are lacking, we could 
replace them by zero, thus starting the recursion (4.86) at t = 0 with x(0) = 0. 
and take the penalty of a suboptimal estimate. This was also our philosophy in 
Section 3.2. 

An advantage with the state-space formulation is that a correct t reatment of 
incomplete information about t < 0 can be given at the price of a slightly more 
complex predictor. If the information about the history of the system prior to / = 0 is 
given in terms of an initial state estimate XQ(0) = i ( ( ) . 0) and associated uncertainty 

then the Kalman filter tells us that the one-step-ahead prediction is given by, (see, 
e.g., Anderson and Moore, 1979), 

X(t + 1,0) = A(0)x(t,0) + B($)u(t) + K(t,$)[y(t) - C(0) .v ( / .0 ) ] (4.94) 

y ( r | 0 ) = C(0 )A ' ( f , 0 ) , * ( O , 0 ) = .Y()(0) 

Kit.6) = [A(0)P(t.0)CT(0) + RrJ.0)] 

n (J(0> = E[x(0) - .VO(0)][.Y(O) - xo(0)]T (4.93) 

X [C(0)P(t.0)CT{0) + R2(0)] 
- I 

(4.95) 

p(t + 1,0) = A(O)P(t.0)AT(0) + Ri(8) - K(t.6) 

x [C{0)Pit.O)CTi0) + R2i0)]KT{t.0), P{O,0) = n o (0) 
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Now K (/. 9) determined by (4.95) converges, under general conditions, fairly rapidly 
to K(9) given by (4.87) (see, e.g., Anderson and Moore. 1979). For many problems 
it is thus reasonable to apply the limit form (4.86) with (4.87) directly to simplify cal
culations. For short data records, though, the solution (4.93) to (4.95) gives a useful 
possibility to deal with the transient properties in a correct way, including possibly 
a parametrization of the unknown initial conditions XQ(0) and r io(0) . Clearly, the 
steady-state approach (4.86) with (4.87) is a special case of (4.94) to (4.95), corre
sponding to x0(9) = 0, n0(6») = T{9). 

Sampling Continuous-time Process Noise (*) 

Just as for the systems dynamics, we may have more insight into the nature of the 
process noise in continuous time. We could then pose a disturbed state-space model 

x(t) = F(9)x(t) + G(9)u(t) + w(t) (4.96) 

where w(t) is formal white noise with covariance function 

Ew(t)wT(s) = Ri(9)8(t - s) (4.97) 

where 8 is Dirac's delta function. When the input is piecewise constant as in (4.66). 
the corresponding discrete-time state equation becomes 

x(kT + T) = AT(9)x(kT) + BT(9)u{kT) + wT(kT) (4.98) 

where A T and BT are given by (4.68) and wrikT). k = 1.2. • • is a sequence of 
independent random vectors with zero means and covariance matrix 

EwT(kT)wl(kT) = RdO) = f e ^ R ^ e ^ ^ d T (4.99) 
Jo 

See Astrom (1970)for a derivation. 

State-space Models 

In summary, we have found that state-space models provide us with a spectrum of 
modeling possibilities: We may use physical modeling in continuous time with or 
without a corresponding time-continuous noise description to obtain structures with 
physical parameters 9. We can use physical parametrization of the dynamics part 
combined with a black-box parametrization of the noise properties, such as in the 
directly parametrized innovations form (4.91), or we can arrive at a noise model that 
is also physically parametrized via (4.96) to (4.99). Finally, we can use black-box 
state-space structures, such as the one of Example 4.2. These have the advantage 
over the input-output black box that the flexibility in choice of representation can 
secure better numerical properties of the parametrization (Problem 16E.1). 
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4.4 D ISTRIBUTED PARAMETER M O D E L S ( * ) 

Models that involve partial differential equations (PDE) . directly or indirectly, when 
relating the input signal to the output signal are usually called distributed parameter 
models. "Distr ibuted" then refers to the state vector, which in general belongs to 
a function space, rather than R". There are basically two ways to deal with such 
models. One is to replace the space variable derivative by a difference expression 
or to truncate a function series expansion so as to approximate the P D E by an 
ordinary differential equation. Then a " lumped" finite-dimensional model, of the 
kind we discussed in Section 4.3, is obtained. ( "Lumped" refers to the fact that the 
distributed states are lumped together into a finite collection.) The other approach is 
to stick to the original PDE for the calculations, and only at the final, numerical, stage 
introduce approximations to facilitate the computations. It should be noted that this 
second approach also remains within the general model structure (4.4), provided the 
underlying P D E is linear and time invariant. This is best illustrated by an example. 

Example 4.3 Heating Dynamics 

Consider the physical system schematically depicted in Figure 4.7. It consists of a 
well-insulated metal rod. which is heated at one end. The heating power at time t is 
the input « ( / ) , while the temperature measured at the other end is the output \(t). 
This output is sampled at t = 1,2 

Figure 4.7 The heat-rod system. 

Under ideal conditions, this system is described by the heat-diffusion equation. 
If x(t. £) denotes the temperature at time r, £ length units from one end of the rod. 
then 

s s (4.100) 
dt 

= K 

where k is the coefficient of thermal conductivity. The heating at the far end means 
that 

9-v(/.£) 
= K • u(t) (4.101) 

where K is a heat-transfer coefficient. The near end is insulated so that 

9£ 
= 0 (4.102) 
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The measurements are 

y( / ) = .v(/ .0) -I- v(t). t = 1 . 2 , . . . (4.10? 

where [v(t)} accounts for the measurement noise. The unknown parameters are 

0 = 1 (4.104) 

Approximating 

alv(/ , | ) * ( f . £ + A L ) - 2 . r ( f .£) + x{t.$ - AL) 
$ = k • AL 

dp (AL)2 

transfers (4.100) to a state-space model of order n — Lj A L , where the state variables 
x(t. k • AL) are lumped representatives for x(t, £ ) . k • AL < £ < (k + 1) • A L . 
This often gives a reasonable approximation of the heat-diffusion equation. 

Here we instead retain the P D E (4.100) by Laplace transforming it. Thus 
let X(s. £) be the Laplace transform of .v(/. £') with respect to t for fixed f. Then 
(4.100) to (4.102) take the form 

sX(s.$) = KX"(S.$) 

X'(s,L) = K • U(s) (4.105) 

X'Cs, 0) = 0 

Prime and double prime here denote differentiation with respect to f. and U(s) is 
the Laplace transform of u(t). Solving (4.105) for fixed s gives 

X(s,$) - A(s)e~s^' + BWe*^7* 

where the constants A(s) and B(s) are determined from.the boundary values 

X'(s. 0) = 0 

X'(s, L) = K • U(s) 

which gives 
K • U(s) 

A(s) = Bis) = _ , .,— j - = - (4.106) 

Inserting this into (4.103) gives 

Y(s) = X ( 5 . 0 ) + V(s) = Gc(s.9)U(s) + V( j ) (4.107) 

Gc(s.0) = , f ™ - 7 = = - (4.108) 
y/s/K(e y , 5 , K — e~L^ilK) 

where V(s) is the Laplace transform of the noise {i ' (0}- We have thus arrived at 
a model parametrization of the kind (4.49). With some sampling procedure and a 
model for the measurement noise sequence, it can be carried further to the form 
(4.4). Note that Gc(s. 0) is an analytic function of s although not rational. All our 
concepts of poles, zeros, stability, and so on, can still be applied. C 
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We can thus include distributed parameter models in our treatment of system 
identification methods. There is a substantial literature on this subject. See. for 
example. Banks. Crowley, and Kunisch (1983)and Kubrusly (1977). Not surprisingly, 
computational issues, choice of basis functions, and the like, play an important role 
in this literature. 

4.5 M O D E L SETS , M O D E L S T R U C T U R E S , A N D IDENTIFIABILITY: S O M E 
F O R M A L ASPECTS (*} 

In this chapter we have dealt with models of linear systems, as well as with para
metrized sets of such models. When it comes to analysis of identification methods, 
it turns out that certain properties will have to be required from these models and 
model sets. In this section we shall discuss such formal aspects. To keep notation 
simple, we treat explicitly only SISO models. 

Some Notation 

For the expressions we shall deal with in this section, it is convenient to introduce 
some more compact notation. With 

T(q) = [G(q) H(q)] a n d * ( f ) = ["̂ J (4.109) 

we can rewrite (4.1) as 

>'(/) = T(q)x(t) (4.110) 

The model structure (4.4) can similarly be written 

y(r) = T(q.8)X{t). T{q.6) = [G(q.B) H{q.B)] (4.111) 

Given the model (4.110), we can determine the one-step-ahead predictor (3.46). 
which we can rewrite as 

y(t\t - 1) = W(q)z(t) (4.112) 

with 

*"«( / ) 

y(0 

Wu(q) = H-\q)G(ql Wy(q) = [ l - H~l(q)] (4.114) 

Clearly, (4.114) defines a one-to-one relationship between T(q) and W(q): 

T{q) ++ W(q) (4.115) 

W(q) = [\Vu(q) Wy(q)] z(t) = (4.113) 
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Remark. Based on (4.110). we may prefer to work with the k -step-ahead 
predictor (3.31). To keep the link (4.115). we can view (3.31) as the one-step-ahead 
predictor for the model (3.32). 

We noted already in (4.1) that a model of a linear system consists of specified transfer 
functions G(z) and H(z), possibly complemented with a specification of the predic
tion error variance A , or the P D F fe{x) of the prediction error e. In Sections 3.2 and 
3.3. we made the point that what matters in the end is by which expression future 
outputs are predicted. The one-step-ahead predictor based on the model (4.1) is 
given by (4.112). 

While the predictor (4.112) via (4.115) is in a one-to-one relationship with 
(4.110). it is useful to relax the link (4.115) and regard (4.112) as the basic model. 
This will, among other things, allow a direct extension to nonlinear and time-varying 
models, as shown in Section 5.7. We may thus formally define what we mean by a 
model: 

Definition 4.1. A predictor model of a linear, time-invariant system is a stable 
filter W(q). defining a predictor (4.112) as in (4.113), 

Stability, which was defined in (2.27) (applying to both components of W(q)) is 
necessary to make the right side of (4.112) well defined. While predictor models are 
meaningful also in a deterministic framework without a stochastic alibi, as discussed 
in Section 3.3. it is useful also to consider models that specify properties of the 
associated prediction errors (innovations). 

Definition 4.2. A complete probabilistic model of a linear, time-invariant system is 
a pair (W (q), fe (x)) of a predictor model W (q) and the P D F fe (x) of the associated 
prediction errors. 

Clearly, we can also have models where the PDFs are only partially specified (e.g.. 
by the variance of e). 

In this section we shall henceforth only deal with predictor models and therefore 
drop this adjective. The concepts for probabilistic models are quite analogous. 

We shall say that two models W\ (q) and W2(q) are equal if 

Models 

w L ( 0 = w ^ O - almost all co (4.116) 

A model 

W(q) = [Wu(q) Wy(q)] 

will be called a k-step-ahead predictor model if 

oc 
(4.117) 

and an output error model (or a simulation model) if Wy (q) = 0. 
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and 

H(q) = 
1 

1 + aq~l 

This means that the model is described by 

y(t) + ay(t - 1) = bu(t - 1) + e(t) 

and the dynamics from u to y is unstable. The predictor functions are, however: 

Wy(q) = ~aq~\ Wu(q) = bq~l 

implying that 

y(t\t - 1) = -ay(t - 1) + bu{t - 1) 

which clearly satisfies the condition of Definition 4.1. Z 

Model Sets 
Definition 4.1 describes one given model of a linear system. The identification prob
lem is to determine such a model. The search for a suitable model will typically be 
conducted over a set of candidate models. Quite naturally, we define a model set M* 
as 

M* = [Wa(q)[a e JA\ (4.118) 

This is just a collection of models, each subject to Definition 4.1, here "enumera ted" 
with an index a covering an index set JA. 

Typical model sets could be 

W = £* = {all linear models} 

that is, all models that are subject to Definition 4.1 . or 

M*n = {all models such that Wy(q) and Wu(q) 
are polynomials of q~[ of degree at most n) (4.119) 

or a finite model set 
M* = [Wi(q). W2(q), W3(q)} (4.120) 

We say that two model sets are equal, 34* = , if for any Wi in M* there exists 
a W2 in JAX such that W\ = W2 [defined by (4.116)], and vice versa. 

Note that the definition requires the predictors to be stable. This does not 
necessarily mean that the system dynamics is stable. 

Example 4.4 Unstable System 

Suppose that 

bq~] 

G(q) = —~ r . with \a\ > 1 
1 + aq~l 
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Model Structures: Parametrization of Model Sets 

Most often a model set of interest is noncountable. Since we have to conduct a search 
over it for "the best model," it is then interesting how the indexation is chosen. The 
basic idea is to parametrize (index) the set "smoothly" over a "nice" area and perform 
the search over the parameter set (the index set). To put this formally, we let the 
model be indexed by a J-dimensional vector 9: 

W(q.O) 

To formalize "smoothly." we require that for any given z, \z\ > 1, the complex-valued 
function W(z. 9) of 9 be d i f fe ren t ia te : 

Viz.O) = ^-W{z.9) (4.121a) 

Here 

¥ ( z . 0 ) = | > u ( z , 0 ) * v a . 0 ) ] 

= [ i M Tew^e)] (4'121b) 

is a d x 2 matrix. Thus the gradient of the prediction y{t\9) is given by 

= -JzHtW) = *(q,0)z{t) (4.121c) 
da 

Since the filters will have to be computed and used when the search is carried out. 
we also require them to be stable. We thus have the following definition: 

Definition 4.3. A model structure M is a d i f fe ren t ia te mapping from a connected, 
open subset DM of Rd to a model set M*. such that the gradients of the predictor 
functions are stable. 

To put this definition in mathematical notation we have 

M : DM B 9 M{9) = W(q.9) e M* (4.122) 

such that the filter ^ in (4.121) exists and is stable for 9 € DM- We will thus use 
M(9) to denote the particular model corresponding to 9 and reserve M for the 
mapping itself. 

Remark. The requirement that DM should be open is in order for the deriva
tives in (4.121) to be unambiguously well defined. When using model structures, 
we may prefer to work with compact sets DM- Clearly, as long as DM is contained 
in an open set where (4.121) are defined, no problems will occur. Differentiability 
can also be defined over more complicated subsets of than open ones, that is. 
differentiable manifolds (see, e.g., Boothby, 1975). See the chapter bibliography for 
further comments. 
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and 

• 
The parametrized model sets that we have explicitly studied in this chapter 

have been in terms of (4.4), that is. 

' + b2q~2 —aq ) . 9 = [a b 

' 0 -q-l~\ 
0 

iq * 0 

>•(/) = G{q.9)u{t) + H(q.9)e{t). 9 € D 

or using (4.111) 

v( / ) = T(q.0)x(t) 

It is immediate to verify that, in view of (4.114), 

(4.123) 

W ) =
 1

 2 n g , 9 ) \ H ^ d ) °1 (4.124) 

where T(q, 9) is the d x 2 matrix 

T ( , . 0 ) = ±nq.9) = [±G(q,9) ±H{q.6)] (4.125) 

Differentiability of W is thus assured by differentiability of T. 
It should be clear that all parametrizations we have considered in this chapter 

indeed are model structures in the sense of Definition 4.3. We have, for example: 

Lemma 4.1. The parametrization (4.35) together with (4.41) with 9 confined to 
DM = {9\F(z) • C(z) has no zeros on or outside the unit circle} is a model struc
ture. 

Proof. We need only verify that the gradients of 

B(z)D(z) 
Wu(z,0) = 

and 

Wy{z,9) = 1 -

C(z)F(z) 

D(z)A(z) 

C(z) 

Example 4 5 An A R X Structure 

Consider the A R X model 

y ( r ) + ay(t - 1) = bxu{t - 1) + b2u(t - 2) + e(t) 

The predictor is given by (4.10), which means that 



Chap. 4 Models of Linear Time-Invariant Systems 

Lemma 4.2. Consider the state-space parametrization (4.91). Assume that the 
entries of the matrices 4 ( 0 ) , B(9), K(B), and C(B) are d i f fe ren t ia te with respect 
to B. Suppose that 0 e DM r with 

DM = {81all eigenvalues of A(8) — K{8)C(8) are inside the unit circle} 

Then the parametrization of the corresponding predictor is a model structure. 

Proof. See Problem 4D.1. Z 

Notice that when K(0) is obtained as the solution of (4,87). then by a standard 
Kalman filter property (see Anderson and Moore, 1979), 

DM = { 0 | [A(0) , /?j(0)] stabilizable and [,4(0). C(0) ] detectable} (4.126) 

When relating different model structures, we shall use the following concept. 

Definition 4.4. A model structure M\ is said to be contained in M2, 

Mi C M2 (4.127) 

if DMI C DM2 and the mapping Mi is obtained by restricting M2 to 0 e DM: • 
The archetypical situation for (4.127) is when M2 defines n th-order models and M\ 
defines mth-order models, m < n. One could think of M\ as obtained from M2 by 
fixing some parameters (typically to zero). 

The following property of a model structure is sometimes useful: 

Definition 4 5 . A model structure M is said to have an independently parametrized 
transfer function and noise model if 

DM = Dp x Drf, p € Dp, n € Dn 

(4.128) 

T(q,8) = [G(q.p) H{q.t))] 

We note that in the family (4.33) the special cases with A(q) = 1 correspond to 
independent parametrizations of G and H. 

with respect to 0 are analytical in |z | > 1 for 0 € DM. But this is immediate since, 
for example 

± m = _ 
dck [C(z)] 2 F ( i ) c 
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Remark On "Finite Model Structures": Sometimes the set of candidate mod
els is finite as in (4.120). It may still be desirable to index it using a parameter vector 
9, now ranging over a finite set of points. Although such a construction does not 
qualify as a "model structure" according to Definition 4.3, it should be noted that 
the estimation procedures of Sections 7.1 to 7.4, as well as the convergence analysis 
of Sections 8.1 to 8.5, still make sense in this case. 

Model Set as a Range of a Model Structure 

A model structure will clearly define a model set by its range: 

M* = RiM) = R a n g e d = {M(9)\9 € DM} 

An important problem for system identification is to find a model structure whose 
range equals a given model set. This may sometimes be an easy problem and some
times highly nontrivial. 

Example 4.6 Parametrizing 34% 

Consider the set SM* defined by (4.119) with n = 3 . If we take 

9 — [a\ a2 as b\ b2 £ 3 ] ^ . d = 6 

DM = R 6 

and 

Wyiq.0) = -a}q~l - a2q~2 - a3q~3 

Wu(q,9) = bxq~l + b2q~2 + b,q'3 

we have obviously constructed a model structure whose range equals !M* • 

A given model set can typically be described as the range of several different 
model structures (see Problems 4E.6 and 4E.9). 

Model Set as a Union of Ranges of Model Structures 

In the preceding example it was possible to describe the desired model set as the 
range of a model structure. We shall later encounter model sets for which this is 
not possible, at least not with model structures with desired identifiability properties. 
The remedy for these problems is to describe the model set as a union of ranges of 
different model structures: 

M* = ( J f t C H ) (4.129) 
1=1 
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This idea has been pursued in particular for representing linear multioutput systems. 
We shall give the details of this procedure in Appendix 4A. Let us here only remark 
that model sets described by (4.129) are useful also for working with models of 
different orders, and that they are often used, at least implicitly, when the order of a 
suitable model is unknown and is to be determined. 

Identifiability Properties 

Identifiabilitv is a concept that is central in identification problems. Loosely speaking, 
the problem is whether the identification procedure will yield a unique value of the 
parameter 0. and/or whether the resulting model is equal to the true system. We shall 
deal with the subject in more detail in the analysis chapter (see Sections 8.2 and 8.3). 
The issue involves aspects on whether the data set (the experimental conditions) is 
informative enough to distinguish between different models as well as properties of 
the model structure itself: If the data are informative enough to distinguish between 
nonequal models, then the question is whether different values of 9 can give equal 
models. With our terminology, the latter problem concerns the invertibility of the 
model structure M (i.e.. whether !M is injective). We shall now discuss some concepts 
related to such invertibility properties. Remember that these are only one leg of the 
identifiability concept. They are to be complemented in Sections 8.2 and 8.3. 

Definition 4 . 6 . A model structure M is globally identifiable at 9* if 

M(9) = M(9*)< 9 € D M =» 9 = 9* (4.130) 

Recall that model equality was defined in (4.116). requiring the predictor transfer 
functions to coincide. According to (4.115), this means that the underlying transfer 
functions G and H coincide. 

Once identifiability at a point is defined, we proceed to properties of the whole 
set. 

Definition 4 . 7 . A model structure M is strictly globally identifiable if it is globally 
identifiable at all 9* € DM> 

This definition is quite demanding. As we shall see. it is difficult to construct 
model structures that are strictly globally identifiable. The difficulty for linear sys
tems, for example, is that global identifiability may be lost at points on hyper-surfaces 
corresponding to lower-order systems. Therefore, we introduce a weaker and more 
realistic property: 

Definition 4 . 8 . A model structure JM is globally identifiable if it is globally iden
tifiable at almost all 9* e DM-
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Remark. This means that M is globally identifiable at all 9* e C £>_*<, 
where 

BDM = \e\e € Dm\0 $ 

is a set of Lebesgue measure zero in R** (recall that D^ and hence 8D-\T is a subset 
o f R ^ ) . 

For corresponding local properties, the most natural definition of local identi
fiability of M at 9* would be to require that there exists an e such that 

MiO) = M($*). 9 € n e \ e ) => 9 = 9* (4.131) 

where 3(6*. e) denotes an ^-neighborhood of 9*. 
(Strict) local identifiability of a model structure can then be defined analogously 

to Definitions 4.7 and 4.8. See also Problem 4G.4. 

Use of the Identifiability Concept 

The identifiability concept concerns the unique representation of a given system 
description in a model structure. Let 

S : y(t) = G{)(q)u(t) + H0(q)e(t) (4.132) 

be such a description. We could think of it as a " t rue ' ' or " ideal" description of the 
actual system, but such an interpretation is immaterial for the moment . Let M be a 
model structure based on one-step-ahead predictors for 

yit) = G(q.d)u{t) + Hiq.$)eit) (4.133) 

Then define the set Dj(S. M) as those 0-values in D%t for which 5 = M{9). We 
can write this as 

DT(S. M) - \0 € DM\G0(z) = Giz. 9). H0iz) = Hiz. 9) almost all z] (4.134) 

This set is empty in case S £ M. (Here, with abuse of notation, M also denotes the 
range of the mapping M.) 

Now suppose that S € M so that 5 = M(9u) for some value 9Q. Furthermore, 
suppose that M is globally identifiable at 9Q. Then 

DT(S.M) = [90] (4.135) 

One aspect of the choice of a good model structure is to select M so that (4.135) 
holds for the given description 5 . Since 5 is unknown to the user, this will typically 
involve tests of several different structures M. The identifiability concepts will then 
provide useful guidance in finding an JA such that (4.135) holds. 
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4.6 IDENTIFIABILITY OF S O M E M O D E L S T R U C T U R E S 

Definition 4.6 and (4.116) together imply that a model structure is globally identifiable 
at 0* if and only if 

G(z.e) = G(z.O*) and H(z,9) = H(z,9*) 
(4.136) 

for almost all z 0 - 0* 

For local identifiability, we consider only 0 confined to a sufficiently small neighbor
hood of 0*. A general approach to test local identifiability is given by the criterion 
in Problem 4G.4. 

Global identifiability is more difficult to deal with in general terms. In this 
section we shall only briefly discuss identifiability of physical parameters and give 
some results for general black-box SISO models. Black-box multivariable systems 
are dealt with in Appendix 4A. 

Parametrizations in Terms of Physical Parameters 

Modeling physical processes typically leads to a continuous-time state-space model 
(4.62) to (4.63), summarized as (4.65) (T = 1): 

y(t) = Gc{p,8)u(t) + v(t) ( 4 . 1 3 7 ) 

For proper handling we should sample Gc, and include a noise model H so that 
(4.136) can be applied for identifiability tests. A simpler test to apply is 

Gc(s,0) = Gc(s.9*) almost all s =>'9 = 6>*? (4.138) 

It is true that this is not identical to (4.136): When sampling G c , ambiguities may 
occur; two different Gc can give the same Gj [cf. (2.24)]. Equation (4.138) is thus 
not sufficient for (4.136) to hold. However, with a carefully selected sampling in
terval, this ambiguity should not cause any problems. Also, a 0 -parametrized noise 
model may help in resolving (4.138). This condition is thus not necessary for (4.136) 
to hold. However, in most applications the noise characteristics are not so significant 
that they indeed bear information about the physical parameters. All this means 
that (4.138) is a reasonable test for global identifiability of the corresponding model 
structure at 0*. 

Now, (4.138) is a difficult enough problem. Except for special structures there 
are no general techniques available other than brute-force solution of the equations 
underlying (4.138). See Problems 4E.5 and 4E.6 for some examples. A compre
hensive treatment of (4.138) for state-space models is given by Walter (1982), and 
Godfrey (1983)discusses the same problem for compartmental models. See also 
Godfrey and Distefano (1985). A general approach based on differential algebra is 
described in Ljung and Glad (1994b). 
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SISO Transfer-function Model Structures 

We shall now aim at an analysis of the general black-box STSO model structure 
(4.33) together with (4.41). Let us first illustrate the character of the analysis with 
two simple special cases. 

Consider the A R X model structure (4.7) together with (4.9): 

B(z) 1 

Mz) A(z) 

9 = [ai...anah ~-bnh]T 

(4.139) 

Equality for H in (4.136) implies that the A -polynomials coincide, which in turn im
plies that the B -polynomials must coincide for the G to be equal. It is thus immediate 
to verify that (4.136) holds for all 9* in the model structure (4.139). Consequently, 
the structure (4.139) is strictly globally identifiable. 

Let us now turn to the O E model structure (4.25) with orders nb and tif. At 
9 = 9* we have 

B*(z) biz'1
 + • • • +Kb z~"b 

G(z,9*) = 1 "* 
F*(z) 1 + ftz~l + ••• + f*z~nf 

(4.140) 

=

 b w b - 1 + - + *;» = b*(Z) 

znf + f{z*f-x + ••• + /„* ~ z"* F" U ) 

We shall work with the polynomial F*(z) = Zn/ F*(z) in the variable z* rather than 
with F*(z), which is a polynomial in z~]. The reason is that z"f F*(z) always has 
degree nf regardless of whether f* is zero. Let B*(z) = z"hB*(z). and let 9 be an 
arbitrary parameter value. We can then write (4.136). 

G(z,9*) = G(z.9) = | ^ = Z " / - * ^ 
F(z) F(z) 

as 

F(z)B*(z) - F*(z)B(z) = 0 (4.141) 

Since F*(z) is a polynomial of degree « / , it has n/ zeros: 

F*(ai) = 0, i = 1 nf 

Suppose that fi*(or,) ^ 0, i = 1 « / ; that is, B*(z) and F*(c) are coprime 
(have no common factors). Then (4.141) implies that 

F(on) = 0 . i = l nf 
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[if a zero of, has multiplicity w,, then differentiate (4.141) n, — 1 times to conclude thai 
it is a zero of the same multiplicity to F ( c ) ] . Consequently, we have F(z) = F*(z). 
which in turn implies that B(z) = B*(z) so that 0 = 0*. If, on the other hand. F' 
and B* do have a common factor so that 

F*(z) = y(z)F*(zh B*iz) = y(z)B*(z) 

then all 0 , such that 

F(z) = P(z)Ft(z). B(Z) = P(z)BHz) 

for arbitrary ft(z) will yield equality in (4.141). Hence the model structure is neither 
globally nor locally identifiable at 0* [fi(z) can be chosen arbitrarily close to y(z)]. 
We thus find that the OE structure (4.25) is globally and locally identifiable at 6* 
if and only if the corresponding numerator and denominator polynomials z"f F*(z) 
and z"HB*(z) are cop rime. 

The generalization to the black-box SISO structure (4.33) is now straight
forward: 

Theorem 4.1. Consider the model structure M corresponding to 

Mq)y(t) = ^P-Mt) + £ ^ L ( 0 (4.142) 
F(q) D(q) 

with 0. given by (4.41), being the coefficients of the polynomials involved. The 
degrees of the polynomials are na. nb. and so on. This model structure is globally 
identifiable at 0* if and only if all of (i) to (vi) hold: 

i. There is no common factor to all z"aA*(z). z"HB*(z), and z"' C*(z). 

ii. There is no common factor to z"HB*{z) and F*(z). 

iii. There is no common factor to z"rC*(z) and z,,dD*(z). 

iv. If na > 1. then there must be no common factor to z"r F*(z) and z"d D*{z). 

v. If nj > 1 , then there must be no common factor to z"0 A*(z) and z"bB*(z). 

vi. If n/ > 1. then there must be no common factor to zN"A*(z) and z"1 C*(c) . 

The starred polynomials correspond to 8*. 

Notice that several of the conditions (i) to (vi) will be automatically satisfied 
in the common special cases of (4.142). Notice also that any of the conditions (i) to 
(vi) can be violated only for "special" 8*. placed on hyper-surfaces in Rd. We thus 
have the following corollary: 

Corollary. The model structure given by (4.142) is globally identifiable. 
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Looking for a "True" System Within Identifiable Structures 

We shall now illustrate the usefulness of Theorem 4.1 by applying it to the problem 
of finding an M such that (4.135) holds for a given S. Suppose that 5 is given by 

B0(q) C{)(q) 
S : Gn(q) = — — . Hn(q) = — — (4.143) 

with orders n^, n®. and so on (after all possible cancellations of common factors). 
This system belongs to the model structure 34 in (4.142) provided all the model 
orders are at least as large as the true ones: 

n„ > n°a, nb > n°b. etc. (4.144) 

When (4.144) holds, let 0 O be a value that gives the description (4.143): 

5 = M($0) (4.145) 

Now. clearly, 34 will be globally identifiable at $o and (4.135) will hold if we have 
equality in all of (4.144). The true orders are. however, typically not known. 
and it would be quite laborious to search for all combinations of model orders until 
equalities in (4.144) were obtained. The point of Theorem 4.1 is that such a search is 
not necessary: the structure 34 is globally identifiable at $Q under weaker conditions. 

We have the following reformulation of Theorem 4.1: 

Theorem 4.2. Consider the system description 5 in (4.143) with true polynomial 
orders n^, n^. and so on. as defined in the text. Consider model structure 34 of 
Theorem 4.1. Then 5 € 34 and corresponds to a globally identifiable 0-value if and 
only if 

i. min(/z<7 - « J . nb - nc - « J ) = 0. 

i i . min(«fr — njj. nj — n^) = 0. 

iii. m i n ( « r — n^.. rid — « J ) = 0. 

iv. If na > 1. then also min( / i / — n®. nj — « J ) — 0. 

v. If i\d > 1. then also min(« f l — n®. nb — n^) = 0. 

vi. If rif > 1, then also m i n ( « a — w", nc — n®) = 0. 

With Theorem 4.2. the search for a true system within identifiable model struc
tures is simplified. If, for example. S can be described in A R M A X form with finite 
orders n°a, and n®. then we may take na = nb = nc = n(rif = rid = 0) in 34, 
giving a model structure, say, 3An. By increasing n one unit at a time, we will sooner 
or later strike a structure where (i) holds and thus S can be uniquely represented. 
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SISO State-space Models 

Consider now a state-space model structure (4.91). It is quite clear that the ma
trices A(9). B(9), C{9). and K(9) cannot be "filled" with parameters, since the 
corresponding input-output description (4.92) is defined by 3n parameters only 
(n = dim A ) . TO obtain identifiable structures, it is thus natural to seek parametriza-
tions of the matrices that involve 3n parameters; the coefficients of the two (n — 1) th 
order numerator polynomials and the coefficients of the common, monic nth order 
denominator polynomial or some transformation of these coefficients. One such 
parametrization is the observer canonical form of Example 4.2, which we can write 
in symbolic form as 

x(t + 1 , 0 ) = A(9)x{t,9) + B{9)u(t) + K(9)e{t) 

yit) = C(9)x(t,9) + e(t) 

A(9) = 

X " x " " x " 
X / « - ! 

, B{9) = 
x 

. K(0) = 
X 

X o...o_ _ x _ X _ 

(4.146a] 

(4.146b) 

C ( 0 ) = [ l 0 . . . 0 ] 

Here 7„_i is the (n — 1) x (n — 1) unit matrbc, while x marks an adjustable parameter . 
This representation is observable by construction. 

According to Example 4.2, this structure is in one-to-one correspondence with 
an A R M A X structure with na — nt> = nc = n. From Theorem 4.1 we know that 
this is identifiable at 0*. provided the corresponding polynomials do not all have a 
common factor, meaning that the model could be represented using a smaller value 
of n. It is well known that for state-space models this can only happen if the model 
is uncontrollable and/or unobservable. Since (4.146) is observable by construction, 
we thus conclude that this structure is globally and locally identifiable at 9* if and 
only if the two-input system {A(0*), [ 5 (0* ) K(9*) ]} is controllable. Note that 
this result applies to the particular state-space structure (4.146) only. 

4.7 SUMMARY 

In this chapter we have studied sets of predictors of the type 

y(t\6) = Wu{q.9)u(t) + Wy(q,9)y{t). 0 e DM C Rd (4.147) 

These are in one-to-one correspondence with model descriptions 

>•(/) = G(q,0)u(t) + H(q,9)e{t), 9 € DM (4.148) 
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with [e(t)} as white noise, via 

Wu(q,0) = H-\q,0)G(q,0) 

W,(q,0) = [}- H-\q,0J] 

When choosing models it is usually most convenient to go via (4.148). even if (4.147) 
is the "operat ional" version. 

We have denoted parametrized model sets, or model structures by while a 
particular model corresponding to the parameter value 9 is denoted by M{9). Such 
a parametrization is instrumental in conducting a search for "best models." Two 
different philosophies may guide the choice of parametrized model sets: 

1. Black-box model structures: The prime idea is to obtain flexible model sets 
that can accommodate a variety of systems, without looking into their internal 
structures. The input-output model structures of Section 4.2, as well as canoni-
cally parametrized state-space models (see Example 4.2), are of this character. 

2. Model structures with physical parameters: The idea is to incorporate physical 
insight into the model set so as to bring the number of adjustable parameters 
down to what is actually unknown about the system. Continuous-time state-
space models are typical representatives for this approach. 

We have also in this chapter introduced formal requirements on the predictor fil
ters Wu(q, 9) and Wx(q, 9) (Definition 4.3) and discussed concepts of parameter 
identifiability (i.e., whether the parameter 9 can be uniquely determined from the 
predictor filters). These properties were investigated for the most typical black-box 
model structures in Section 4.6 and Appendix 4A. The bottom line of these results is 
that identifiability can be secured, provided certain orders are chosen properly. The 
number of such orders to be chosen typically equals the number of outputs. 

4.8 BIBLIOGRAPHY 

The selection of a parameterized set of models is, as we have noted, vital for the 
identification problem. This is the link between system identification and parameter 
estimation techniques. Most articles and books on system identification thus contain 
material on model structures, even if not presented in as explicit terms as here. 

The simple equation error model (4.7) has been widely studied in many con
texts. See. for example, Astrom (1968), Hsia (1977), Mendel (1973), and Unbehauen. 
Gohring, and Bauer (1974)for discussions related to identification. Linear models 
like (4.12) are prime objects of study in statistics; see, for example, R a o (1973)or 
Draper and Smith (1981). The A R M A X model was introduced into system identi
fication in Astrom and Bohlin (1965)and is since then a basic model. The A R A R X 
model structure was introduced into the control literature by Clarke (1967). but 
was apparently first used in a statistical framework by Cochrane and Orcutt (1949). 
The term pseudo-linear regression for the representation (4.21) was introduced by 
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Solo (1978). Output error models are treated, for example, in Dugard and Landau 
(1980)and Kabaila and Goodwin (1980). The genera! family (4.33) was first discussed 
in Ljung (1979). It was used in Ljung and Soderstrom (1983). Multivariable MFDs 
are discussed in Kailath (1980). When no input is present, the corresponding mode! 
structures reduce to AR, MA, and A R M A descriptions. These are discussed in manv 
textbooks on time series, e.g.. Box and Jenkins (1970); Hannan (1970); and Brillinger 
(1981). 

Black-box continuous transfer function models of the type (4.50) have been 
used in many cases oriented toward control applications. Ziegler and Nichols (1942)de-
termine parameters in such models from step responses and self-oscillatory modes 
(see Section 6.1). 

State-space models in innovations forms as well as the general forms are treated 
in standard textbooks on control (e.g., Astrom and Wittenmark, 1984). The use 
of continuous-time representations for estimation using discrete data has been dis
cussed, for example, in Mehra and Tyler (1973)and Astrom and Kallstrom (1976). 
The continuous-time model structure is usually arrived at after an initial model
ing step. See, for example. Wellstead (1979), Nicholson (1981), Ljung and Glad 
(1994a)and Cellier (1990)for general modeling techniques and examples. Direct 
identification of continuous-time systems is discussed in Unbehauen and Rao (1987). 

Distributed parameter models and their estimation are treated in, for example. 
Banks, Crowley, and Kunisch (1983). Kubrusly (1977), Qureshi, Ng, and Goodwin 
(1980) and Polis and Goodson (1976). Example 4.3 is studied experimentally in 
Leden, Hamza, and Sheirah (1976). 

The prediction aspect of models was emphasized in Ljung (1974)and Ljung 
(1978). Identifiability is discussed in many contexts. A survey is given in Nguyen 
and Wood (1982). Often identifiability is related to convergence of the parameter 
estimates. Such definitions are given in Astrom and Bohlin (1965), Staley and Yue 
(1970). and Tse and Anton (1972). Identifiability definitions in terms of the model 
structure only was introduced by Bellman and Astrom (1970), who called it "struc
tural identifiability." Identifiability definitions in terms of the set Dj(S, M) [defined 
by (4.134)] were given in Gustavsson. Ljung, and Soderstrom (1977). The particular 
definitions of the concept of model structure and identifiability given in Section 4.5 
are novel. In Ljung and Glad (1994b)identifiability is treated from an algebraic per
spective. It is shown that any globally identifiable structure can be rearranged as a 
linear regression. 

A more general model structure concept than Definition 4.3 would be to let 
be a differentiable manifold (see, e.g., Byrnes, 1976). However, in our t reatment that 
possibility is captured by letting a model set be described as a union of (overlapping) 
ranges of model structures as in (4.129). This manifold structure for linear systems 
was first described by Kalman (1974), Hazewinkel and Kalman (1976) and Clark 
(1976). 

The identifiability of multivariable model structures has been dealt with in 
numerous articles. See. for example, Kailath (1980), Luenberger (1967), Glover 
and Willems (1974), Rissanen (1974), Ljung and Rissanen (1976), Guidorzi (1981), 
Gevers and Wertz (1984), Van Overbeek and Ljung (1982). and Correa and Glover 
(1984). 
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In addition to the parameterizations described in the appendix, approaches 
based on balanced realizations are described in Maciejowski (1985). Ober (1987). 
and Hanzon and Ober (1997). Parameterizations that are not identifiable, but may 
still have numerical advantages, are discussed by McKelvey (1994)and McKelvey 
and Helmersson (1996). 

4 9 PROBLEMS 

4G.1 Consider the predictor (4.18). Show that the effect from an erroneous initial condition 
in y(s | 0 ) , s < 0. is bounded by c • fi', where fi is the maximum magnitude of the zeros 
o f C ( : ) . 

4G.2 Colored measurement noise: Suppose that a state-space representat ion is given as 

x(t + 1) = Ax{0)x(t) + Bi(B)u(t) + u-j(r) 

y(f) = d(0)x(t) + vit) (4.149) 
where {w\(t)} is white with variance / ? i (# ) . but the measurement noise [vit)} is not 
white. A model for vit) can, however, be given as 

v(t) = H(q.9)v(t) (4.150) 

with [vit)} being white noise with variance R2iQ) and H(q.$) monic. Introduce a 
state-space representat ion for (4.150): 

£(/ -I- 1) = A2($Mt) + *(0)v(t) 

v{t) = C2{9)$it) + vit) (4.151) 

Combine (4.149) and (4.150) into a single representat ion that complies with the structure 
(4.84) to (4.85). Determine /? , (#)• /?i:(0). and R2(9). Note that if u; ,(r) is zero then 
the new representat ion will be directly in the innovations form (4.91). 

4G.3 Verification of the Steady-State Kalman Filter: The state-space model (4.84) can be 
written (suppressing the argument 0 and assuming dim y = 1) 

yit) = Giq)u(t) + v , (0 

where 
G(q) = Ciql - A)~*B 

vdt) = Ciql - Ay'w(t) + vit) 

Let Rn = 0. The spectrum of {t'j(r)} then is 

(p^co) = C(eiM - / - /i) - 1/?,(<?-'" • / - AT)~lCT + R2 

using Theorem 2.2. The innovations model (4.91) can be written 

yit) = Giq)u(t) + v2it) 

v2it) = H(q)e(t). Hiq) = Ciql - A)~lK + 1 

The spectrum of {V2U)} thus is 

<D2(a>) = k [C(e,a> • / - A)'1 K + l ] [C(«r /o> - / - A)~lK + \ f 

where a is the variance of e(t). 
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(a) Show by direct calculation that 

<t>\(b)) — <t>?(<w) = 0 

utilizing the expressions (4.87) and (4.9lb) . The two representat ions thus have 
the same second-order properties, and if the noises are Gaussian, they are indis
tinguishable in practice (see Problem 2E.3). 

(b) Show by direct calculation that 

1 - H~\q) = 1 - [1 + C(ql - A)-'K]~l 

= C(ql — A + KC)~XK 

and 

H~\q)Giq) = [l + Ciql - A)^K]~XC(qI - A)"1 B 

= Ciql - A + KC)-*B 

(c) Note that the predictor (4.86) can be written as (4.88): 

y(r|0) = Ciql - A + KC)~xBuit) + Ciql - A + KC)~lKyit) 

and thus that (a) and (b) together with (3.20) constitute a derivation of the stead\ -
state Kalman filter. 

4G.4 Consider a model structure with predictor function gradient Viz, 9) defined in 
(4.121). Define the d x d matrix 

r^$) = j Vieuo.e)VTie-io3.e)dto 

(a) Show that M is locally identifiable at 6 if T\(9) is.nonsingular. 

(b) Let Viz, 0) be defined by (4.125). and let 

r*2(0) = j Tiei(u.$)[Tie-i'",e)]T dco 

Use (4.124) to show that r2(9) is nonsingular if and only if r^O) is. [Note that 
by assumption H(q) has no zeros on the unit circle.] T2i0) can thus be used to 
test local identifiability. 

4G.5 Consider an output error structure with several inputs 

v ( „ = ^ u , ( , ) + . . . + M i > „ , „ ( , ) + , ( , ) 
Fiq) Fiq) 

Show that this structure is globally identifiable at a value $* if and only if there is no 
common factor to all of the m + 1 polynomials 

z"fF*iz). z"hB*iz), i = l m 

rif = degree F*(z) . «/, — max degree B*iz) 

6* here corresponds to the starred polynomials. 
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4G.6 The Kronecker product of an m x n matrix A = (an) and a p x r matrix B = (bij) 
is defined as (see, e.g., Barnet t . 1975) 

A <g> B = 

a\\B anB...aXnB 
<*2[B a22B...a2nB 

~am\B amiB...amnB 

This is an mp x nr matrix. Define the operator "col" as the operat ion to form a column 
vector out of a matrix by stacking its columns on top of each other: 

R B i - i 

col B = 
B* 

Br 

(rp x 1 vector) 

where Bj is the jth column of B. 

Consider (4.56) to (4.59). Show that (4.58) can be transformed into (4.59) with 

0 = c o l 6 r 

<p(f) = <p(t) <g> Ip 

where is the p x p unit matrix. Are o ther variants of B and <p also possible? 
4G.7 Consider the continuous-time state-space model (4.96) to (4.97). Assume that the 

measurements are made in wideband noise with high variance, idealized as 

y(t) = Hx(t) + 17(0 

where v(t) is formal continuous-time white noise with covariance function 

Ev(t)vT(s) = R2(0)8(t - s) 

Assume that v(r) is independent of w(t). Let the output be defined as 

>•((* + 1 ) 7 ) i r y(t)dt 
kT 

Show that the sampled-data system can be represented as (4.98) and (4.99) but with 

y(kT) = CT(0)x(kT) + DT(0)u(kT — T) + vT(kT) 

1 
CT(0) = - / 7 < M 0 ) 

EwT(kT)v^(kT) 

EvT(kT)i<l(kT) 

1 CT -
RrJO) = - / eFmrRm<*>T

T-x(0)HTdT 
* Jo 

Ri(0) = ^R2(0) + f Fi<t>T-A°)Rm4>T

T_T(0)HTdi 
1 l" Jo 

<t>r(<9) = f e F m x d T : DT(0) = [ H<t>T(0)di 
Jo * Jo 
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4G.8 Consider the A R X model (4.7). Introduce the 8 -operator 

5 = 1 - q~l 

and reparametr ize the models in terms of coefficients of powers of 8. Work out the 
details of a second-order example. Such a parametrization has the advantage of being 
less sensitive to numerical errors when the sampling interval is short. Middleton and 
Goodwin (1990). 

4 E . 1 Consider the A R X model structure 

>'i0 + aiyit - 1) + • • • -I- anay(t - na) 

= bMt - D + • • • + bahu(t -nb)+ eit) 

where b\ is known to be 0.5. Write the corresponding predictor in the linear regression 
form (4.13). 

4 E . 2 Consider the continuous-time model (4.75) of the dc servo with Tf it) = 0. Apply the 
Euler approximation (2.25) to obtain an approximate discrete-time transfer function 
that is a simpler function of $ . 

4 E . 3 Consider the small network of tanks in Figure 4.8. Each tank holds 10 volume units of 
fluid. Through the pipes A and E flows 1 volume unit per second, through the pipe B. 
a units, and through C and D, 1 — Of units per second. The concentration of a certain 
substance in the fluid is u in pipe A (the input) and y in pipe E (the output) . Write 
down a structured state-space model for this system. Assume that each tank is perfectly 
mixed (i.e.. the substance has the same concentration throughout the tank) . (Models of 
this character are known as compartmental models and are very common in chemical 
and biological applications: see Godfrey. 1983.) 

n 
D 

III 

Figure 4.8 A network of tanks. 

4 E . 4 Consider the R L C circuit in Figure 4.9 with ideal voltage source w t it) and ideal current 
source «,•( '). View this circuit as a linear time-invariant system with two inputs 

uit) = 
L «.•('). 

and one output: the voltage yit). R, L, and C are unknown constants. Discuss several 
model set parametrizat ions that could be feasible for this system and describe their 
advantages and disadvantages. 
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L 

u,U) \^^J R 
I—W 

-o + 

v(0 

Figure 4.9 A simple circuit. 

Hint: The basic equat ions for this circuit are 

M,.(f) = + v(D + * [ / ( / ) + 
a/ 

t JO 
4E.5 A state-space model of ship-steering dynamics can be given as follows: 

d 

Jt 

aiz 0 " -v(ty 

r(t) = r(t) + 
-hit). . 0 1 o_ -h(t). _ o _ 

«(0 

where i/(r) is the rudder angle, i;(r) the sway velocity, r{t) the turning rate, and h(t) 
the heading angle. 

(a) Suppose only u(t) and y( r ) = /?(f) are measured. Show that the six parameters 
dij. fr,, are not identifiable. 

(b) Try also to show that if u(t) and « • [::::] are measured then all six 

parameters are globally identifiable at values such that the model is controllable. 
If you cannot complete the calculations, indicate how you would approach the 
problem (reference: Godfrey and DiStefano. 1985). 

4E.6 Consider the model structure (4.91) with 

A(0) = 
-a, 1 

- a , 0 

C(9) = [ l o ] , 

9 = [a{ a2 &i b2 *i k2]T, 9 € D , c R* 
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and another structure 

~'M 0 " 
Mi) = • Bin) = [ o k2 J 
C(r}) = [n y2]. K(n) = [:;] 

1 = [ai a? Mi Yi Yz K\ ^ ] r . € £>2 C R* 

Determine £>i and D 2 so that the two model structures determine the same model set. 
What about identifiability propert ies? 

4E.7 Consider the heated metal rod of Example 4.3. Introduce a five-state lumped approxi
mation and write down the state-space model explicitly. 

4E.8 Consider the O E model structure with nh — 2 . rif = 1, and b\ fixed to unity: 

+ b2q 
1 + fig~l 

Determine r 2 (0 ) of Problem 4G.4 explicitly. When is it singular? 

4E.9 Consider the model structures 

My v(f) = -ayit - 1) + buit - 1) 

9 

and 

M2 yit) 

= Ĵ J, DM, = {|a| < 1,6 > 0} 

- ( c o s a ) y ( f - 1) + - U 

^ J . D 3 , 2 = {0 < a < jr. - o c < £ < cc} 

Show that !R(JMi) = TliMz). Discuss possible advantages and disadvantages with the 
two structures. 

4E.10 Consider the dc-motor model (4.75). Assume that the torque Tt can be seen as a white-
noise zero mean disturbance with variance a2 (i.e.. the variations in 7* are random 
and fast compared to the dynamics of the motor) . Apply (4.97) to (4.99) to determine 
R\i$) and R\2{9) in a sampled model (4.84) and (4.85) of the motor, with A(9) and 
B($) given by (4.77) and 

0 = 
T 

Lyj 
Y = Y 

As an alternative, we could use a directly parametr ized innovations form (4.91) with 
A(0) and B(9) again given by (4.77). but 

- K l Ki9) = J ',* I a n d 0 = [ r 6 *, k2y 

Discuss the advantages and disadvantages of these two parametrizations. 
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4 E . 1 1 Consider the system description 

x(t + 1) = ax(t) + bu(t) + £ ( 0 

yit) = x(t) + e(t) 

where e(t) is white Gaussian noise and £{/) has the distribution 

1 ( 0 = 0, w.p. 1 - X 

= + L w.p. A / 2 

= - 1 . w.p. A / 2 

The coefficients a. b. and A are adjustable parameters. Can this description be cast into 
the form (4.4)? If so. at the expense of what approximations? 

4 E . 1 2 Consider a multivariable A R X model set 

yit) + Aiy(t - 1) + A2yit - 2) = B{u(t - 1) + e(t) 

where dim y = p = 2, dim u — m — 1. and where the matrices are parametr ized as 

where a and $ are known values and x indicates a parameter to be estimated. Write 
the predictor in the form 

yit\d) = if>Tit)6 + pit) 

with p. it) as a known term and give explicit expressions for <p and 0. Can this predictor 
be written in the form (4.58)? 

4T.1 De te rmine the k-step-ahead predictor for the A R M A X model (4.15). 

4T.2 Give an expression for the &-step-ahead predictor for (4.91). 

4T.3 Suppose that Wuiq) and Wviq) are given functions, known to be determined as k-step-
ahead predictors for the system description 

y ( 0 = Giq)u(t) + Hiq)eit) 

Can G ( 0 and Hie"°) be uniquely computed from J V w < 0 and W v ( e ' 0 J ) ? What if 
G and H are known to be of the A R M A X structure 

r ( . B(q) Ciq) 
Aiq) A(q) 

where A.B. and C have known (and suitable) orders? 

4 D . 1 Prove Lemma 4.2. 
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APPENDIX 4A: IDENTIFIABILITY OF BLACK-BOX MULTIVARIABLE 
M O D E L S T R U C T U R E S 

The topic of multivariable model structures and canonical forms for multivariable 
systems is often regarded as difficult, and there is an extensive literature in the field. 
We shall here give a no-frills account of the problem, and the reader is referred to 
the literature for more insights and deeper results. See the bibliography. 

The issue still is whether (4.136) holds at a given 9. Our development parallels 
the one in Section 4.6. We start by discussing polynomial parametrizations or MFDS. 
such as (4.55) to (4.61). and then turn to state-space models. Throughout the section. 
p denotes the number of outputs and m the number of inputs. 

Matrix Fraction Descriptions (MFD) 

Consider first the simple multivariable A R X structure (4.52) or (4.56). This uses 

G{Z.9) = A-L(Z)B(Z), H(Z.B) = A~L{Z) (4A.1) 

with $ comprising all the coefficients of the matrix polynomials (in ]/Z) A(Z) and 
B(Z). These could be of arbitrary orders. Just as for the S1SO case (4.139). it is 
immediate to verify that (4.136) holds for all 9*. Hence the model structure given 
by the MFD (4A.1) is strictly globally identifiable. 

Let us now turn to the output error model structure 

G(z.O) = F-HzWz), H{z.8) = / (4A. 

It should be noted that the analysis of (4A.2) contains also the analysis of the multi-
variable A R M A X structure and multivariable Box-Jenkins models. See the corollary 
to Theorem 4A.1 . which follows. 

The matrix polynomial F{z) is here a P x P matrix 

F(Z) = 

FN(Z) FN(Z)...FLP(Z) 

F2\(Z) F22(Z)...F2P(Z) 
= F M + F ' V 1 + • • • + F L L )

Z - V (4A.3! 

LFPL(Z) FP2(Z)...FPP(Z)J 

whose entries are polynomials in Z~*: 

Fij(z) = fP + fPz-* + .-- + f!ji>)z-^ (4A.4) 

The degree of the FJJ polynomial will thus be denoted by Vjj and V = max . 
Similarly, B{Z) is a P x M matrix polynomial. Let the degrees of its entries be 
denoted by p\-}. 
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The structure issue is really to select the orders r,/ and pa [i.e., pip + m) 
integers]. This will give a staggering amount of possible model structures. Some 
special cases discussed in the literature are 

1. I'// = n.fijj = r (4A.5) 

2. Vjj = 0 , / ^ j : vu = ni.fijj = n (4A.6) 

3. Vjj = iij. a l l / : fUjj = r , . a l l / (4A.7) 

In all these cases we fix the leading matrix to be a unit matrix: 

Fm = I: i.e.. = Sij (4A.8) 

The form (4A.5) is called the "full polynomial form" in Soderstrom and Stoica (1983). 
It clearly is a special case of (4A.7). It is used and discussed in Hannan (1969,1976), 
Kashyap and Rao (1976). Jakeman and Young (1979). and elsewhere. 

The form (4A.6) gives a diagonal F-matrix and has been used, for example, in 
Kashyap and Nasburg (1974). Sinha and Caines (1977), and Gauthier and Landau 
(1978). 

The structure (4A.7) where the different columns are given different orders is 
discussed, for example, in Guidorzi (1975). Gauthier and Landau (1978). and Gevers 
and Wertz (1984). 

Remark. In the literature, especially the one discussing canonical forms rather 
than identification applications, often the polynomials 

J(z) = z
lF(z) = Fi0]zv + F(l)zl~l + ••• + Fn) (4A.9) 

in the variable ; are considered instead of F(z) ( j u s t a s w e did the SISO case). 
Canonical representations of F(z) [such as the "Hermite form": see Dickinson, 
Kailath. and Morf. 1974: Hannan. 1971a; or Kailath, 1980] will then typically involve 
singular matrices F{0). Such representations are not suitable for our purposes since 
yit) cannot be solved for explicitly in terms of past data. 

The identifiability properties of the diagonal form (4A.6) can be analyzed by 
SISO arguments. For the others we need some theory7 for matrix polynomials. 

Some Terminology for Matrix Polynomials 

Kailath (1980), Chapter 6. gives a detailed account of various concepts and properties 
of matrix polynomials. We shall here need just a few: 

A p x p matrix polynomial Pix) is said to be unimodular if det P(x) = 
constant. Then P~](x) is also a matrix polynomial. Two polynomials Pix) and 
(2(A) with the same number of rows have a common left divisor if there exists a 
matrix polynomial Lix) such that 

Pix) = L(x)P(x) 

Qix) = L(x)Qix) 

for some matrix polynomials Pix) and Qix). 
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P(x) and Q(x) are said to be left coprime if all common left divisors are 
unimodular. This is a direct extension of the corresponding concept for scalar poly
nomials. A basic theorem says that if P(x) and Q(x) are left coprime then there 
exist matrix polynomials A(x) and B(x) such that 

P(x)A(x) + Q(x)B(x) = / (identity matrix) (4A.10) 

Loss of Idenri6abiliry in MuJtivariable MFD Structures 

We can now state the basic identifiability result. 

Theorem 4A.1. Consider the output error M F D model structure (4A.2) with the 
polynomial degrees chosen according to the scheme (4A.7). Let $ comprise all 
the coefficients in the resulting matrix polynomials, and let F*(z) and B*(z) be the 
polynomials in 1/z that correspond to the value 0*. Let 

D p { z ) = diagOr"1 zn") 

D m { z ) = d i a g U \ . . . , z r w ) 

be diagonal matrices, with rt, and r, defined in (4A.7), and define F* ( z ) = F* (z)Dp ( z ) . 
B*(z) = B*(z)Dm(z) as polynomials in z . Then the model structure in question is 
globally and locally identifiable at 0* if and only if 

F*(z) and ( z ) are left coprime (4A.11) 

Proof. Let 9 correspond to F(z) and B(z), and assume that 

G(z,9) = G(z,0*) = F-\z)B(z) = F^(z)B,(z) 

This can also be written as 

Dp(z)F-\z)B(z)D-\z) = Dp(z)F;l(z)B*(z)D-l(z) 

where F and B are defined analogously to F* and fi*. This gives 

K{z) = K(z)F-\z)B(z) (4A.12) 

When and F + are left coprime there exist, according to (4A.10), matrix polyno
mials X(z) and Y(z) such that 

K(z)X(z) + B*(z)Y(z) = I 
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Inserting (4A.12) into this expression gives 

Fm(z)F-\z)[hz)X{z) + B(z)Y(z)] = / 

or 

F(z)X(z) + B(z)Y(z) = F(z)F-l(z) = U(z) 

Since the left side is a matrix polynomial in z, so is U(z). We have 

F(Z) = U(z)K(z) (4A.13) 

Note that, by (4A.8), 

/ = lim F(z) = Um F{z)D-\z) = lim F*(z)D~l(z) 
z-*oc z->oo y z-*oc y 

Hence, multiplying (4A.13) by D~l(z) gives 

/ = lim U(z) 
Z—fOC 

which since U(z) is a polynomial in z, shows that U(z) = / , and hence F(z) = 
F*(z), which in turn implies that B(z) = B*(z), and the if-part of the theorem has 
been proved. If (4A.11) does not hold, a common, nonunimodular, left factor U*(z) 
can be pulled out from F*(z) and and be replaced by an arbitrary matrix 
with the same orders as U*(z) [subject to the constraint (4A.8)]. This proves the 
only-if-part of the theorem. C 

The theorem can immediately be extended to a model structure 

G(z,S) = F " 1 (z)B(z), H(z,0) = D- JU)CU) (4A.14) 

with F and D subject to the degree structure (4A.7). It can also be extended to the 
multivariable A R M A X structure: 

G(z,9) = A~\z)B(z), H(z,0) = A~l(z)C(z) ( 4 A . 1 5 ) 

Corollary 4A.1. Consider the A R M A X model structure (4A. 15) with the degrees 
of the polynomial A(z) subject to (4A.7). Let A*(z) and & ( z ) = [ 2?„(z) C»(z) ], 
a p x (m + p) matrix polynomial, be the polynomials that correspond to 6*, as 
described in the theorem. Then the structure is identifiable at 0* if and only if 

A*(z) and fi*(z) are left coprime 
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The usefulness of these identifiability results lies in the fact that only p orders 
(the column degrees) have to be chosen with care to find a suitable identifiable 
structure, despite the fact that p • m [or even p • (m + p) in the A R M A X case] 
different transfer functions are involved. 

State-space Model Structures 

For a multivariable state-space model (4.146), we introduce a parametric structure, 
analogous to (4.146): 

A{9) = 

K{$) = 

" 0 1 0 0 0 0 0 0 0 " 

0 0 1 0 0 0 0 0 0 

X X X X X X X X X 

0 0 0 0 1 0 0 0 0 

X X X X X X X X X . B($) — 
0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

_ x X X X X X X X x _ 

~ X X X " 

X X X 

X X X 

X X X " 1 0 0 0 0 0 0 
X X X C(t?) — 0 0 0 1 0 0 0 
X X X _o 0 0 0 : 0 1 0 
X X X 

X X X 

_ X X x _ 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

X X 

_ x X 

(4A.16] 

The number of rows with x ' s in A{0) equals the number of outputs. We have 
thus illustrated the structure for n = 9, p = 3 . m = 2. In words, the general 
structure can be defined as: 

Let A (0) initially be a matrix filled with zeros and with ones along the 
superdiagonal. Let then row numbers r\. r2. •.., rp, where rp = n, be 
filled with parameters. Take r$ = 0 and let C(0) be filled with zeros, and 
then let row i have a one in column r,-_i + 1. Let B(0) and K{0) be filled 
with parameters. (4A. 17) 

The parametrization is uniquely characterized by the p numbers /*; that are to be 
chosen by the user. We shall also use 
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and call 

v» = vp] (4A.18) 

the multiindex associated with (4A.17). Clearly. 

p 

n = J^Vi (4A.19) 
;=i 

By a multiindex v„ we henceforth understand a collection of p numbers 17 > 1 

subject to (4A.19). For given n and p* there exist ( ^ I * ) different multi-indexes. 

Notice that the structure (4A.17) contains 2np + mn parameters regardless of vn. 
The key property of a "canonical" parametrization like (4A.16) is that the 

corresponding state vector x(t. 0) can be interpreted in a pure input-output context. 
This can be seen as follows. Fix time / . and assume that u{s) = e(s) = 0 for 
s > t. Denote the corresponding outputs that are generated by the model for s > t 
by y$(s\t — 1). We could think of them as projected outputs for future times s as 
calculated at time t — 1. The state-space equations give directly 

yft{t\t - 1) = C(0)x(t.0) 

y0(t + l|r - 1) = C(0)A(8)x(t.O) 

(4A.20) 

y-it + n - l\t - 1) = C0)A"-l($)x(t.6) 

With 

O(0) = 

C(6) 

C(O)AW) 

lcmAn-\e)_\ 
(the tip x n observability matrix) and 

We can write (4A.20) as 

ye(t\t - 1) 

L % ( t + n - l\t - I ) J 

Y"n(t) = On(d)x{i.O) 

(4A.21) 

(4A.22) 

It is straightforward to verify that (4A.17) has a fundamental property: The np x n 
observability matrix 0„(9) will have n rows that together constitute the unit matrix, 
regardless of 0. The reader is invited to verify that row number kp + i of 0„ will be 

[0 0 . . . 0 1 0 . . . 0 ] 
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with 1 in position r ,_i + k + 1- This holds for 1 < i < p, 0 < k < v,r. Thus (4A.22) 
implies that the state variables corresponding to the structure (4A.17) are 

xn_,^i(t,9) = yf(t + k\t - 1 ) . i = l p, 0 < k < Vi (4A.23) 

Here superscript (i) denotes the / th component of y . This interpretation of state 
variables as predictors is discussed in detail in Akaike (1974b)and Rissanen (1974). 
By the relation (4A.23), n rows are picked out from the np vector Y%(0 in (4A.22). 
The indexes of these rows are uniquely determined by the multiindex v„. Let them 
be denoted by 

IVn = {(k - \)p + i : 1 < k < v,-: 1 < i < p) (4A.24) 

The key relationship is (4A.23). It shows that the state variables depend only on the 
input-output properties of the associated model. 

Consider now two values 9* and 9 that give the same input-output properties 
of (4A.17). Then %{t + k\t — 1) = y$*(t + k\t — 1), since these are computed from 
input-output properties only. Thus x(t, 9) = x(t. 9*). Now. if 9* corresponds to a 
minimal realization, so must 9, and Theorem 6.2.4 of Kailath (1980)gives that there 
exists an invertible matrix T such that 

A($*) = TA(9)T~\ B(9*) = TB(9) 
(4A.25) 

K(9*) = TK{9), C(0*) = C(9)T~l 

corresponding to the change of basis 

x(t,0*) = Tx(t.9) (4A.26) 
But (4A.26) together with our earlier observation that x{t. 9*) = x(t< 9) shows that 
T = /„ and hence that 9* =9. 

We have now proved the major part of the following theorem: 

Theorem 4A.2. Consider the state-space model structure (4A.17). This structure 
is globally and locally identifiable at 9* if and only if {A(9*), [ B(9*) K(0*) ]} is 
controllable. 

Proof. The if-part was proved previously. To show the only-if-part, we find that if 9* 
does not give a controllable system then its input-output properties can be described 
by a lower-dimensional model with an additional, arbitrary, noncontrollable model. 
This can be accomplished by infinitely many different 0's. • 

It follows from the theorem that the parametrization (4A.17) is globally iden
tifiable, and as such is a good candidate to describe systems of order n. What is 
not clear yet is whether any « th-order linear system can be represented in the form 
(4A.17) for an arbitrary choice of multiindex vn. That is the question we now turn 
to. 
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To(q) = [ 0 I] + 7TtHkq -k (4A.28) 
* = i 

H2 .. Hs ~ 

H2 Hi . ' • ^.v + l 

H3 
H4 . • • #5-1-2 

-Hr Hr+i . • • Hr+s-\ -

be the impulse response of the system. The matrices Hk are here p x (p + m). 
Define the matrix 

(4A.29) 

This structure with the same block elements along antidiagonals is known as a block 
Hankel matrix. Consider the semifinite matrix 3~Cr = J-fr.x - For this matrix we have 
the following two fundamental results. 

Lemma 4A.1. Suppose that the n rows [see (4A.24)] of 3{n span all the rows of 
^Cn+\• Then the system (4A.27) can be represented in the state-space form (4A.17) 
corresponding to the multiindex vn. 

The proof consists of an explicit construction and is given at the end of this appendix. 

Lemma 4A .2. Suppose that 

rank H,+i < n ( 4 A . 3 0 ) 

Then there exists a multiindex v„ such that the n rows h„ span 3fn+i. The proof of 
this lemma is also given at the end of this appendix. 

It follows from the two lemmas that (4A.30) is a sufficient condition for (4A.27) 
to be an n -dimensional linear system (i.e., to admit a state-space representation of 

Hankel-Matrix Interpretation 

Consider a multivariable system description 

y ( f ) = G0(q)u(t) + H0(q)e(t) = T0(q)XU) (4A.27) 

with 

To(q) = [G0(q) H0(q)}. X ( 0 = 

Assume that T()(q) has full row rank {i.e.. LTo(q) is not identically zero for any 
nonzero 1 x p vector L\. Let 
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order /?). It is, however, well known that this is also a necessary condition. (J-f is 
obtained as the product of the observability and controllability matrices.) We thus 

When (4A.30) holds, we thus find that the np rows of J-fn span an n -dimensional (or 
less) linear space. The generic situation is then that the same space is spanned by any 
subset of n rows of J-fn. (By this term we mean if we randomly pick from a uniform 
distribution np row vectors to span an /{-dimensional space the probability is 1 that 
any subset of n vectors will span the same space.) We thus conclude: 

A state-space representation in the form (4A.17) for a particular mul
tiindex vlt is capable of describing almost all n -dimensional linear sys
tems. (4A. 32) 

Overlapping Parametrizations 

Let Myn denote the model structure (4A.17) corresponding to v„. The result (4A.31) 
then implies that the model set 

(union over all possible multiindices v„) covers all linear w-dimensional systems. 
We have thus been able to describe the set of all linear n-dimensional systems as the 
union of ranges of identifiable structures [cf. (4.129)]. From (4A.32), it follows that 
the ranges of Mvn overlap considerably. This is no disadvantage for identification: 
on the contrary, one may then change from one structure to another without losing 
information. The practical use of such overlapping parametrizations for identifica
tion is discussed in van Overbeek and Ljung (1982). Using a topological argument. 
Delchampsand Byrnes (1982)give estimates on the number of overlapping structures 
needed in (4A.33). See also Hannan and Kavalieris (1984). 

Connections Between Matrix Fraction and State-Space 
Descriptions 

In the SISO case the connection between a state-space model in observability form 
and the corresponding A R M A X model is simple and explicit (see Example 4.2). Un
fortunately, the situation is much more complex in the multivariable case. We refer 
to Gevers 'and Wertz (1984). Guidorzi (1981), and Beghelli and Guidorzi (1983)for 
detailed discussions. 

We may note, though, the close connection between the indexes v, used in 
(4A.17) and the column degrees rc, in (4A.7). Both determine the number of time 
shifts of the / th component of v that are explicitly present in the representations. 
The shifts are. however, forward for the state space and backward for the MFD. The 
relationship between the v,- and the observability indexes is sorted out in the proof 
of Lemma 4A.2. 

conclude: 
Any linear system that can be represented in state-space form of order n 
can also be represented in the particular form (4A.17) for some multiindex 
v„ (4A.31) 

(4A.33) 
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A practical difference between the two representations is that the state-space 
representation naturally employs the state x(t) (n variables) as a memory vector 
for simulation and other purposes. When (4A.2) is simulated in a straightforward 
fashion, the different delayed components of v and u are stored, a total number of 
np + m • £V,- variables. This is of course not necessary, but an efficient organiza
tion of the variables to be stored amounts to a state-space representation. There 
are consequently several advantages associated with state-space representations for 
multivariable systems. 

Proofs of Lemmas 4A.1 and 4A.2 
It now remains only to prove Lemmas 4A.1 and 4A.2. 

Proof of Lemma 4A. L Let 

-xU - D 
5 ( 0 = X ( ' ~ 2 ) 

Let [cf. (4A.20) to (4A.22)] 

%{t\t-k) = J^Hair-t) 

and 

YN(0 = 

l>-o(/ + N - l | f - l ) J 
Then, from (4A.28) and (4A.29), 

K v ( 0 = 2fNS(t) 

Now enumerate the row indexes ir of fo„ in (4A.24) as follows: 

I, = 1. I2 = p + 1 Ivi = (1>1 - 1) • P + 1 

iv^i = 2, / V l + 2 = p + 2 iVs = (v 2 - 1) • P + 2 

(4A.34) 
(=k 

yo(t\t - i) 

(4A.35) 

(4A.36) 

»V„_,+1 = P< V i + 2 = P + • • ' ' {rp = (Vp-1) • p + p 

Recall that 

k 

i 
Now construct the n-vector x(t) by taking its r t h component to be the ir th compo
nent of K ; v(0- Let us now focus on the components i\ + p* h + p, in + P of 
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p. p + p, 2p + p iop - \)p + p 

(4A.35). Collect these components into a vector £(/ + 1). They all correspond to 
rows of J-f„+\. But this matrix is spanned by x(t) by the assumption of the lemma. 
Hence 

£ ( / + 1) = Fx(t) (4A.37) 

for some matrix F. Now several of the components of will also belong to A ( n . 
as shown in (4A.36). The corresponding rows of F will then be zeros everywhere 
except for a 1 in one position. A moment ' s reflection on (4A.36) shows that the 
matrix F will in fact have the structure (4A.17). Also, with hi given by (4A.17), 

yit) = Hx(t) + e(t) (4A.38) 

Let us now return to (4A.37). Consider component r of x(t + 1), which by 
definition equals row ir of Y^{t + 1). This row is given as y0 (t + k\t) for some 
values j and k that depend on i r . But. according to (4A.34). we have 

>o(t + *|/) = yoit + k\t - 1) + Htxit) (4A.39) 

Hence 

xrit + 1) = y{

0

j\t + k\t) = it - 1 + (* + l) |f - 1) + [HkXit))j 

But the first term of the right side equals component number ir + p of Ys(t) [i.e.. 
$rit + 1)]. Hence 

xit + 1) = Hif + 1) + 3fx(0 (4A.40) 
for some matrix M . Equations (4A.37), (4A.38), and (4A.40) now form a state-space 
representation of (4A.27) within the structure (4A.17) and the lemma is proved. Z 

Proof of Lemma 4A.2. The defining property of the Hankel matrix 3fy in (4A.29) 
means that the same matrix is obtained by either deleting the first block column (and 
the last block row) or by deleting the first block row. This implies that, if row / of 
block row k [i.e., row (k — l)p + / ] lies in the linear span of all rows above it. then 
so must row i of block k + 1. 

Now suppose that 
rank 3fn+\ = n 

and let us search the rows from above for a set of linearly independent ones. A row 
that is not linearly dependent on the ones above it is thus included in the basis; the 
others are rejected. When the search is finished, we have selected n rows from 3-fn+\• 
The observation mentioned previously implies that, if row kp + / is included in this 
basis for k > 1, then so is row ik — l)p + / . Hence the row indexes will obey the 
structure 

1. p + 1, 2p + 1 (CT, - l)p + 1 

2, p + 2, 2p + 2 ( < r 2 - ! ) / > + 2 
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for some numbers {cr,} that are known as the observability indexes of the system. 
Since the total number of selected rows is n. we have 

p 

J^Oi = « 
i 

The rows thus correspond to the multiindex o„ as in (4A.24) and the lemma is proved. 
Notice that several other multiindexes may give a spanning set of rows; one does not 
have to look for the first linearly independent rows. Z 
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MODELS FOR TIME-VARYING 
AND NONLINEAR SYSTEMS 

While linear, time-invariant models no doubt form the most common way of de
scribing a dynamical system, it is also quite often useful or necessary to employ other 
descriptions. In this chapter we shall first, in Section 5.1, discuss linear, time-varying 
models. In Section 5.2 we deal with models with nonlinearities in form of static, 
non-linear elements at the input and/or the output. We also describe how to han
dle nonlinearities that can be introduced by suitable nonlinear transformations of 
the raw measured data. In Section 5.3 we describe nonlinear models in state-space 
form. So far the development concerns model structures, where the nonlinearities 
are brought in based on some physical insight. In Section 5.4 we turn to general non
linear models of black-box type, and describe the general features of such models. 
Particular instances of these, like artificial neural networks, wavelet models, etc. are 
then dealt with in Section 5.5, while fuzzy models are discussed in Section 5.6. Finally, 
in Section 5.7 we give a formal account of what we mean by a model in general, thus 
complementing the discussion in Section 4.5 on general linear models. 

5.1 LINEAR T I M E - V A R Y I N G M O D E L S 

Weighting Function 

In Chapter 2 we defined a linear system as one where a linear combination of inputs 
leads to the same linear combination of the corresponding outputs. A general linear 
system can then be described by 

(5.1) 

If we write 
gt(k) = g{t,t - k) 

140 
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we find that 

y(t) = ^ g(t.s)u(s) + (5.2) 

where g(t, s), t = s< s + 1 , . . . , is the response at time / to a unit input pulse at time 
s. The function g(t, s) is also known as the weighting function, since it describes the 
weight that the input at time s has in the output at time / . 

The description (5.1) is quite analogous to the time-invariant model (2.8), ex
cept that the sequence gr{k) carries the time index / . In general, we could introduce 
a time-varying transfer function by 

and repeat most of the discussion in Section 4.2 for time-varying transfer functions. 
In practice, though, it is easier to deal with time variation in state-space forms. 

Time-Varying State-Space Model 

Time variation in state-space models (4.91) is simply obtained by letting the matrices 
be time varying: 

The predictor corresponding to (4.86) then becomes 

x(t + 1,0) = [At(0) - Kt(0)C,(B)]x(t.O) + Bt(0)u(t) + Kl(6)y(t)(5.5) 

y(t\0) = Ct(0)x(t.O) 

Notice that this can be written 

(5.3) 

Jt=l 

x(t + 1,0) = At(6)x(t.9) + B{{9)u{t) + KtW)e(t) 

>•(/) = C,(0)x(t.6) + e(r) 
(5.4) 

k) + £ u ? ? ( * , 0 ) . v ( / -k) (5.6) 

with 

t-i 
CW) II [Aj(0) - Kj(e)Cj(0)]Bt.k(6) 

j=t-k 
(5.7) 

fl [AjiO) - Kj(e)Cjm]Kt-km 
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Similarly, we could start with a time-varying model like (4.84) and (4.85), where the 
matrices A. B, C, R\, R[2. and R2 are functions of t. The corresponding predictor 
will then be given by (4.94) and (4.95). 

Two common problems associated with time-invariant systems in fact lead to 
time-varying descriptions: nonequal sampling intervals and linearization. If the 
system (4.62) and (4.63) is sampled at time instants f = = 1, 2 , . . . . we can still 
apply the sampling formulas (4.66) to (4.68) to go from tk to tk+\, using 7* = t^\~tk. 
If this sampling interval is not constant, (4.67) will be a time-varying system. A related 
case is multirate systems, i.e., when different variables are sampled at different rates. 
Then the Ct{9) matrix in (5.4) will be time varying in order to pick out the states 
that are sampled at instant t. Missing output data can also be seen as non-uniform 
sampling. See Section 14.2. 

Linearization of Nonlinear Systems 

Perhaps the most common use of time-varying linear systems is related to lineariza
tion of a nonlinear system around a certain trajectory. Suppose that a nonlinear 
system is described by 

x(t 4- 1 ) = / ( * ( / ) , w ( 0 ) + r(x(t).u(t))w{t) 
(5.8) 

>•(/) = h{x(t)) + m(x(t),u(t))vU) 

Suppose also that the disturbance terms {w{t)} and {v(t)} are white and small, and 
that the nominal, disturbance-free (w(t) = 0; v(t) = 0) behavior of the system cor
responds to an input sequence u*(t) and corresponding trajectory x*(t). Neglecting 
nonlinear terms, the differences 

Ax(t) = x(t) - x*it) 

Ay(t) = y(t) - h (x*it)) 

Au(t) = u{t) - «*(/) 

are then subject to 

AJC(/ + 1 ) = Fit)Axit) + G(f)Aw(r) + wit) 
(5.9) 

Ay(r) = Hit)Axit) + v(t) 

where 

Fit) = 
dx x"(t).u'U) 

Git) = —fix.u) 
du x*U).u"(t) 

Hit) = —hix) 
ox x*[t) 
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Here we have neglected cross terms with the disturbance term (like Ax • v), in view of 
our assumption of small disturbances. In (5.9), w(t) and v(t) are white disturbances 
with the following covariance properties: 

Riit) = Ew(t)wT(t) = r ( j r * ( r ) . E w { t ) w T ( t ) r T { x * ( t ) , u * ( t ) ) 

R2(t) = Ev(t)vT(t) = m (x*(t). u*(t)) Ev(t)vT(t)mT(**(/). «*(/)) (5.10) 

Rl2(t) = r (**(/), «•(/)) Ew(l)vT(t)mT(x*(t), tf*(/)) 

This model is now a linear, time-varying, approximate description of (5.8) in a vicinity 
of the nominal trajectory. 

5.2 M O D E L S W I T H NONLINEARIT IES 

A nonlinear relationship between the input sequence and the output sequence as in 
(5.8) clearly gives much richer possibilities to describe systems. At the same time, 
the situation is very flexible and it is quite demanding to infer general nonlinear 
structures from finite data records. Even a first order model (5.8) (dim j r= l ) with
out disturbances is specified only up to members in a general infinite-dimensional 
function space (functions / ( • < • ) and /*(•))« while the corresponding linear model 
is characterized in terms of two real numbers. Various possibilities to parameterize 
general mappings from past data to the predictor will be discussed in Section 5.4. It is 
however always wise first to try and utilize physical insight into the character of pos
sible nonlinearities and construct suitable model structures that way. In this section 
we shall deal with what might be called semi-physical modeling, by which we mean 
using simple physical understanding to come up with the essential nonlinearities and 
incorporate those in the models. 

Wiener and Hammerstein Models 

It is a quite common situation that while the dynamics itself can be well described by 
a linear system, there are static nonlinearities at the input and/or at the output. This 
will be the case if the actuators are nonlinear, e.g., due to saturation, or if the sensors 
have nonlinear characteristics. A model with a static nonlinearity at the input is called 
a Hammerstein model, while we talk about a Wiener model if the nonlinearity is at 
the output. See Figure 5.1. The combination will then be a Wiener-Hammerstein 
model. The parameterization of such models is rather straightforward. Consider 
the Hammerstein case. The static nonlinear function / ( • ) can be parameterized 
either in terms of physical parameters, like saturation point and saturation level, or 
in black-box terms like spline-function coefficients. This gives / ( - . / / ) . If the linear 
model is G(q, 0 ) , the predicted output model will be 

y ( / | M ) = G(q.0)f(u{t).r,) (5.11) 

which is not much more complicated than the models of the previous chapter. 
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Figure 5.1 Above: A Harrunerstein model. Below: A Wiener model. 

Linear Regression Models 

In (4.12) we defined a linear regression model structure where the prediction is lineai 
in the parameters: 

yit\0) = <pTit)6 (5.12 

To describe a linear difference equation, the components of the vector cp(t) (i.e.. tru 
regressors). were chosen as lagged input and output values: see (4.11). When usim 
(5.12) it is. however, immaterial how (pit) is formed: what matters is that it is a knowi 
quantity at time f. We can thus let it contain arbitrary transformations of measurec 
data. Let, as usual. y f and u! denote the input and oiitput sequences up to time / 
Then we could write 

Htm = + ^ ( w r . y r " 1 ) = <pT(t)6 (5.13 

with arbitrary functions <pi of past data. The structure (5.13) could be regarded a 
a finite-dimensional parameterization of a general, unknown, nonlinear predictor 
The key is how to choose the functions (p, ( « ' , y ' - 1 ) . There are a few possibilities: 

• Try black box expansions. We could construct the regressors as typical (poly 
nomial) combinations of past inputs and outputs and see if the model is abl< 
to describe the data. This will be contained in the treatment of Section 5.4 an< 
also corresponds to the so-called GMDH-approach (see Ivakhnenko. 196i 
and Farlow, 1984). It normally gives a large number of possible regressors. I 
is somewhat simpler for the Hammerstein model, where we may approximate 
the static nonlinearity by a polynomial expansion: 

f(u) = otiu + a2u2 + . . . + otmu (5.14 
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Each power of u could then pass a different numerator dynamics: 

Mq)y(t) = Bi(q)u(t) + B2(q)u2{t) + ... + Bm{q)um{t) (5.15) 

This clearly is a linear regression model structure. 
• Use physical insight. A few moments reflection, using high school physics, 

often may reveal which are the essential nonlinearities in a system. This will 
suggest which regressors to try in (5.13). See Example 1.5. We call this semi-
physical modeling. It could be as simple as taking the product of voltage and 
current measurements to create a power signal. See Example 5.1 below for 
another simple case. 

Example 5.1 A Solar-Heated House 
Consider the problem of identifying the dynamics of a solar-heated house, described 
in Example 1.1. We need a model of how the storage temperature y{t) is affected by 
pump velocity and solar intensity. A straightforward linear model of the type (4.7) 
would be 

y(t) + axy{t — I) + a2y(t - 2) 

= biu(t - 1) + b2u(t - 2) + c , / ( f - 1) + c2l(t - 2) (5.16) 

With this we have not used any physical insight into the heating process, but in
troduced the black-box model (5.16) in an ad hoc manner. A moment ' s reflection 
reveals that a linear model is not very realistic. Clearly, the effects of solar intensity 
and pump velocity are not additive. When the pump is off. the sun does not at all 
affect the storage temperature. 

Let us go through what happens in the heating system. Introduce x{t) for 
the temperature of the solar panel collector at time t. With some simplifications, 
the physics can be described as follows in discrete time: The heating of the air in 
the collector [ = x(t 4-1) — x(t)] is equal to heat supplied by the sun [ = d2 • /(/)] 
minus loss of heat to the environment [ = d$ • x(t)] minus the heat transported to 
storage [ = do • x(t) • uit)]; that is. 

In the same way, the increase of storage temperature [ = yit + 1) — y (f)] is equal to 
supplied heat [ = d{)xit) • uit)] minus losses to the environment [ = d\\{t)]; that is. 

In equations (5.17) and (5.18) the coefficients dk are unknown constants, whose 
numerical values are to be determined. The temperature x(t) is not. however, mea
sured, so we first eliminate x{t) from (5.17) and (5.18). This gives 

x(t + 1) - x(t) = d2I(t) - d*x(t) - d0xit) • uit) (5.17) 

yit + 1) - yit) = d0x(t)uit) - diy(t) (5.18) 

yit) = (1 - di)yit - l ) + ( l - d5) 
yjt - \)ujt - 1) 

uit - 2) 

+ id3 - 1 ) 0 - di)}V , ' + d0d2uit - I) I it - 2)(5.19) 
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The relationship between the measured quantities y, w, and / and the parameters 
d\ is now more complicated. It can be simplified by reparametrization: 

Ox = (1 " di) <Pi(0 = v(r - 1) 

= (1 " ds) <Pz(t) = 
v(r - (r - l ) 

= (1 " ds) <Pz(t) = 
u{t - 2) 

03 = (d3 -- D d - dO 
y(t - 2)u(t - 1) 

03 = (d3 -- D d - dO 
u(t - 2) 

04 = di)d2 <p4(t) = u(t - l ) / ( r - 2) 

05 = -do <Ps(0 = u(t - l )y ( r - 1) 

06 = Ml -dx) <PbV) = uit - \)\U - 2) 

0T = [0 i 0 2 - . . 0 6 ] <PTV) = [<P\(0 <Piit). 

Then (5.19) can be rewritten as a true linear regression, 

>•(/) = y{t\0) = ip\t)0 (5.21) 

where we have a linear relationship between the new parameters 0 and the con
structed measurements <p{t). (Notice that <p does not depend on 0.) The price for 
this is that the knowledge of algebraic relationships between the 0,, according to 
(5.20), has been lost. The simple structure (5.21) turns out to give a reasonably good 
model, Ljung and Glad (1994a). ~ 

5.3 N O N L I N E A R STATE-SPACE M O D E L S 

A General Model Set 

The most general description of a finite-dimensional system is 

x(t + 1) = f(t.xtt)tu{t)tw(t);B) 
(5.22) 

y(t) = h{t.x(t),u(t),v{t)',0) 
Here w(t) and v(f) are sequences of independent random variables and 0 denotes 
a vector of unknown parameters. The problem to determine a predictor based on 
(5.22) and on formal probabilistic grounds is substantial. In fact, this nonlinear 
prediction problem is known to have no finite-dimensional solution except in some 
isolated special cases. 

Nevertheless, predictors for (5.22) can of course be constructed, either with 
ad hoc approaches or by some approximation of the unrealizable optimal solution. 
For the latter problem, there is abundant literature (see, e.g., Jazwinski, 1970, or 
Anderson and Moore, 1979). In either case the resulting predictor takes the form 

y(t\$) = g(t, Z'-';$) (5.23) 

Here , for easier notation, we introduced 

Z ' = (y' ,w') = ( v ( l ) , M ( l ) . . . y ( r ) , w ( / ) ) 
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to denote the input-output measurements available at time t. This is the form in 
which the model is put to use for identification purposes. We may thus view (5.23) as 
the basic model, and disregard the route that took us from the underlying description 
[like (5.22)] to the form (5.23). This is consistent with the view of models as predictors 
that we took in Chapter 4: the only difference is that (5.23) is a nonlinear function 
of past data, rather than a linear one. Just as in Chapter 4. the model (5.23) can be 
complemented with assumptions about the associated prediction error 

s(t. 9) = y(t) - git. Z ' " 1 : 0) (5.24) 

such as its covariance matrix. Ait: 9) or its P D F fe(x,t:0). 

Nonlinear Simulation Model 

A particularly simple way of deriving a predictor from (5.22) is to disregard the 
process noise wit) and take 

xit + 1 .0 ) = f(t,x(t,0).u(t).0;9) 
(5.25) 

v(f |0) = hit,xit,9).uit),0:9) 

We call such a predictor a simulation model, since v(r 10) is constructed by simulating 
a noise-free model (5.22) using the actual input. Clearly, a simulation model is almost 
as easy to use starting from a continuous-time representation: 

^-x(t.O) = / ( r . x ( f , 0 ) . i * ( / ) , O : 0 ) 
dt (5.26) 

y ( f | 0 ) = fc(f.*(/,0).K(/),O;0) 

Example 5*2 Delignification 

Consider the problem of reducing the lignin content of wood chips in a chemical 
mixture. This is, basically, the process of cellulose cooking for obtaining pulp for 
paper making. 

Introduce the following notation: 

xit): lignin concentration at t ime t 

u\it): absolute temperature at time / 

( 0 - concentration of hydrogen sulfite. [HSO^] 

u$it): concentration of hydrogen, [ H + ] 

Then basic chemical laws tell us that 

^-xit) = -k,e-F^{t)[xit))m • [u2it)]a • [u,it)f • (5.27) 
at 

Here Ei is the Arrhenius constant and k\, m, or. and ft are other constants associated 
with the reaction. Simulating (5.27) with the measured values of {w,(f), 1 = 1, 2.3} 
for given values of 9T = [E^. k].m. a, ft] gives a sequence of corresponding lignin 



148 Chap. 5 Models for Time-varying and Nonlinear Systems 

concentrations {*( / ,#)} . In this case the system output is also the lignin concen
tration, so yit\9) = x(t.O). These predicted, or simulated, values can then be 
compared with the actually measured values so that the errors associated with a 
particular value of 9 can be evaluated. Such an application is described in detail in 
Hagberg and Schoon (1974). 

5.4 N O N L I N E A R BLACK-BOX M O D E L S : BASIC PRINCIPLES 

As we have seen before, a model is a mapping from past data to the space of the 
output. In the nonlinear case, this mapping has the general structure (5.23): 

y(t\0) = giZ'-KS) (5.28; 

We here omit the explicit time dependence. If we have no particular insight into the 
system's properties, we should seek parameterizations of g that are flexible and cover 
''all kinds of reasonable system behavior." This would give us a nonlinear black-box 
model structure—a nonlinear counterpart of the linear black models discussed in 
Section 4.2. How to achieve such parameterizations is the topic of the present and 
following sections. 

A Structure for the General Mapping: Regressors 

Now. the model structure family (5.28) is really too general, and it is useful to write 
g as a concatenation of two mappings: one that takes the increasing number of 
past observations Z' and maps them into a finite dimensional vector (pit) of fixed 
dimension, and one that takes this vector to the space of the outputs 

g(Z'-\9) = gi<p{t),9) i (5.29) 

where 

(p(t) = <piZ'-1) (5.30) 

We shall as before call this vector <p the regression vector and its components will 
be referred to as regressors. We may allow also the more general case that the 
formation of the regressors is itself parameterized 

(pit) = (p(Z'-\$) (5.31) 

which we for short write (pit. 9), see. e.g.. (4.40). For simplicity, the extra argument 
9 will however be used explicitly only when essential for the discussion. 

The choice of the nonlinear mapping in (5.28) has thus been decomposed into 
two partial problems for dynamical systems: 

1. How to choose the regression vector (pit) from past inputs and outputs. 

2. How to choose the nonlinear mapping g((p,9) from the regressor space to the 
output space. 
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The choice of regressors is of course application dependent . Typically the regressors 
are chosen in the same way as for linear models: past measurements and possibly 
past model outputs and past prediction errors, as in (4.11). (4.20). and (4.40). We 
would then, analogously to Table 4.1 talk about NARX, N A R M A X . N O E model 
structures, etc. For the nonlinear black-box case, it is most common to use only 
measured (not estimated) quantities in the regressors, i.e., NFIR and N A R X . 

Basic Features of Function Expansions and Basis Functions 

Now let us turn to the nonlinear mapping g(<p.O) which for any given 0 maps Rd 

to Rp. In the sequel, for simplicity we shall take p = 1. i.e. we deal only with 
scalar outputs. At this point it does not matter how the regression vector <p = 
[ (pi ... <pd ] 7 is constructed. It is just a vector that lives in Rd. 

It is natural to think of the parameterized function family as function expan
sions: 

n 

g(<p,0) = 0 = [a,. . . . a„]T (5.32) 
A = l 

We refer to gk as basis functions, since the role they play in (5.32) is similar to that 
of a functional space basis. We are going to show that the expansion (5.32). with 
different basis functions, plays the role of a unified framework for investigating most 
known nonlinear black-box model structures. 

Now, the key question is: How to choose the basis functions gk ? An immediate 
choice might be to try Taylor expansion 

gki<P) = <Pk (5.33) 

where for d > 1 we would have to interpret <pk as the variables that cover all products 
of the components <pj with summed exponents being k. Such expansions are called 
Volterra expansions in the modeling application, and have long been tried. 

The expansions that have attracted most of the recent interest are however of 
a different kind, and the following facts are essential to understand the connections 
between most known nonlinear black-box model structures: 

• All the gk are formed from one "mother basis function" that we generically 
denote by K(X). 

• This function tc(x) is a function of a scalar variable x. 

• Typically gk are dilated (scaled) and translated versions of K . For the scalar 
case d = 1 we may write 

gk(<P) = gk(<P>Pk. Yk) = K(Pk(<P ~ Yk)) (5.34) 

We thus use # t to denote the dilation parameters and yk to denote translation 
parameters. 

A scalar example: Fourier series. Take K(X) = cos(x) . Then (5.32). (5.34) will be 
the Fourier series expansion, with /?* as the frequencies and yk as the phases. 
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Another scalar example: Piece-wise constant functions. Take K as the unit interval 
indicator function 

for 0 < x < 1 , . . . 
0 else _ 

and take, for example, yt = JfcA. /fe = 1/A and or* = f(kA). Then (5.32). (5.34) 
gives a piece-wise constant approximation of any function / over intervals of length 
A. Clearly we would have obtained a quite similar result by a smooth version of the 
indicator function, e.g., the Gaussian bell: 

*•(*) = -j=e-*Z/2 (5.36) 
V2^r 

A variant of the piece-wise constant case. Take K to be the unit step function 

0 f o r * < 0 
K(X) = (5.3" 

1 f o r * > 0 v 

We then just have a variant of (5.35), since the indicator function can be obtained as 
the difference of two steps. A smooth version of the step, like the sigmoid function 

K(X) = a(x) = 1 (5.38) 
1 + € ~ x 

will of course give quite similar results. 

Classification of Single-Variable Basis Functions 
Two classes of single-variable basis functions can be distinguished depending on their 
na tu re : 

• Local Basis Functions are functions, where the significant variation takes place 
in local environment. 

• Global Basis Functions are functions that have significant variation over the 
whole real axis. 

Clearly the Fourier series and the Volterra expansions are examples of a global basis 
function, while (5.35)-(5.38) are all local functions. 

Construction of Multi-Variable Basis Functions 
In the multi-dimensional case (d > 1), is a function of several variables. In 
most nonlinear black-box models, it is constructed from the single-variable function 
K in some simple manner. There are three common methods for constructing multi-
variable basis functions from single-variable basis functions. 

1. Tensor product. The tensor product is obtained by taking the product of the 
single-variable function, applied to each component of <p. This means that the 
basis functions are constructed from the scalar function K as 

d 

gk(<p) = gk(<P*Pk< Yk) = Y\K(fiJ

k(<pj - / / ) ) (5.39) 
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2. Radial construction. The idea is to let the value of the function depend only 
on <p's distance from a given center point 

gk(<p) = gk(<p.Pk, Yk) = x(\\(p ~ ttlU) (5.40) 

where || • denotes any chosen norm on the space of the regression vector 
(p. The norm could typically be a quadratic norm 

\\<P\\lk = <fTPk<P (5.41) 

with fa as a positive definite matrix of dilation (scale) parameters. In simple 
cases pk may be just scaled versions of the identity matrix. 

3. Ridge construction. The idea is to let the function value depend only on ^ ' s 
distance from a given hyperplane: 

gk(<p) = gk(<P-Pk* Yk) = Kifilv + Yk), <P € RJ (5.42) 

The ridge function is thus constant for all <p in the hyperplane {<p € Rd : 
pj(p = constant}. As a consequence, even if the mother basis function K 
has local support, the basis functions gk will have unbounded support in this 
subspace. 

Approximation Issues 

For any of the described choices the resulting model becomes 
n 

g(9.0) = - Yk)) (5-43) 
k=\ 

with the different interpretations of the argument Pk(<p — Yk) just discussed. The 
expansion is entirely determined by: 

• The scalar valued function K(X) of a scalar variable x. 

• The way the basis functions are expanded to depend on a vector <p. 

The parameterization in terms of 9 can be characterized by three types of parameters: 

• The coordinates a 
• The scale or dilation parameters p 
• The location parameters y 

These three parameter types affect the model in quite different ways. The coordinates 
enter linearly, which means that (5.43) is a linear regression for fixed scale and location 
parameters. 

A key issue is how well the function expansion is capable of approximating any 
possible "true system"' go{<p). There is rather extensive literature on this subject. 
For an identification oriented survey, see. e.g., Juditsky et.al. (1995). 

The bottom line is easy: For almost any choice of K{X)—except being a poly
nomial—the expansion (5.43) can approximate any "reasonable" function go(<f) ar
bitrarily well for sufficiently large n. 
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It is not difficult to understand this. It is sufficient to check that the delta 
function—or the indicator function for arbitrarily small areas— can be arbitrarily 
well approximated within the expansion. Then clearly all reasonable functions can 
also be approximated. For a local K with radial construction this is immediate: It 
is itself a delta function approximator. For the ridge construction this is somewhat 
more tricky and has been proved by Cybenko (1989). Intuitively we may think of a 
fixed Yk = Y a r >d "many" hyperplanes fa that all intersect at y and are such that 
K is nonzero only "close" to the hyperplane (norm of B is large). Then most of the 
support of the resulting function will be at y. 

The question of how efficient the expansion is. i.e.. how large n is required 
to achieve a certain degree of approximation, is more difficult, and has no general 
answer. See, e.g. Barron (1993). We may point to the following aspects: 

i. If the scale and location parameters B and y are allowed to depend on the 
function go to be approximated, then the number of terms n required for a 
certain degree of approximation is much less than if fa. yk, k = 1. . . . is an a 
priori fixed sequence. To realize this, consider the following simple example: 

Example 53 Constant Functions 

Suppose we use piece-wise constant functions to approximate any scalar valued func
tion of a scalar variable <p: 

where K is the unit indicator function (5.35). Let us Suppose that the require
ment is [sup^. \go(<p) — 8^(^)1 S ^] and we know a bound on the derivative of 
go:sup\g'Q((p)\ < C. For (5.45) to be able to deliver such a good approximation for 
any such function go we need to take yk = kA, fa = 1/A with A < 2 e / C , i.e., we 
need n > CB/(2(). That is, we need a fine grid A that is prepared for the worst 
case \g'Q(<p)\ ~ C at any point. 

If the actual function to be approximated turns out to be much smoother, and 
has a large derivative only in a small interval, we can adapt the choice of fa = 1 / A* 
so that A* ^ 2€/\g'0((p*)\ for the interval around yk = kAk ~ <p* which may give 
the desired degree of approximation with much fewer terms in the expansion. C 

ii. For the local, radial approach the number of terms required to achieve a certain 
degree of approximation 5 of a s t imes d i f fe ren t ia te function is proportional 

go(<p). 0 < <p < B (5.44) 

(5.45) 

to 
1 

n ~~ 8 « 1 (5.46) 

See Problem 5G.2. It thus increases exponentially with the number of regres-
sors. This is often referred to as the curse of dimensionality. 
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Network Questions for Nonlinear Black-Box Structures (*) 

So far we have viewed the model structures as basis function expansions, where 
the basis functions may contain adjustable parameters. Such structures are often 
referred to as networks, primarily since typically one ' m o t h e r basic function" K is 
repeated a large number of times in the expansion. Graphical illustrations of the 
structure therefore look like networks. 

Multi-Layer Networks. The network aspect of the function expansion is even more 
pronounced if the basic mappings are convolved with each other in the following 
manner: Let the outputs of the basis functions be denoted by 

and collect them into a vector: 

„*<») = [«,?>(,) „«><,)]. 

Now. instead of taking a linear combination of these <pf (t) as the output of the 
model (as in (5.32)), we could treat them as new regressors and insert them into 
another "layer" of basis functions forming a second expansion 

t2> 
Yi > (5.47) 

where 6 denotes the whole collection of involved parameters: # t , yu. aj2), 0j2). yf2). 
Within neural network terminology. (5.47) is called a two-hidden layer network. 
The basis functions K{<p(t), Yk) then constitute the first hidden layer, while 
tc(<p{2). (5^, YjU}) give the second one. The layers are '"hidden" because they do not 
show up explicitly in the output g(tp,6) in (5.47), but they are of course available to 
the user. See Figure 5.2 for an illustration. Clearly we can repeat the procedure an 
arbitrary number of times to produce multi-layer networks. This term is primarily 
used for sigmoid neural networks, but applies as such to anv basis function expansion 
(5.32). 

Input laver Hidden layers Output layer 

Figure 5.2 Feedforward network with two hidden layers. 
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The question of how many layers to use however is not easy. In principle, with 
many basis functions, one hidden layer is sufficient for modeling most practically 
reasonable systems. Sontag (1993)contains many useful and interesting insights into 
the importance of second hidden layers in the nonlinear structure. 

Recurrent Networks. Another very important concept for applications to dynam
ical systems is that of recurrent networks. This refers to the situation that some of 
the regressors used at time t are outputs from the model structure at previous time 
instants: 

<pk{t) = g(<p(t - k).$) 

See the illustration in Figure 5.3. It can also be the case that some component <pj{t) 
of the regressor at time t is obtained as a value from some interior node (not just at 
the output layer) at a previous time instant. Such model dependent regressors make 
the structure considerably more complex, but offer at the same time quite useful 
flexibility. The regression vectors (4.20) and (4.40) are examples where previous 
model outputs and other internal signals are used as regressors. 

Figure 5.3 Example of a recurrent network, q - delays the signal by one time 
sample. 

One might distinguish between input/output based networks and state-space 
based networks, although the difference is less distinct in the nonlinear case. The 
former would be using only past outputs from the network as recurrent regressors. 
while the latter may feed back any interior point in the network to the input layer as a 
recurrent regressor. Experience with state-space based networks is quite favorable, 
e.g., Nerrand et.al. (1993) . 

Estimation Aspects 
An important reason for dealing w ith these nonlinear black-box models in parallel 
with other models is that the estimation theory, the asymptotic properties and the 
basic algorithms are the same as for the other model structures discussed in this book. 
We shall return to special features in algorithms and methods that are particular to 
nonlinear black boxes, but most of the discussion in Chapters 7 and onwards applies 
also to these structures. 

5.5 N O N L I N E A R BLACK-BOX M O D E L S : N E U R A L N E T W O R K S , 
WAVELETS A N D CLASSICAL M O D E L S 

In this section we shall briefly review some popular model structures. They all have 
the general form of function expansions (5.43). and are composed of basis func
tions gk obtained by parameterizing some particular "mother basis function" K as 
described in the previous section. 
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Neural Networks 

Neural networks have become a very popular choice of model structure in recent 
years. The name refers to certain structural similarities with the neural synapse 
system in animals. From our perspective these models correspond to certain choices 
in the general function expansion. 

Sigmoid Neural Networks. The combination of the model expansion (5.32). w ith a 
ridge basis function (5.42) and the sigmoid choice (5.38) for mother function, gives 
the celebrated one hidden layer feedforward sigmoid neural net. 

Wavelet and Radial Basis Networks. The combination of the Gaussian bell type 
mother function (5.36) and the radial construction (5.40) is found in both wavelet 
networks. Zhang and Benveniste (1992). and radial basis neural networks, Poggio 
and Girosi (1990). 

Wavelet decomposition is a typical example for the use of local basis functions. 
Loosely speaking, the "mother basis function" (usually referred to as mother wavelet 
in the wavelet literature, and there denoted by ^ rather than K) is dilated and trans
lated to form a wavelet basis. In this context it is common to let the expansion (5.32) 
be doubly indexed according to scale and location, and use the specific choices (for 
one dimensional case) = 2 y and yk = 2~~Jk. This gives, in our notation, 

Compared to the simple example of a piece-wise constant function approxima
tion in (5.35), we have here multi-resolution capabilities, so that the intervals are 
multiply covered using basis functions of different resolutions (i.e. different scale 
parameters) . With suitably chosen mother wavelet and appropriate translation and 
dilation parameters, the wavelet basis can be made or thonormal . which makes it easy 
to compute the coordinates c^.* in (5.32). 

The multi-variable wavelet functions can be constructed by tensor products of 
scalar wavelet functions, but other constructions are also possible. However, the 
burden in computation and storage of wavelet basis functions rapidly increases with 
the regressor dimension d, so the use of these orthonormal expansions are in practice 
limited to the case of few regressors (d 5 3) . 

"Classical" Nonlinear Black-Box Models 

Kernel Estimators. Another well known example for use of local basis functions 
is Kernel estimators, Nadaraya (1964), Watson (1969). A kernel function K(-) is 
typically a bell-shaped function, and the kernel estimator has the form 

Wavelets 

8j.k(<p) = K{2J<p — k), j \ k positive integers (5.48) 

(5.49) 
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where h is a small positive number, y* are given points in the space of regression 
vector <p. This clearly is a special case of (5.32). (5.34), with one fixed scale parameter 
h = for all the basis functions. This scale parameter is typically tuned to the 
problem, though. A common choice of K in this case is the Epanechnikov kernel: 

K(X) = 
1 — x" for |.r| < 1 

0 f o r k ! > 1 
(5.50i 

Nearest Neighbors or Interpolation. The nearest neighbor approach to identifica
tion has a strong intuitive appeal: When encountered with a new value <p* we look 
into the past data Z v to find that regression vector <p(t) = <pf that is closest to <p\ 
We then associate the regressor <p* with the measurement y(t) corresponding to 
(pit) = (p\ 

This corresponds to using (5.43) with K as the indicator function (5.35). ex
panded to a hypercube by the radial approach (5.40). The location and scale param
eters in (5.40) are chosen such that the cubes K{\\ip — yk | |^.) are tightly laid such that 
exactly each data point <p(k) € Z s falls at the center of one cube (yk = (p(k)). The 
corresponding coordinate ak will be the value of y(k) at this data point. The number 
of terms in the expansion will then equal the number of data points in Z * , The value 
of g(<p*, 6) will now equal at = y(t) for that / for which K(P,(<p* — y,)) = 1, i.e. 
for that (p(t) which is closest to (p*. That gives the nearest neighbor approach. 

B-Splines. B-splines are local basis functions which are piece-wise polynomials. 
The connections of the pieces of polynomials have continuous derivatives up to a 
certain order, depending on the degree of the polynomials, De Boor (1978), Schu-
maker (1981). Splines are very nice functions, since they are computationally very 
simple and can be made as smooth as desired. For these reasons, they have been 
widely used in classic interpolation problems. 

5.6 FUZZY M O D E L S 

For complex systems it may be difficult to set up precise mathematical models. This 
has led to so-called fuzzy models, which are based on verbal and imprecise descrip
tions on the relationships between the measured signals in a system. Zadeh (1975). 
The fuzzy models typically consist of so-called rule bases, but can be cast exactly into 
the framework of model structures of the class (5.32). In this case, the basis functions 
gk are constructed from the fuzzy set membership functions and inference rules of 
combining fuzzy rules and how to "defuzzify" the results. When the fuzzy models 
contain parameters to be adjusted, they are also called neuro-fuzzy models. Jang 
and Sun (1995). In this section, we shall give a simplified description of how this 
works. 

Fuzzy Rule Bases as Models 

Fuzzy Rules. A fuzzy rule base is a collection of statements about some relationship 
between measured variables, like 
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• I f i t i s co ld outdoors and the h e a t e r has low power, then 
the room w i l l be co ld 

• I f i t i s co ld outdoors and the hea te r has h igh power, then the 
room temperature w i l l be normal 

• I f i t i s hot outdoors and the hea te r has h igh power, then 
the room w i l l be hot 

• ... 
We can think of this as a verbal model relating the "regressors," <p\ =outdoor temper
ature and <p2=heater power, to the variable to be explained, y=room temperature. 
The question then is. what does this tell us when we know that the outdoor temper
ature is T C and the heater is set to 100 W? To handle that, we need to: 

1. Quantify what "cold outdoors" means, related to a particular temperature read
ing, and similarly for the heater power. 

2. Decide which rules are applicable, and how to combine their conclusions to 
come up with a statement about the room temperature. 

We shall now discuss each of these questions. 

Fuzzy Sets and Membership Functions. Each of the regressors that is used in the 
rule base is associated with a number of attributes, like for the outdoor temperature, 
"cold," "nice," "hot" . These attributes are seen as sets, to which the temperature can 
belong " to a certain degree." This is the fuzzy nature of the sets. Each at t r ibute— 
each fuzzy set—is associated with a membership function that, for a particular value 
of the variable, describes the "degree of membership" to this set. If the attribute 
for the variable <p is denoted by A. the membership function is usually denoted by 
AM (<P) - and will be a function assuming values between 0 and 1. Typical membership 
functions are built up by piece-wise linear functions like a "soft s tep" 

{ 1 f o r * < - 1 

1 - (x + l ) / 2 for - 1 < x < 1 (5.51) 
0 for 1 < x 

or a triangle 

* 2 W = 11 - | * | for U| < 1 ( 5 - 5 2 » 

Clearly by scale and location parameters, the step and the peak can be placed any
where and be of arbitrarv width: 

HA((P) = Ki(P(<P - y)) (5.53) 
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We shall here only deal with attributes and membership functions, such that the 
degree of memberships to the different attributes associated with a given variable 
always sum up to one. That is, if <p has r attributes A,, /' = 1 r . then the 
membership functions should be subject to 

r 

5^AU-(P) = 1. V<P (5.54) 
i=i 

Such a collection of sets and membership functions is called a strong fuzzy parti
tion. 

For the outdoor temperature , e.g., we could associate the attribute "cold" with 
the membership function pCo\d(<P) = /ti(0.2(<p —10)), that is, any temperature below 
5C is definitely "cold." and any temperature above 15 JC is definitely "not cold," 
while temperatures in between are cold to varying degrees. Similarly, we could have 
Mnice(^) = *2(0.1(<p — 15)) and Mhot(^) — 0.2(<p — 20)). This is illustrated in 
Figure 5.4. It is clearly a strong fuzzy partition. 

5 10 15 20 : 25 
Figure 5.4 Membership functions for COLD (solid line), NICE (dashed line), and 
HOT (dotted line). 

Combining Rules. We can write down a fuzzy rule base, relating a regression vector 
<p to an output variable y\ more formally as 

if (<pi is A i . ] ) . . . and {(pd is A\.d) then (y is B\) 

(5.55) 

if (<p\ is Ap,\)... and (cpd is Apj) then (v is Bp) 

where the fuzzy sets Ajj are doubly indexed: / is the index of the regressor variable 
(measurement) , and j is the index of the rule. We denote the membership functions 
by PAjAV') a n d MfiyCv), respectively. 

We shall assume that the rule base is such that there is a rule that covers each 
possible combination of attributes for the different regressors. See Example 5.4 
below. This means in particular that the number of rules, p. must be equal to the 
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product of the number of attributes associated with each regressor. Such a rule base 
is called complete. This means in particular that 

p d 

£ n ^ / > ' > = I- (5-56) 
j=i 1=1 

(see Problem 5E.3.) The joint membership function for all the conditions of rule 
number j could rather naturally be taken as the product of the individual ones: 

d 

i=i 

This number could be seen as a "measure of the applicability" of rule number j 
for the given value of <p. With this rule we could associate a numerical value of y 
associated with the conclusion Bj of rule j . This number—let it be denoted by aj— 
could be the center of mass of the membership function p. B} or the value for which 
the membership function has its peak. In any case it is natural to associate the value 

p 

v = J^ff / j i^C?) (5.58) 
y'=i 

with the regressors (p. In view of (5.56) and (5.57). this is a weighted mean of the 
"average conclusion" of each of the rules, weighted by the applicability of the rule. 

Example 5.4 A DC-Motor 

Consider an electric motor with input voltage it and output angular velocity v. We 
would like to explain how the angular velocity at time t, i.e. y ( f ) . depends on the 
applied voltage u(t — 1) and the velocity at the previous time sample. That is, 
we are using the regressors <p(t) = [<pi(t). (fcit)} . where y?i(0 = w(f — 1) and 
<P2(t) = y(t — 1). Let us now device a rule base of the kind (5.55). where we 
choose A L 1 and A 2 . \ t o be "low voltage," and A3,] and A 4 j to be "high voltage." 
We choose ^41.2 and A 3 2 to be "slow speed." while A2,z and A 4 ^ are "fast speed." 
The membership function for "low voltage" is taken as p^-. j ( ^ 1 ) = *i (0.5(<p\ — 3) ) . 
with K\ defined by (5.51). The membership function for ' 'high voltage' ' is taken as 
PA. , = 1 — PAV ; = 0.5((f] — 3)) . The membership functions for slow and fast 
speed are chosen analogously, with breaking points 8 and 15 rad/sec. See Figure 5.5. 
The statements B, about the output are chosen to be "slow," "medium," and "fast," 
with membership functions that are triangular shaped like /o in (5.52) with peaks at 
5.10, and 20 rad/sec. We thus obtain a rule base: 

I F <p\(t) I S LOW AND <Pi(t) I S SLOW THEN y(t) I S SLOW. 

I F <pi(t) I S LOW AND (p2(t) I S F A S T THEN y( / ) I S MEDIUM. 

I F <pi(t) I S H I G H AND <f2(0 I S SLOW THEN v( / ) I S M E D I U M 

I F <P\(t) I S H I G H AND <p2(t) I S F A S T THEN y(t) I S F A S T . 
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u(t- Dhigh Ut- I j low 

I 5 

yit- \)slow 

15 

Figure 5.5 Membership functions foT the DC motor. 

Let us see what prediction of yit) the rule base gives, in case <p(t) = [4. \1]T. 
This means that the voltage is "low" with a membership degree of 0.25, while it is 
"high"' with a degree of 0.75. The past velocity <pi(t) — yit — 1) is "fast" to a degree 
of 1 and "slow" to a degree of 0. The four rules in the rule base then are weighted 
together according to (5.58) as 

yit) = 5 • (0.25 • 0) + 10 • (0.25 • 1) + 10 • (0.75 • 0) + 20 • (0.75 • 1) = 17.5 

Back to the General Black-Box Formulation 
Now, if some or all of the rules in the rule base need "tuning."" we may introduce 
parameters to be tuned. The parameters could, e.g.. be some or all of the (defuzzi-
fied) "conclusions" otk of the rules. They could also be parameters associated with 
the membership functions f*A (<Pi) for the regressors, typically scale and location 
parameters as in (5.53). 

This means that (5.58) takes the form / 

v = g(<p, 6) = J^akgk((p. fi. y) (5.59) 
A=l 

where the "basis functions'" gk are obtained from the parameterized membership 
functions as 

d 

gk(<P, far) = Y\KJ<pI(<pj - rk
j)) (5.60) 

We are thus back to the basic situation of (5.32) and (5.34), where the expansion into 
the d-dimensional regressor space is obtained bv the tensor product construction 
(5.39). 

Normally, not all of the parameters a*, fa and yk should be freely adjustable. 
For example, the requirement (5.56) imposes certain constraints on the scale and 
location parameters. If the fuzzy partition is fixed and not adjustable, i.e.. p and y 
fixed, then we get a particular case of the kernel estimate (5.49). which is also a linear 
regression model . 
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Thus fuzzy models are just particular instances of the general model struc
ture (5.32). 

One of the major potential advantages is that the fuzzy rule basis may give 
functions gj that reflect (verbal) physical insight about the system. This may be useful 
also to come up with reasonable initial values of the dilation and location parameters 
to be estimated. One should realize, though, that the knowledge encoded in a fuzzy 
rule base may be nullified if many parameters are let loose. For example, in the 
DC-motor rule base, if all the numerical values for the motor speed (5, 10, 10, and 
20) are replaced by free parameters, which are then estimated, our knowledge about 
what causes high speed has not been utilized by the resulting model structure. 

5.7 F O R M A L CHARACTERIZATION OF M O D E L S ( * ) 

In this section we shall give a counterpart of the discussion of Section 4.5 for gen
eral, possibly time-varying, and nonlinear models. We assume that the output is 
/7-dimensional and that the input is m -dimensional. Z f denotes, as before, the input-
output data up to and including time / . 

Models 

A model m of a dynamical system is a sequence of functions gm(t. Z ' " 1 ) , t = 
1,2 from R x R / J ( , _ ' 1 ) x R ' " < / - 1 ) to Rp, representing a way of guessing or 
predicting the output y(r) from past data: 

y(t\t - 1) = gm{t,Z'-1) (5.61) 

A model that defines only the predictor function is called a predictor model. 
When (5.61) is complemented with the conditional (given Z f _ 1 ) probability density 
function (CPDF) of the associated prediction errors 

fe(x. t, Z ' - J ) : C P D F of y(t) - y(t\t - 1), given Z ' _ 1 (5.62) 

we call the model a complete probabilistic model. A typical model assumption is 
that the prediction errors are independent. Then fe does not depend on Z ' _ 1 : 

/<,(*, f) : P D F o f y ( / ) - y(t\t - 1). these errors independent (5.63) 

Sometimes one may prefer not to specify the complete P D F but only its second 
moment (the covariance matrix): 

A m ( f ) : covariance matrix of y(f) — y(/ |r — 1) 
these errors independent (5.64) 

A model (5.61) together with (5.64) could be called a partial probabilistic model. 
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A model can further be classified according to the following properties. 

1. The model m is said to be linear if gm(t. Z ' _ 1 ) is linear in y ' - 1 and u'~]: 

gm(t.Z'-1) = W?(q)y(t) + W'/iqMt) (5.h5) 

2. A model m is said to be time invariant if gm(t. Z'~[) is invariant under a shift 
of absolute time. If Am or fe is specified, it is further required that they be 
independent of t. 

3. A model m is said to be a k-step-ahead predictor if gm(t. Z ' _ 1 ) is a function 
of y'~k. u'~l only. 

4. A model m is said to be a simulation model or an output error model if 
gm(t. Z ' - 1 ) is a function of u'~l only. 

Analogously to the linear case, we could define the stability of the predictor function 
and equality between different models [see (4.116)]. We refrain, however, from 
elaborating on these points here. 

Model Sets and Model Structures 
Sets of models 94* as well as model structures M as differentiable mappings 

M : 0 £ ( / . Z ' _ 1 : 0 ) e M*\0 € DM c Rd (5.66) 

[and A(f; 8) or fe(x. t\ 0) if applicable] from subsets of to model sets can be de
fined analogously to Definition 4.3. Once equality between models has been defined, 
identifiability concepts can be developed as in Section 4.5. 

We shall say that a model structure M is a linear regression if = R^ and 
the predictor function is a linear (or affine) function of 9: 

git. Z ' " 1 : 0) = <pT(t. Z'-x)0 + p(t. Zf-]) (5.67) 

Another View of Models (*) 

The definition of models as predictors is a rather pragmatic way of approaching the 
model concept. A more abstract line of thought can be developed as follows. 

As users, we communicate with the system only through the input-output data 
sequences Z{ = ( y f , u'). Therefore, any assumption about the properties of the 
system will be an assumption about Z f . We could thus say that 

A model of a system is an assumed relationship for Z', t = 1,2 (5.68» 
Often, experiments on a system are not exactly reproducible. For a given inpui 

sequence w A , we may obtain different output sequences y A at different experiments 
due to the presence of various disturbances. In such cases it is natural to regard y' as 
a random variable of which we observe different realizations. A model of the system 
would then be a description of the probabilistic properties of Z' (or. perhaps, of y'. 
given u'). This model m could be formulated in terms of a probability measure P}), 
or the probability density function (PDF) for Z ' : 

fm(t.Z') (5.69) 
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That is, 

Pm{Z' e B) = f Jm(t,x')dxr (5.70) 
Jx'eB 

Sometimes it is preferable to consider the input u' as a given deterministic sequence 
and focus attention on the conditional P D F of y ' , given u': 

7 m C v ' l « ' ) (5-71) 

A model (5.69) or (5.71) would normally be quite awkward to construct and 
work with, and other, indirect ways of forming fm will be preferred. Indeed, the 
stochastic models of Sections 4.2 and 4.3 are implicit descriptions of the probabil
ity density function for the measured signals. The introduction of unmeasurable, 
stochastic disturbances {u ! (r)}. [e(t)}, and so on, is a convenient way of describing 
the probabilistic properties of the observed signal, and also often corresponds to an 
intuitive feeling for how the output is generated. It is, however, worth noting that 
the effect of these unmeasurable disturbances in the model is just to define the P D F 
for the observed signals. 

The assumed P D F fm in (5.69) is in a sense the most general model that can 
be applied for an observed data record / . ul. It includes deterministic models as a 
special case. It also corresponds to a general statistical problem: how to describe the 
properties of an observed data vector. For our current purposes, it is, however, not 
a suitably structured model. The natural direction of time flow in the data record, as 
well as the notions of causality, is not present in (5.69). 

Given fm(t, Z') in (5.69). it is. at least conceptually, possible to compute the 
conditional mean of y(t) given y ' - 1 , ul~l: that is, 

y(t\t - t ) = Em [ y ( / ) l y r " l . « ' _ 1 ] = * « ( / . Z ' " 1 ) (5.72) 

and the distribution of yit) — gm{t, Z ? _ 1 ) , say fe(x. t, Z ' _ 1 ) . From (5.69) we can 
thus compute a model (5.61) along with a C P D F fe in (5.62). Conversely, given 
the predictor function gm(t, Z J _ 1 ) and an assumed P D F fe{x,t) for the associated 
prediction errors, we can calculate the joint PDF for the data y', u{ as in (5.69). This 
follows from the following lemma: 

Lemma 5.1. Suppose that ul is a given, deterministic sequence, and assume that 
the generation of / i s described by the model 

v ( 0 = S m C . Z ' " 1 ) + £ „ ( / ) (5.73) 

where the conditional P D F of em{t) (given y ' _ 1 , u*~l) is fe(x.t). Then the joint 
probability density function for y r , given is 

t 

Jm(t. / = f [ fe(y(k) - gm(k, Z * - 1 ) , *) (5.74) 
A = l 

Here we have, for convenience, denoted the dummy variable Xk for the distribution 
of y{k) by y(k) itself. 
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Proof. The output v(r) is generated by (5.73). Hence the C P D F of v(0- given 
Z ' - 1 , i s 

p ( j c , | Z ' - f ) = fe(x, - gm(t. Z ' " 1 ) , 0 (5.75) 

Using Bayes's rule (1.10), the joint C P D F of y(f) and y(f - 1). given Zf~2 can be 
expressed as 

p ( j . , . * , _ i | Z ' - 2 ) = p(xt\y(t-\) = xt-X.Zt-2)-p{xt-X\Z1-2) 

= fe (X, ~ gm(t. Z ' - 1 ) . / ) • fe (Xt-i ~ gm{t - 1. Z"2), t - 1 ) 

where y(t — 1) in gm(t. Zf~l) should be replaced by xt^\. Here we have assumed 
ul to be a given deterministic sequence. Iterating the preceding expression to t = 1 
gives the joint probability density function of v(r) , y(t — 1 ) , . . . , y ( l ) , given it1, that 
is, the function fm in (5.74). Z 

The important conclusion from this discussion is that the predictor model (5.61). 
complemented with an assumed P D F for the associated prediction errors, is no more 
and no less general than the general, unstructured joint P D F model (5.69). 

Remark. Notice the slight difference, though, in the conditional P D F for the 
prediction errors. The general form (5.69) may in general lead to a conditional 
P D F that in fact depends on Z ' ~ ' ; fe(xt r, Z ' - 1 ) as in (5.62). This means that the 
prediction errors are not necessarily independent, while they do form a martingale 
difference sequence: 

E[em(t)\sm(t - 1) e m ( l ) ] = 0 (5.76) 

In the predictor formulation (5.73), we assumed the C P D F fe(x, t) not to depend 
on Z ' - 1 , which is an implied assumption of independence of em(t) on previous data. 
Clearly, though, we could have relaxed that assumption with obvious modifications 
in (5.74) as a result. : 

5.8 S U M M A R Y 

The development of models for nonlinear systems is much like that of linear sys
tems. The basic difference from a formal point of view is that the predictor becomes 
a nonlinear function of past observations. The important difference from a prac
tical point of view is that the potential richness of possibilities makes unstructured 
black-box-type models much more demanding than in the linear case. It is much 
more important that knowledge about the character of the nonlinearities is built into 
the model structures. This can be done in different ways. An ambitious physical 
modeling attempt may lead to a well structured state-space model with unknown 
physical parameters as in (5.26). More leisurely "semi-physical" modeling may lead 
to valuable insights into how the regressors in (5.13) should be formed. Note that the 
physical insight need not be in analytic form. The nonlinearities could very well be 
defined in look-up tables, and the model parameters could be entries in these tables. 

When physical insight is lacking, it remains to resort to black-box structures, 
as described in Sections 5.4 to 5.6. This contains approaches such as artificial neural 
networks, kernel methods, and fuzzy models. 
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We have also given a short summary, in Section 5.7. of formal aspects of dynam
ical systems. We have stressed that a model in the first place is a predictor function 
from past observations to the future output. The predictor function may possibly be 
complemented with a model assumption of properties of the associated prediction 
errors, such as its variance or its PDF. 
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5.10 PROBLEMS 

5G.1 Consider the following nonlinear structure: 

x(t) f(x(t - 1) x(t - n). u{t - 1) «(/ - n): 6) (5.77a) 

Y U ) X{t) + !'</) (5.77b) 

v(t) H{q.B)e(t) (5.77c) 
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Here (5.77a) describes the nonlinear noise-free dynamics, parametr ized by 6. while 
(5.77b) describes the measurements as the noise-free output , corrupted by the noise 
( f ( r ) } . which is modeled in the general way (2.19). Show that the natural predictor for 
(5.77) is given by 

y(t\$) = [l - H~liq.9)]yit) + H-\q.0)x(t.$) 

where x(t. 9) is defined by 

xit.6) = f(x(t - 1.6) x(t - n,B).u(t - 1) u(t - n):0) 

5G.2 To investigate how the smoothness of a function fix) and the number of arguments, 
dim x, affect how many basis functions are required to approximate it, reason as follows: 
If fix) is p times differentiable with a bounded p t h derivative, we can expand it in 
Taylor series 

fix) = / U o ) + ix- * o ) / ' U u ) + . . . + ( * - XQ)pflp)($). \f,p\ft\ < C 

where the kth derivative f{k) is a tensor with dk elements, and the multiplication with 
ix — Xa) has to be interpreted accordingly. Suppose that we seek an approximation of 
/ over the unit sphere l* | < 1 with an error less than 5. This is to be accomplished 
by local approximations around centerpoints .r, of the radial basis type. Show that 
the necessary number of such center points is given by (5.46), and that the number of 
parameters associated with each centerpoint is ~ dp. 

5E.1 Consider the bilinear model structure described by 

x(t) + axxit - 1) + a2xit - 2) = biiiit - 1) + b2u(t - 2) + c\x{t - \)u(t - n 

y(f) = xit) + Vit) 

where 

B — [ai 0 i &i b2 c\^T 

(a) Assume {vit)} to be white noise and compute the predictor y(f |0) and give an 
expression for it in the pseudolinear regression form 

5(/|6>) = <pTit.9)6 

with a suitable vector (pit. 0). 

(b) Now suppose that {i ' (0} is not white, but can be modeled as an (unknown) first-
order A R M A process. Then suggest a suitable predictor for the system. 

5E.2 Consider the system in Figure 5.1 (upper plot) , where the nonlinearity is saturation with 
an unknown gain: 

6X • B2. if u(t) > B2 

/(«(/)) = 6lU(t), if \u(t)\ < 92 

-9\ • 92. \tuit) < - 0 : 

Suppose that the linear system can be described by a second-order A R X model . Write 
down, explicitly, the predictor for this model , parametr ized in 9\, 92 and the A R X 
parameters . 

file:///tuit
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5 E . 3 Show (5.56) by induction as follows: Suppose first that there is just one regressor, 
associated with k attributes. Then there must be k rules in the rule base, for it to be 
complete, covering all the attributes. Thus (5.56) follows from the assumption (5.54). 
Now suppose that (5.56) holds for d regressors and that there are K rules. Here 
K = k[ • k2 • • kj. with kt as the number of at tr ibutes for regressor j . Now. add 
another regressor <pj+\ with /c^ + 1 attributes, subject to (5.54). For the rule base to 
remain complete, it must now be complemented with K • kj^t new rules, covering the 
combinations of the previous cases with each at tr ibute of the new regressor. Show the 
induction step, that (5.56) holds also when <pd+\ has been added. 

5 X 1 Time-continuous bilinear system descriptions are common in many fields (see Mohler, 
1973). A model can be written 

x(t) = A(9)x(f) + B(0)u(t) + G{6)x(t)u(t) + w(t) (5.78a) 

where x(t) is the state vector. w(t) is white Gaussian noise with variance matrix 
and u(t) is a scalar input. The output of the system is sampled as 

>•(/) = C(G)x(t) + e(t). for / = kT (5.78b) 

where e(t) is white Gaussian measurement noise with variance R2. The input is piece-
wise constant: 

u(t) = uk, kT < t < (k + 1)7 

Derive an expression for the prediction of y {(k + 1)7'), given ur and y(rT) for r < k. 
based on the model (5.78). 

5T.2 Consider the Monod growth model structure 

X\ = T — • Xi - C*i*i 
#2 + Xz 

- 1 01 • x2 

^ = • f t - ^ ^ " X l " f l r | U i - * ) 

v = [x\ x2]T is measured and ori and a2 are known constants. Discuss whether the 
parameters 9\, 92 and 9$ are identifiable. 

Remark: Although we did not give any formal definition of identifiability for 
nonlinear model structures, they are quite analogous to the definitions in Sections 4.5 
and 4.6. Thus, test whether two different parameter values can give the same input-
output behavior of the model. 

[See Holmberg and Ranta (1982). „ti here is the concentration of the biomass 
that is growing, while x2 is the concentrat ion of the growth limiting substrate. 0i is 
the maximum growth rale, 92 is the Michaelis Menten constant, and 9:> is the yield 
coefficient.] 
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6 

NONPARAMETRIC TIME- AND 
FREQUENCY-DOMAIN 

METHODS 

A linear time-invariant model can be described by its transfer functions or by the 
corresponding impulse responses, as we found in Chapter 4. In this chapter we shall 
discuss methods that aim at determining these functions by direct techniques without 
first selecting a confined set of possible models. Such methods are often also called 
nonparametric since they do not (explicitly) employ a finite-dimensional parameter 
vector in the search for a best description. We shall discuss the determination of the 
transfer function G{q) from input to output. Section 6.1 deals with time-domain 
methods for this, and Sections 6.2 to 6.4 describe frequency-domain techniques of 
various degrees of sophistication. The determination of H{q) or the disturbance 
spectrum is discussed in Section 6.5. 

It should be noted that throughout this chapter we assume the system to operate 
in open loop [i.e.. {«(?)} and \ v{t)} are independent] . Closed-loop configurations 
will typically lead to problems for nonparametric methods, as outlined in some of 
the problems. These issues are discussed in more detail in Chapter 13. 

6.1 TRANSIENT-RESPONSE ANALYSIS A N D CORRELATION ANALYSIS 

Impulse-Response Analysis 

If a system that is described by (2.8) 

>•(/) = Gn(q)u(t) + v(t) (6.1) 

is subjected to a pulse input 

« = lo: 
a , / = 0 
0, t # 0 (6.2) 

then the output will be 
yit) = agoit) + vit) (6.3) 

168 
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by definition of G 0 and the impulse response {gn(f)}. If the noise level is low, it is thus 
possible to determine the impulse-response coefficients {go(t)} from an experiment 
with a pulse input. The estimates will be 

. . v ( 0 
git) = (6.4) 

a 
and the errors vit)/a. This simple idea is impulse-response analysis. Its basic weak
ness is that many physical processes do not allow pulse inputs of such an amplitude 
that the error v(t)/a is insignificant compared to the impulse-response coefficients. 
Moreover, such an input could make the system exhibit nonlinear effects that would 
disturb the linearized behavior we have set out to model. 

Step-Response Analysis 

Similarly, a step 

«<" = l a 
applied to (6.1) gives the output 

t > 0 
t < 0 

y ( 0 = aj^go(k) + vit) (6.5) 
A=l 

From this, estimates of goik) could be obtained as 

g(t) = (6.6) 

a 
which has an error [vit) — v(t — l)]/or. If we really aim at determining the impulse-
response coefficients using (6.6), we would suffer from large errors in most practical 
applications. However, if the goal is to determine some basic control-related charac
teristics, such as delay time, static gain, and dominating time constants [i.e., the model 
(4.50)], step responses (6.5) can very well furnish that information to a sufficient de
gree of accuracy. In fact, well-known rules for tuning simple regulators such as the 
Ziegler-Nichols rule (Ziegler and Nichols, 1942) are based on model information 
reached in step responses. 

Based on plots of the step response, some characteristic numbers can be graph
ically constructed, which in turn can be used to determine parameters in a model of 
given order. We refer to Rake (1980)for a discussion of such characteristics. 

Correlation Analysis 

Consider the model description (6.1): 
oc 

y{t) = ^g0ik)uit - k) + W<r) (6.7) 
Jt=i 

If the input is a quasi-stationary sequence [see (2.59)] with 

Eu(t)u(t - T) = RM) 
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and _ 
Eu{t)v(t — r ) = 0 (open-loop operat ion) 

then according to Theorem 2.2 (expressed in the time domain) 

Ey(t)u(t - r) = Ryu(r) = ^go(k)Ru(k - r) (6.8) 

If the input is chosen as white noise so that 

Ru(x) = a8T0 

then 

go(r) = 
a 

An estimate of the impulse response is thus obtained from an estimate of RYUIt): 

for example, 
A' 1 

Kir) = £ > • ( ' ) « ( / - r ) (6.9) 

If the input is not white noise, we may estimate 

1=T 

and solve 
At 

Rlu(r) = ^J^uitMt - T ) (6.10) 

for g(/r). If the input is open for manipulation, it is of bourse desirable to choose 
it so that (6.10) and (6.11) become easy to solve. Equipment for generating such 
signals and solving for g(k) is commercially available. See Godfrey (1980)for a 
more detailed treatment. 

In fact, the most natural way to estimate g(k) when the input is not "exactly 
white" is to truncate (6.7) at n. and treat it as an n:th order FIR model (4.46) with 
the parametric (least-squares) methods of Chapter 7. Another way is to filter both 
inputs and outputs by a prefilter that makes the input as white as possible ("input 
prewhitening") and then compute the correlation function (6.9) for these filtered 
sequences. 

6.2 FREQUENCY-RESPONSE ANALYSIS 
Sine-wave Testing 
The fundamental physical interpretation of the transfer function G(z) is that the 
complex number G(el'°) bears information about what happens to an input sinusoid 
[see (2.32) to (2.34)]. We thus have for (6.1) that with 

u(t) = orcosatf, t — 0 , 1 . 2 , (6.12) 
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then 
v(r) = a\G()(ela))\cosicot + <p) + v(t) + transient (6 .13) 

where 
<p = argG 0 <e- ' w ) (6.14) 

This property also gives a clue to a simple way of determining Go(etw): 

With the input (6.12). determine the amplitude and the phase shift of the 
resulting output cosine signal, and calculate an estimate G .v (e'w) based on that 
information. Repeat for a number of frequencies in the interesting frequency 
band. 

This is known as frequency analysis and is a simple method for obtaining detailed 
information about a linear system. 

Frequency Analysis by the Correlation Method 

With the noise component v(t) present in (6.13). it may be cumbersome to determine 
\Go(e,(1})\ and <p accurately by graphical methods. Since the interesting component 
of y ( / ) is a cosine function of known frequency, it is possible to correlate it out from 
the noise in the following way. Form the sums 

1 
N .V 

(6.15) 

Inserting (6.13) into (6.15). ignoring the transient term, gives 

IC(N) = —Y^a\G()(eico)\cos(coT + (p)coscot 
r = l 

H > V(t) COS cot 

s 
(6.16) 

t=i 

+ T7 
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The second term tends to zero as N tends to infinity, and so does the third term if i(t) 
does not contain a pure periodic component of frequency a>. If {v(t)} is a stationary 
stochastic process such that 

£ r | / ? i : ( r ) | < oo 

then the variance of the third term of (6.16) decays like l/N (Problem 6T.2). Simi
larly. 

= - ^ | G 0 ( O | s i n * > + a | G 0 ( O | ~ y ; s i n ( 2 a > f + ip) 
2 2 N 

+ jj2_,v(t)sm<ot (6.17) 
/=i 

These two expressions suggest the following estimates of \Go(ellv)\ and <p: 

i 6 n ( o , _ M^nm (,18a) 

<pN = a r g G l V ( « , < B ) = - a r c t a n - ^ (6.18b) 

Rake (1980)gives a more detailed account of this method. By repeating the pro
cedure for a number of frequencies, a good picture of Go(eia)) over the frequency 
domain of interest can be obtained. Equipment that performs such frequency anal
ysis by the correlation method is commercially available. 

A n advantage with this method is that a Bode plot of the system can be obtained 
easily and that one may concentrate the effort to the interesting frequency ranges. 
The main disadvantage is that many industrial processes do not admit sinusodial 
inputs in normal operation. The experiment must also be repeated for a number of 
frequencies which may lead to long experimentation periods. 

Relationship to Fourier Analysis 

Comparing (6.15) to the definition (2.37). 

1 ' 
(6.19) 

shows that 

IC(N) - US(N) = -$=Yx(<o) (6.20) 
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C v ( 0 = (6,23) 

Here co is precisely the frequency of the input signal. Comparing with (2.53), we also 
find (6.23) a most reasonable estimate (especially since R^(co) in (2.53) is zero for 
periodic inputs, according to the corollary of Theorem 2.1). 

6.3 FOURIER ANALYSIS 

Empirical Transfer-function Estimate 

We found the expression (6.23) to correspond to frequency analysis with a single 
sinusoid of frequency co as input. In a linear system, different frequencies pass 
through the system independently of each other. It is therefore quite natural to 
extend the frequency analysis estimate (6.23) also to the case of multifrequency 
inputs. That is, we introduce the following estimate of the transfer function: 

GNV) = (6.24) 
Us (co) 

with and U\ defined by (6.19), also for the case where the input is not a single 
sinusoid. This estimate is also quite natural in view of Theorem 2.1. 

We shall call G^ie"") the empirical transfer-function estimate (ETFE) , for rea
sons that we shall discuss shortly. In (6.24) we assume of course that U:\(co) ^ 0. If 
this does not hold for some frequencies, we simply regard the E T F E as undefined at 
those frequencies. We call this estimate empirical, since no other assumptions have 
been imposed than linearity of the system. In the case of multifrequency inputs, the 

As in (2.46) we find that, for (6.12), 

s/Not. litr 
U\(a>) = — - — , if co = —j^- for some integer r (6.21) 

It is straightforward to rearrange (6.18) as 

6 „ < o _ ( , 2 2 ) 

Na/2 

which, using (6.21). means that 
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E T F E consists of N/2 essential points. [Recall that estimates at frequencies interme
diate to the grid co = 27rk/NA = 0,\ N — 1, are obtained by trigonometrical 
interpolation in (2.37)]. Also, since y and « are real, we have 

G,v(£ ) = (JN\€ ) (6.2:>) 

[compare (2.40) and (2.41)]. 
The original data sequence consisting of 2N numbers y( f ) , u(t). t = 

1.2 N, has thus been condensed into the N numbers 

Re6N(J*ik/N), lmdN(e2nik/N). k = 0 . 1 , . . . , y - 1 

This is quite a modest data reduction, revealing that most of the information con
tained in the original data y, u still is quite "raw." 

In addition to an extension of frequency analysis, the E T F E can be interpreted 
as a way of (approximately) solving the set of convolution equations 

N 

y(t) = ~ *). t = 1. 2 , . . . , N (6.26) 

for go(k). k = 1 , 2 , . . . , Ny using Fourier techniques. 

Properties of the ETFE 

Assume that the system is subject to (6.1). Introducing 

1 V 

vN(o>) = — y v o ^ (6-2 7) 
for the disturbance term, we find from Theorem 2.1 that 

UN((o) Us (CO) 

where the term RN(CO) is subject to (2.54) and decays as 

Let us now investigate the influence of the term VN (w) on G\ (e,aj). Since vit \ 
is assumed to have zero mean value, 

EVN(OJ) = 0 , Vo) 

so that 

EGN{el<a) = G 0 ( O + (6.29) 

Here expectation is with respect to {v(/)}, assuming {u(t)} to be a given sequence 
of numbers. 
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Let the covariance function Rv(r) and the spectrum <t>v(co) of the process 
[v(t)} be defined by (2.14) and (2.63). Then evaluate 

EVN(<O)VS(-S) = -J2J2Evir)e~ia,rv(s)e+i*s 

r=l s=l 

r=\ 5=1 

r=r-JV 

Now 

r-1 r - i V - 1 

T=r-N 

and 

1 * 

N ^ 

Consider 

1. i f f = co 
kin 

0. if (^ - co) = — , k = ± 1 , ± 2 , . . . , ± ( N - 1) 
AT 

r = l T = - c c 

iV # • -A * - l 

r=l r = - o c 

< [change order of summation] 

< £ £ |T| • | * , ( r ) | < ^ 

provided 

Similarly, 

E ^ • Rv(r)\ < oo (6.30) 

T = l 
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Combining these expressions, we find that 

f <D„(<w) + MN). i f f = co 

= | p 2 ( ^ ) . if 1$ -co\ = k = 1.2.... A/ - 1 { 6"3 1 ) 

with | />2 (^ ) l 5 2C/N. These calculations can be summarized as the following 
result. 

Lemma 6 .1 . Consider a strictly stable system 

y(f) = G(,(<7)w(f) + (6.32) 

with a disturbance (t ' ( /)} being a stationary stochastic process with spectrum <t\ U^) 
and covariance function /? , . ( r) , subject to (6.30). Let {»(/)} be independent of {v{t)} 

assume that \u(t)\ < C for all r. Then with Gy{euo) defined by (6.24), we have 

EGN(e"°) = G 0 ( O + 7 ^ - 7 (6.33a) 

where 

|A( iV) | < (6.33b) 

and 

£[fS.v(̂ ) - G0{eia,))[ds(e^) - GQ(e-i(0)] 

l 
i Z 7 ^ [ < M a > ) + MN)}. if* = *> , (6.34a) 

., M . i f i i - ^ = ^ . * = i , 2 N - i 

where 

\Pi(N)\ < ^ (6.34b) 

Here Us is defined by (2.37), and we restrict ourselves to frequencies for which G v 
is defined. According to Theorem 2.1 and (6.30), the constants can be taken as 

= ^ 2 J £ L * * o ( * ) L ^ C, = 2 > \kg0(k)\ • m a x | u ( 0 | (6 .35ai 

A = - D C 

If {u(t)\ is periodic, then according to the Corollary of Theorem 2.1 p\(N) = 0 at 
co — 2nk/N, so we can take C\ = 0. 
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Remark. Note that the input is regarded as a given sequence. Probabilistic 
quantities, such as "bias," and "variance" refer to the probability space of \v{t)\. 
This does not, of course, exclude that the input may be generated as a realization of 
a stochastic process independent of {v(t)}. 

The properties of the E T F E are closely related to those of periodogram esti
mates of spectra. See (2.43) and (2.74). We have the following result. 

Lemma 6.2, Let v(t) be given by 

v(t) = H{q)e(t) 

where {e(t)} is a white-noise sequence with variance A and fourth moment p.2. and 
H is a strictly stable filter. Let Vy(co) be defined by (6.27), and let $>v(to) be the 
spectrum of v(t). Then 

E\VN{a>)\2 = d>,(a>) + K(N) (6.36) 

E{\VN(a>)\2 - O l . ( a>) ) ( |V l V (^ ) | 2 - <*>,(£)) 

' [ « \ M ] 2 + p4(N). if £ = o) co ± 0.7T ( 6 3 ? ) 

where 

Ink 
fi*(N), if\$-o)\ = — , k = 1 , 2 N — 1 

l*(A0l < ^ \MN)\ < jf 

Proof. Equat ion (6.36) is a restatement of (6.31). A simple proof of (6.37) is 
outlined in Problem 6D.2 under somewhat more restrictive conditions. A full proof 
can be given by direct evaluation of (6.37). See, for example. Brillinger (1981). 
Theorem 5.2.4. for that. See Problem 6G.5 for ideas on how the bias term can be 
improved by the use of data tapering. • 

These lemmas, together with the results of Section 2.3, tell us the following: 

Case 1. The input is periodic. When the input is periodic and N is a multiple 
of the period, we know from Example 2.2 that \Ux(cu)\z increases like const • N for 
some co and is zero for others [see (2.49)]. The number of frequencies co = Ink/N 
for which |t/.v(o>)| 2 is nonzero, and hence for which the E T F E is defined, is fixed 
and no more than the period length of the signal. We thus find that 

• The E T F E Gy (e'w) is defined only for a fixed number of frequencies. 

• At these frequencies the E T F E is unbiased and its variance decays like 1//V. 

We note that the results (6.16) on frequency analysis by the correlation method 
are obtained as a special case. 
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Case 2. The input is a realization of a stochastic process. Lemma 6.2 shows 
that the periodogram \U.\(co)\2 is an erratic function of co. which fluctuates around 
<PM(o>) which we assume to be bounded. Lemma 6.1 thus tells us that 

• The E T F E is an asymptotically unbiased estimate of the transfer function at 
increasingly (with /V) many frequencies. 

• The variance of the ETFE does not decrease as N increases, and it is given as 
the noise-to-signal ratio at the frequency in question. 

• The estimates at different frequencies are asymptotically uncorrelated. 

It follows from this discussion that, in the case of a periodic input signal, the 
E T F E will be of increasingly good quality at the frequencies that are present in the 
input. However, when the input is not periodic, the variance does not decay with .V. 
but remains equal to the noise-to-signal ratio at the corresponding frequency. This 
latter property makes the empirical estimate a very crude estimate in most cases in 
practice. 

It is easy to understand the reason why the variance does not decrease with 
N. We determine as many independent estimates as we have data points. In other 
words, we have no feature of data and information compression. This in turn is due 
to the fact that we have only assumed linearity about the true system. Consequently, 
the system's properties at different frequencies may be totally unrelated. From this 
it also follows that the only possibility to increase the information per estimated 
parameter is to assume that the system's behavior at one frequency is related to that 
at another. In the subsequent section, we shall discuss one approach to how this can 
be done. 

6.4 SPECTRAL ANALYSIS 

Spectral analysis for determining transfer functions of linear systems was developed 
from statistical methods for spectral estimation. Good accounts of this method are 
given in Chapter 10 in Jenkins and Watts (1968) and in Chapter 6 in Brillinger (1981). 
and the method is widely discussed in many other textbooks on time series analysis. 
In this section we shall adopt a slightly non-standard approach to the subject by 
deriving the standard techniques as a smoothed version of the ETFE . 

Smoothing the ETFE 

We mentioned at the end of the previous section that the only way to improve on 
the poor variance properties of the E T F E is to assume that the values of the true 
transfer function at different frequencies are related. We shall now introduce the 
rather reasonable prejudice that 

The true transfer function Go(e'w) is a smooth function of co. (6.38) 
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GN(ei(l*>) = ^ (6.41a) 

\UN(27Tk/N)\2 

<*k = ^ 0 . / A n (6.41b) 

For large N we could with good approximation work with the integrals that 
correspond to the (Riemann) sums in (6.41): 

a , ^ - ^ ' * ^ * , ( 6 , 2 ) 
If the transfer function Go is not constant over the interval (6.40) it is reasonable 

to use an additional weighting that pays more attention to frequencies close to coo'-

Here Wy (£) is a function centered around £ = 0 and y is a "shape parameter," 
which we shall discuss shortly. 

If the frequency distance 2n/N is small compared to how quickly Go(e'<0) changes, 
then 

G . v ( ^ T , A " v ) . it integer. 2xk/N « co (6.39) 

are uncorrelated, unbiased estimates of roughly the same constant Go{e,a>). each 
with a variance of 

Q\.(27rfc/AO 

\US!(2iTk/N)\2 

according to Lemma 6.1. Here we neglected terms that tend to zero as N tends to 
infinity. 

If we assume Go(elo>) to be constant over the interval 

2nk\ 2JT^ 2 , . 
——- = COQ — Aoo < co < too + A&) = (6.40) 

then it is well known that the best (in a minimum variance sense) way to estimate 
this constant is to form a weighted average of the "measurements" (6.39) for the 
frequencies (6.40), each measurement weighted according to its inverse variance 
[compare Problem 6E.3. and Lemma II.2, (11.65), in Appendix II: 
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Clearly, (6.42) corresponds to 

Wy ( ^ " l O , |f | > Aco ( 6 4 4 > 

Now, if the noise spectrum <J>i;(o>) is known, the estimate (6.43) can be realized as 
written. If <i>l;(o>) is not known we could argue as follows: Suppose that the noise 
spectrum does not change very much over frequency intervals corresponding to the 
"width"' of the weighting function Wy(%): 

Wy(i; - COo) 

1 1 
d% = "small" (6.45) 

Then a ( f ) in (6.42) can be replaced by a ( f ) = \UN{$)\2/&V(<DO). which means that 
the constant <&v(coo) cancels when (6.43) is formed. Under (6.45) the estimate 

SI, «V« - c o o ) H / , v ( | ) p G , v ( ^ f 
Gxie ) = 7if ; (6.46) 

is thus a good approximation of (6.42) and (6.43). 
We may remark that, if (6.45) does not hold, it might be bet ter to include a 

procedure where Q>v(co) is estimated and use that estimate in (6.43). 

Connection with the Blackman-Tukey Procedure (*) 

Consider the denominator of (6.46). It is a weighted average of the periodogram 
\U\-(%)|2. Using the result (2.74). we find that, as N oo , 

f Wy($ - <oo)\UNQ)\2d$ ^ Wytf -OQWMM (6.47) 
J —TV J—T 

where <t>u(a>) is the spectrum of [u(t)}, as defined by (2.61) to (2.63). If, moreover. 

Wy($)d$ = 1 £ 
and the weighting function WY(l-) is concentrated around f = 0 with a width over 
which <t>u(co) does not change much, then the right side of (6.47) is close to <PU(COQ) . 
We may thus interpret the left side as an estimate of this quantity: 

= J HV<£ - <uo)l*/jv(*)l2d* (6.48) 

Similarly, since 

\UN(^)\2dN(e^) = \UN($)\2^~ = YN(S)UN(S) (6.49) 
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<J>*(0>o) 
G.v (<?'**) = (6.51) 

*Z(a>o) 
(6.51) 

which makes sense, in view of (2.80). The spectral estimates (6.48) and (6.50) are 
the standard estimates, suggested in the literature, for spectra and cross spectra as 
smoothed periodograms. See Blackman and Tukey (1958). Jenkins and Watts (1968). 
or Brillinger(1981). 

An alternative way of expressing these estimates is common. The Fourier 
coefficients for the periodogram |£/,v(<w)|" are 

.v 

*"'(T) = h f l ^ ' M I 2 e ' T < y ^ = ^J^u{t)u(t - r ) (6.52) 

[For this expression to hold exactly, the values u(s) outside the interval 1 < s < N 
have to be interpreted by periodic continuation: i.e., u(s) = u(s — N) if s > N: see 
Problem 6D.1.J 

Similarly, let the Fourier coefficients of the function 2JT W y ( £ ) be 

wy(r) = f* WyWJt'dS (6.53) 

Since the integral (6.48) is a convolution, its Fourier coefficients will be the product 
of (6.52) and (6.53), so a Fourier expansion of (6.48) gives 

= £ Wy(r)k?{r)e-iT» (6.54) 
r = - o c 

The idea is now that the nice, smooth function Wy(£j) is chosen so that its Fourier 
coefficients vanish for | r | > 8y. where typically 8y <§C N. It is consequently sufficient 
to form (6.52) (using the rightmost expression) for | r | < 8y, and then take 

6y 

= H ™y(T)R*'(T)e-iT(0 (6.55) 
T = -Sr 

This is perhaps the most convenient way of forming the spectral estimate. The ex
pressions for <t>^H(a>) are of course analogous. 

we have that the numerator of (6.46) 

is an estimate of the cross spectrum between output and input. The transfer function 
estimate (6.46) is thus the ratio of two spectral estimates: 
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Weighting Function Wy(%): The Frequency Window 

Let us now discuss the weighting function Wy(%). In spectral analysis, it is often 
called the frequency window. [Similarly, wy(z) is called the lag window.] If this 
window is "wide," then many different frequencies will be weighted together in (6.40). 
This should lead to a small variance of G,v(e i W °)- At the same time, a wide window 
will involve frequency estimates farther away from a>o. with expected values that 
may differ considerably from Go(e,a°). This will cause large bias. The width of 
the window will thus control the trade-off between bias and variance. To make this 
trade-off a bit more formal, we shall use the scalar y to describe the width, so a large 
value of y corresponds to a narrow window. 

We shall characterize the window by the following numbers 

r WyQM = 1 . f Wf)<zf = 0, f f W y { ^ = M(y) (6.56a) 

f l * r X ( f ) d | = C 3 ( K ) . jH Wfe)d$ = (6.56b) 

As y increases (and the frequency window gets more narrow), the number M{y) 
decreases, while W(y) increases. 

Some typical windows are given in Table 6.1. [See, also, Table 3.3.1 in Brillinger 
(1981)for a more complete collection of windows.] Notice that the scaling quantity 

T A B L E 6 .1 Some Windows for Spectral Analysis 
27! Wy (tO) ttfy(r), 0 < |r| < K 

Bartlett 

Parzen 

Hamming 

'sin yco/2 V 

y ( sina>/2 ) 

4(2 + cos co) (sin yco/4\4 

sinw/2 / 

\DY(co) + \Dy (co-njy) 

+ \ D Y (co + 7t/y), where 

Dy(co) = 
sin(y + \ ) c o 

sin to/2 

Y 

»(-?)"• 
1 / 7 T T \ 
- I 1 + cos — 
2 V y 

| < | t | < y 
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0.8 

0.4 

5 

1 — 

/ \ 
\ \ 

f \ 

• 

If M 

/ \ 

1 1 1 

- 3 0 
(rad/s) 

Figure 6.1 Some common frequency windows. Solid line: Parzen: dashed line: 
Hamming: dotted line: Bartlett. y = 5. 

y has been chosen so that 8y = y in (6.55). The frequency windows are shown 
graphically in Figure 6.1. For these windows, we have 

2.78 
Bartlett: 

Parzen: 

Hamming: 

M(y) 

M{y) 

M(y) 

r 

12 

V1 

ly1 

W(y) « 0 . 6 7 y 

W(y) *s 0 . 5 4 y 

W(y) ^ 0 .75) / 

(6 .57) 

The expressions are asymptotic for large y but are good approximations for y * 5. 
See also Problem 6T.1 for a further discussion of how to scale windows. 

Asymptotic Properties of the Smoothed Estimate 

The estimate (6.46) has been studied in several t reatments of spectral analysis. Re
sults that are asymptotic in both N and y can be derived as follows (see Appendix 
6A) . Consider the estimate (6.46), and suppose that the true system obeys the as
sumptions of Lemma 6.1. We then have 

Bias 

EGN{el0>) - G 0 ( O = M{y) 

+ 0 ( C 3 ( y ) ) + 0 ( l / ^ ) 

- G ' V " ) + G'Jen^^-
2 o V ' 0 *„(<w)J 

(6.58) 

N-fOO 
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Here O(.v) is ordo .x. See notational conventions at the beginning of the book. 
Prime and double prime denote differentiation with respect to co. one and twice 
respectively. 

Variance 

E\Gs{eia)) - EGs(eio>)\2 = -1 • W(y) • + o(W(y)/N) (6.59) 
N <t>„ (co) 

>'-* x. 
\ — x . y - V — 0 

We repeat that expectation here is with respect to the noise sequence {v(t)} and that 
the input is supposed to be a deterministic quasi-stationary signal. 

Let us use the asymptotic expressions to evaluate the mean-square error (MSE i: 

~ , - - , 1 — 0,,(&)) 
E\GN{el") - G 0 ( O | 2 - M-{y)\R{a>)\- + -W{y)-^-{ (6.60) 

Here 
1 • <$>' (co) 

R(co) = - G o V " ) + G 0 ( O - r * H < 6 - 6 1 : 

Some additional results can also be shown (see Brillinger, 1981, Chapter 6. and 
Problems 6D.3 and 6D.4). 

• The estimates ReGx(ela)) and \mGs(e,a>) are asymptotically uncor rec ted 
and each have a variance equal to half that in (6.59). (6.62) 

• The estimates Gs(et0>) at different frequencies are asymptotically uncorre
c t e d . (6.63) 

• The estimates Re G s< (eia>k)JmG,\(eiu)k). k — 1, 2 , . . . . , Af, at an arbitrary col
lection of frequencies are asymptotically jointly normal distributed with means 
and covariances given by (6.58) to (6.63). (6.64) 

• For a translation to properties of \Gy(e,u))\, arg Gy(e,a)), see Problem 9G.1. 

From (6.60) we see that a desired property of the window is that both M and 
W should be small. We may also calculate the value of the width parameter y that 
minimizes the MSE. Suppose that both y and /V tend to infinity and y/N tends 
to zero, so that the asymptotic expressions are applicable. Suppose also that (6.57) 
holds with M(y) = M/y2 and W{y) = y-W Then (6.60) gives 

{4M2\R(co)\24>u(co)\l/5 

This value can of course not be realized by the user, since the constant contains several 
unknown quantities. We note, however, that in any case it increases like A / 1 / 5 , and it 
should, in principle, be allowed to be frequency dependent . The frequency window 
consequently should get more narrow when more data are available, which is a very 
natural result. 
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The optimal choice of y leads to a mean-square error that decays like 

MSE ~ C • A T 4 ' ' 5 (6.66) 

In practical use the trade-off (6.65) and (6.66) cannot be reached in formal terms. 
Instead, a typical procedure would be to start by taking y = N/20 (see Table 6.1) 
and then compute and plot the corresponding estimates Gy(e,<0) for various values 
of y. As y is increased, more and more details of the estimate will appear. These 
will be due to decreased bias (true resonance peaks appearing more clearly and the 
like), as well as to increased variance (spurious, random peaks). The procedure will 
be stopped when the user feels that the emerging details are predominately spurious. 

Actually, as we noted, (6.65) points to the fact that the optimal window size 
should be frequency dependent . This can easily be implemented in (6.46), but not in 
(6.55), and most procedures do not utilize this feature. 

Example 6.1 A Simulated System 

The system 

y(r) - 1.5y(f - 1) + 0.7y(f - 2) = u(f - 1) + 0.5w(r - 2) + e{t) (6.67) 

where \e(t)} is white noise with variance 1 was simulated with the input as a PRBS 
signal (see Section 13.3) over 1000 samples. Part of the resulting data record is 
shown in Figure 6.2. The corresponding E T F E is shown in Figure 6.3a. An estimate 
Gs(eta>) was formed using (6.46). with Wy(%) being a Parzen window with various 
values of y . Figure 6.3bcd shows the results for y = 10, 50, and 200. Here y = 50 
appears to be a reasonable choice of window size. C 

OUTPUT #1 

100 110 120 130 140 150 160 170 180 190 200 

Figure 6.2 The simulated data from (6.67). 
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1 0 - 2 10" 1 10° 10 1 10" 2 10"1 10° 

Figure 6.3 Amplitude plots of the estimate G\{eu"). a: ETFE. b: y = 10. c: y = 50. d: 
y = 200. Thick lines: true system: thin lines: estimate. 

Another Way of Smoothing the ETFE (*) 

The guiding idea behind the estimate (6.46) is that the ETFEs at neighboring frequen 
cies are asymptotically uncorrelated. and that hence the variance could be reduced b 
averaging over these. The ETFEs obtained over different data sets will also provid 
uncorrelated estimates, and another approach would be to form averages over thest 
Thus, split the data set Z A into M batches, each containing R data (N = R • M 
Then form the ETFE corresponding to the kth batch: 

GR (e k = 1 , 2 . M (6.6* 
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The estimate can then be formed as a direct average 

1 M -

Gs(eib>) = -YGf(eie") (6.69) 

or one that is weighted according to the inverse variances: 

£ > ; " < » ) • ^ V " ) 
C . v ( 0 = — - - (6.70) 

* = i 

with 

PTM = ( 6 - 7 1 ) 
* (it) 

being the periodogram of the kth subbatch. The inverse variance is 

f?^(to)Invito), but the factor Q>v(to) cancels when (6.70) is formed. 
An advantage with the estimate (6.70) is that the fast Fourier transform (FFT) 

can be efficiently used when Z A can be decomposed so that R is a power of 2. 
Compare Problem 6G.4. The method is known as Welch's method. Welch (1967). 

6.5 EST IMATING THE D I S T U R B A N C E S P E C T R U M (* ) 

Estimating Spectra 

So far we have described how to estimate Go in a relationship (6.1): 

y(t) = G0(q)u(t) + v(t) (6.72) 

We shall now turn to the problem of estimating the spectrum of (u(f)}, <$>v(co). Had 
the disturbances v(t) been available for direct measurement , we could have used 
(6.48): 

<t>;v(a>) = ^ Wy($ - a>)\VN($)\2d$ (6.73) 

Here Wy(-) is a frequency window of the kind described earlier. 
It is entirely analogous to the analysis of the previous section to calculate the 

properties of (6.73). We have: 

Bias: 

E&*(a>) - <Mo>) = \M{Y) • <(a>) + 0 (C , (y ) ) + 0(\/VN) (6.74) 
Y~-~K> A'—oc 
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Variance: 

VarqVN(o>) = — — • 0>;.(<w) + o ( l / A O , co ^ 0, ±71 (6.75 

Moreover, estimates at different frequencies are asymptotically uncorrelated. 

The Residual Spectrum 

Now the v(t) in (6.72) are not directly measurable. However, given an estimate G \ 
of the transfer function, we may replace v in the preceding expression by 

= >•(/) - GN(q)u(t) (6.76) 

which gives the estimate 

= j " TV y ( | - a>)\YN($) - GN(e^)UN^)\2d^ (6.77) 

If G,\(e'*) is formed using (6.46) with the same window Wy(-), this expression can 
be rearranged as follows [using (6.48) to (6.51)]: 

j " Wy($ - a>)\YNQ)\2d§ + J* WY($ - co)\UN^)\2\GN(e^)\2d^ 

- 2Re J" Wy(§ - v)GN{J*)UNQ-)Ytfg)d% 

J — ST J — TT 

- 2 R e G l V ( 0 J Wy(l; - a)UN{&lW£)d$ 

= <D;v(o>) + • 4>*(co) - 2 R e - ^ 
< * j » ) 2 4 \ » 

Here the approximate equality follows from replacing the smooth function Gs(e1^) 
over the small interval around ^ ~ co with its value at co. Hence we have 
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Asymptotically, as N —• DC and y —» oc , so that Gsielw) —• Go(^'°0 
according to (6.60), we find that the estimate (6.77) tends to (6.73). The asymptotic 
properties (6.74) and (6.75) will also hold for (6.77) and (6.78). In addition to the 
properties already listed, we may note that the estimates 3>A/ (to) are asymptotically 

uncoirelated with 6.v(*"")• Moreover Q>\f(tok). GN(eio*). k = 1,2 r. are 
asymptotically jointly normal random variables with mean and covariances given by 
(6.58) to (6.64) and (6.74) to (6.75). A detailed account of the asymptotic theory- is 
given in Chapter 6 of Brillinger (1981). 

Coherency Spectrum 

Denote 

" A' / v Kyu(c0) = 

Then 

ifito) = 4>%(<o)[l - (/c*(o>)) 2] (6.80) 

The function Kyu(co) is called the coherency spectrum (between y and u) and can be 
viewed as the (frequency dependent) correlation coefficient between the input and 
output sequences. If this coefficient is 1 at a certain frequency, then there is perfect 
correlation between input and output at that frequency. There is consequently no 
noise interfering at that frequency, which is confirmed by (6.80). 

(6.79) 

6.6 S U M M A R Y 

In this chapter we have shown how simple techniques of transient and frequency 
response can give valuable insight into the properties of linear systems. We have 
introduced the empirical transfer-function estimate (ETFE) 

< W " ) = 777—: (6.8i; 

based on data over the interval 1 < r < TV. Here 

/ = 1 v / = ! 

The E T F E has the property (see Lemma 6.1) that it is asymptotically unbiased, but 
has a variance of dp v(co)j'\U\\(co)\ 2. 

We showed how smoothing the E T F E leads to the spectral analysis estimate 
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A corresponding estimate of the noise spectrum is 

&*'(<») = j Wy(l; - «)|rA.<$) - G A . V f ) t f . v ( £ ) | 2 ^ (6.83) 

The properties of these estimates were summarized in (6.58) to (6.64) and (6.74) to 
(6.75). 

These properties depend on the parameter y. which describes the width of the 
associated frequency window Wy. A narrow such window (large y) gives small bias 
but high variance for the estimate, while the converse is true for wide windows. 

6.7 BIBLIOGRAPHY 

Section 6.1: Wellstead (1981 )gives a general survey of nonparametric methods for 
system identification. A survey of transient response methods is given in Rake ( 1 9 8 0 ) . 

Several ways of determining numerical characteristics from step responses are dis
cussed in Schwarze (1964). Correlation techniques are surveyed in Godfrey (1980). 

Section 6.2: Frequency analysis is a classical identification method that is described 
in many textbooks on control. For detailed treatments, see Rake (1980)which also 
contains several interesting examples. 

Section 6.3: General Fourier techniques are also discussed in Rake (1980). The 

term "empirical transfer function est imate" for G is introduced in this chapter, but 
the estimate as such is well known. 

Sections 6.4 and 6.5: Spectral analysis is a standard subject in textbooks on time 
series. See, for example, Grenander and Rosenblatt (1957)(Chapters 4 to 6), An
derson (1971)(Chapter 9), and Hannan (1970)(Chapter y ) . Among books devoted 
entirely to spectral analysis, we could point to Kay (1988). Marple (1987). and Sto-
ica and Moses (1997). These texts deal primarily with estimation of power (auto-) 
spectra. Among specific t reatments of frequency-domain techniques, including esti
mation of transfer functions, we note Brillinger (1981)for a thorough analytic study 
Jenkins and Watts (1968)for a more leisurely discussion of both statistical properties 
and application aspects, and Bendat and Piersol (1980)for an application-oriented 
approach. Another extensive treatment is Priestley (1981). Overviews of differ
ent frequency-domain techniques are given in Brillinger and Krishnaiah (1983), and 
a control-oriented survey is given by Godfrey (1980). The treatment given here is 
based on Ljung (1985a). The first reference to the idea of smoothing the periodogram 
to obtain a better spectral estimate appears to be Daniel! (1946). A comparative dis
cussion of windows for spectral analysis is given in Gecklini and Yavuz (1978)and 
Papoulis(1973). 

In addition to direct frequency-domain methods for estimating spectra, manv 
efficient methods are based on parametric fit, such as those to be discussed in the 
following chapter. So called maximum entropy methods (MEM) have found wide 
use in signal-processing applications. See Burg (1967)for the first idea and Marple 
(1987)for a comparative survey of different approaches. 
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PROBLEMS 

6G.1 Consider the system 

}(t) = GQ(q)u(t) + v(t) 

controlled by the regulator 

u(t) = -F(q)y(t) + r(t) 

where r{t) is an external reference signal, r and v are independent and their spectra 
are <t>r(w) and <t>t.(co). respectively. The usual spectral analysis estimate of GQ is given 
in (6.51) as well as (6.46). Show that as N and y tend to infinity then G,\(e"v) will 
converge to 

*{€ 4>r(to) + \F(eiu>)\2*v(a>) 

What happens in the two special cases <t>r = Oand F = 0. respectively? Hint: Compare 
Problem 2E.5. 

6G.2 Prefiltering. Prefilter inputs and outputs: 

= Lu(q)u(t), yF(t) = Ly(q)y(t) 

If (6.32) holds, then the filtered variables obey 

yF(t) = G£(q)uF(t) + vF(t) 

G^q) = T^Go(q). vF(t) = Ly{q)v{t) 
Lu{q) 

Apply spectral analysis to uF, \f. thus forming an est imate G £ (*"*). The estimate of 
the original transfer function then is 

Ly(e"*) s 

Determine the asymptotic propert ies of G.\'(e,a>) and discuss how Lu and L v can be 
chosen for smallest MSE (cf. Ljung. 1985a). 

6G.3 In Figure 6.3 the ampli tude of the E T F E appears to be systematically larger than the 
true amplitude, despite the fact that the E T F E is unbiased according to Lemma 6.1. 

However. G being an unbiased est imate of Go does not imply that | G | is an unhiased 
estimate of |Go | . In fact, prove that 

E | 6 , v ( 0 | 2 = \GQ(eilu)\2 + * r

f

( t t ? r 

\Us(io)\A 

asymptotically for large N. under the assumptions of Lemma 6.1. 
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6 G . 4 The Cooley-Tukey spectral estimate for a process | r ( / ) } is defined as 

where | V^ico)]2 is the periodogram estimate of the k\h subbatch of data: 

1 R 

Vx

R

k)(a» = - ^ J 2 v i ( k ~ l ) R + He"**) 

See Cooley and Tukey (1965)or Hannan (1970). Chapter V. The cross-spectral estimate 
is defined analogously. This estimate has the advantage that the FFT (fast Fourier 
transform) can be applied (most efficiently if R is a power of 2). Show that the estimate 
(6.70) is the ratio of two appropriate Cooley-Tukey spectral estimates. 

6G.5 "Tapers" or "faders." The bias term p:AN) in (6.36) can be reduced if tapering is 
introduced: Let vlf'ico) he defined by 

N 

where {/t,}f is a sequence of numbers (a tapering function) such that 

X>; = i 
f = l 

Let 
N 

Show that, under the conditions of Lemma 6.2, 

E\V{J\co)\2 = j * \Hx(co - S) | 2 <J> V (S)^ 

Show that our standard periodogram estimate, which uses h, = \/*J~N', gives 

N l s i n w / 2 

Other tapering coefficients (or "faders" or "convergence factors") may give functions 
| Hx(to)\2 that are more "8 -function like" than in the preceding equation (see. e.g.. Table 
6.1). The tapered periodogram can of course also be used to obtain smoothed spectra. 
They will typically lead to decreased bias and (slightly) increased variance (Brillinger. 
1981. Theorem 5.2.3 and Section 5.8). 

6 E . 1 Determine an estimate for Go(e'w) based on the impulse-response estimates (6.4). 
Show that this estimate coincides with the E T F E (6.24). 
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6 E 2 Consider the system 

y(t) = G0(q)u(t) + v(t) 

This system is controlled by output proport ional feedback 

u(t) = -Ky(t) 

Let the E T F E GN(eim) be computed in the straightforward way (6.24). What will this 
estimate be? Compare with Lemma 6.1. 

6E.3 Let Wk.k — 1 , . . . , M, be independent random variables, all with mean values 1 and 
variances E(wk — l ) 2 = A.*. Consider 

M 

w = ̂ 2akwk 

k=i 

Determine a*, k = 1 , . . . , A/, so that 

(a) Ew = 1. 

(b) E(w — l ) 2 is minimized. 

6T.1 A general approach to treat the relationships between the scaling parameter y and 
the lag and frequency windows wy(r), and Wy (co) [see (6.53)] can be given as follows. 
Choose an even function w(x) such that w(0) = 1 and w(x) = 0, \x\ > 1, with Fourier 
transform 

W(X) = f w(x)e-ixkdx 
J—oc 

Let 

/

OO AX 

W2(X)dX, = / X2W(X)dX 
•X J—x 

Then define the lag window 

tuy(r) = W(T/Y) 

This gives a frequency window 

Y 

Wy(co) = wy(r)e-iT0> 

T=-y 
Show that , for large y. 

(a) Wy(to)*y. W(yco) 

(b) M(y) % M/y2 

(c) W(y) *Wy 
where M(y) and W(y) are defined by (6.56). Moreover , compute and compare WY(co) 
and y • W(y • co) for w(x) = 1 - |* | , |JC| < 1 (the Bartlett window). [Compare (6.57). 
See also Hannan (1970), Section V.4.] 
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6T.2 Let [v(t)} he a stationary stochastic process with zero mean value and covariance 
function RV(T). such that 

DC 

J^\zRv(r)\ < oc 

Let 

Show that 

1 A 

r = l 

£|S.vl J < I 

for some constant C2. 

6D.1 Prove (6.52) with the proper interpretat ion of values outside the interval 1 < t < \ : . 

6D.2 Prove a relaxed version of Lemma 6.2 with \Pk(N)\ < Cj\/~N by a direct application 
of Theorem 2.1 and the propert ies of periodograms of white noise. 

6D.3 Prove (6.63) by using expressions analogous to (6A.3) and (6A.4). 

6D.4 Prove (6.62) by using (6.63) and 

JmG(e10J) = 

2 

G(e"°) - G{e-i(°) 
2i 

APPENDIX 6A: DERIVATION OF THE A S Y M P T O T I C PROPERTIES 
OF THE SPECTRAL ANALYSIS ESTIMATE 

Consider the transfer function estimate (6.46). In this appendix we shall derive the 
asymptotic properties (6.58) and (6.59). In order not to get too technical, some 
elements of the derivation will be kept heuristic. Recall that {w(r)} here is regarded 
as a deterministic quasi-stationary sequence, and, hence, such that (6.47) holds. 

We then have 

EGN{<?°*) = W y i M ~ tt*))|t/jv(*)|2 [ C o ( C < g ) + nWVu"M]dS 
SI, W Y ^ - O>0)\UN(S)\2dl; 

(6A.1 

using first Lemma 6.1 and then (6.47), neglecting the decaying term p\ (AO. 
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Now, expanding in Taylor series (prime denoting differentiation with respect 
to co), 

Goie'h * Go&*») + ( $ - « o ) C i ( ^ ) + 1($ - coQ)2G'0\e'^) 

< I > o ( l ) * Qui**) 4 - ( | - co0)&uicoo) + - < u o ) 2 < ( w o ) 

and noting that, according to (6.56), 

(£ - co«)Wy($ - toQ)d$ = 0 

we find that the numerator of (6A.1) is approximately 

£ 
£ 

and the denominator 

<M«o) + j A / ( y ) [ < ] 

where we neglect effects that are of order C^iy) [an order of magnitude smaller than 
M(y) as y oo; see (6.56)]. Equation (6A.1) thus gives 

EGN{eiu>) * G o ( e ^ ) + M ( y ) [ ^ G j ( ^ ) + G ^ ) ^ ^ - ] 

which is (6.58). 
For the variance expression, we first have from (6.28) and (6.46) that 

GNiel<0°) - EGN(etMa) ** S~n Y * 1 i 9 J (6A.2) 

Let us study the numerator of this expression. We write this, approximately, as a 
Riemann sum [see (6.41); we could have kept it discrete all along]: 

j Wyit; - TOO)UN($)VN(1;)d$ * AN 

A 2TT (Ink \ - (27Tk\ (2nk\ = t t £ M~rH^H^) ( 6 A 3 ) 

k=-(N/2)+\ X / \ / \ / 
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We have, with summation from 1 — N/2 to N/2, 

E A » A » = ^ £ £ w r (JT ~M) W Y [IT ~ **) U N (IT) 

using (6.31) and neglecting the term Pz(N). 
Returning to the integral form, we thus have, using (6.47) 

EANAN * ~ j n
 Wfe - a*)Q\(£)Q\.(£)^ * ^ W(y)*H(a,0)<I>„(a>o) 

using (6.56) and the fact that, for large y, Wy(%) is concentrated around f = 0. 
The denominator of (6A.2) approximately equals 4>K(a>o) for the same reason. 
We thus find that 

V a d N ( e i M ( w w w . y , w 
[<J>«(<y0)]2 

and (6.59) has been established. 

http://www.y,w
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PARAMETER ESTIMATION 
METHODS 

Suppose a set of candidate models has been selected, and it is parametrized as a model 
structure (see Sections 4.5 and 5.7). using a parameter vector 9. The search for the 
best model within the set then becomes a problem of determining or estimating 0. 
There are many different ways of organizing such a search and also different views 
on what one should search for. In the present chapter we shall concentrate on the 
latter aspect: what should be meant by a "good model"? Computational issues (i.e.. 
how to organize the actual search) will be dealt with in Chapters 10 and 11. The 
evaluation of the properties of the models that result under various conditions and 
using different methods is carried out in Chapters 8 and 9. In Chapter 15 we return 
to the estimation methods, and give a more user-oriented summary of recommended 
procedures. 

7.1 G U I D I N G PRINCIPLES BEHIND PARAMETER E S T I M A T I O N M E T H O D S 

Parameter Estimation Methods 
We are now in the situation that we have selected a certain model structure !M. with 
particular models M(0) parametrized using the parameter vector 0 e D A I C R^. 
The set of models thus defined is 

M* = {M($)\0 € DLM) (7.1) 

Recall that each model represents a way of predicting future outputs. The predictor 
could be a linear filter, as discussed in Chapter 4: 

M(0) : y{t\6) = W,(q.0)y(t) + Wu(q.0)u(t) (7.2) 

This could correspond to one-step-ahead prediction for an underlying system de
scription 

y(t) = G{q.$)u(t) + H(q.0)e(t) (7.3) 

in which case 

Wy(q,0) = [1 - H-\q.8)\. Wu{q.0) = H~l (q, $)G(q. 9) (7.4) 

but it could also be arrived at from other considerations. 
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The predictor could also be a nonlinear filter, as discussed in Chapter 5. in 
which case we write it as a general function of past data Z ' - 1 : 

M(B) : KtW) = gd.Z'-'-.O) (7.5) 

The model M(9) may also contain (model) assumptions about the character of 
the associated prediction errors, such as their variances (k(9)) or their probability 
distribution ( ? D ¥ f e ( x . 9 ) ) . 

We are also in the situation that we have collected, or are about to collect, a 
batch of data from the system: 

Z ' v = [ y ( l ) , y (2) , « ( 2 ) , . . . , y(N). u(N)] (7.6) 

The problem we are faced with is to decide upon how to use the information contained 
in Z A to select a proper value r?,v of the parameter vector, and hence a proper 
member M(9^) in the set M*. Formally speaking, we have to determine a mapping 
from the data Z A to the set D$t: 

Z i V 0 l V € DM (7.7) 

Such a mapping is a parameter estimation method. 

Evaluating the Candidate Models 

We are looking for a test by which the different models ' ability to "describe" the 
observed data can be evaluated. We have stressed that the essence of a model is its 
prediction aspect, and we shall also judge its performance in this respect. Thus let 
the prediction error given by a certain model M(9*) be given by 

e(t.e*) = y(t) - y(t\0*) f (7.8) 

When the data set Z i V is known, these errors can be computed for / = 1, 2 A'. 
A "good" model, we say. is one that is good at predicting, that is, one that pro

duces small prediction errors when applied to the observed data. Note that there is 
considerable flexibility in selecting various predictor functions, and this gives a cor
responding freedom in defining '"good" models in terms of prediction performance. 
A guiding principle for parameter estimation thus is: 

Based on Z ' we can compute the prediction error e(t,0) using (7.8). 
At time t = N, select 0,y so that the prediction errors e(t,9s), t — 
1,2,..., N, become as small as possible. (7.9) 

The question is how to qualify what ' 'small" should mean. In this chapter we shall 
describe two such approaches. One is to form a scalar-valued norm or criterion 
function that measures the size of s. This approach is dealt with in Sections 7.2 to 
7.4. Another approach is to demand that e ( / , 9jv) be uncorrelated with a given data 
sequence. This corresponds to requiring that certain "projections" of e(t, 9^) are 
zero and is further discussed in Sections 7.5 and 7.6. 
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M I N I M I Z I N G PREDICTION ERRORS 

The prediction-error sequence in (7.8) can be seen as a vector in R x . The "size" of 
this vector could be measured using any norm in R ; V . quadratic or nonquadratic. This 
leaves a substantial amount of choices. We shall restrict the freedom somewhat by 
only considering the following way of evaluating "how large" the prediction-error 
sequence is: Let the prediction-error sequence be filtered through a stable linear 
filter L(q): 

eF{t,6) = L(q)£(t,9), 1 < t < N (7.10) 

Then use the following norm: 

1 V 

Vs{0.ZN) = -Yt(eF{T.e)) (7.11) 
N 1—' 

where £(•) is a scalar-valued (typically positive) function. 
The function V\(9. Z v ) is. for given Z v , a well-defined scalar-valued function 

of the model parameter 9. It is a natural measure of the validity of the model M{9). 
The estimate 0 \ is then defined by minimization of (7.11): 

h = 9\>(ZN) = a r g m i n V v ( 0 , ZN) (7.12) 
<J€DM 

Here arg min means "the minimizing argument of the function." If the minimum is 
not unique, we let arg min denote the set of minimizing arguments. The mapping 
(7.7) is thus defined implicitly by (7.12). 

This way of estimating 6 contains many well-known and much used procedures. 
We shall use the general term prediction-error identification methods (PEM) for the 
family of approaches that corresponds to (7.12). Particular methods, with specific 
"names" attached to themselves, are obtained as special cases of (7.12), depending 
on the choice of t(-), the choice of prefilter L(- ) , the choice of model structure, and, 
in some cases, the choice of method by which the minimization is realized. We shall 
give particular attention to two especially well known members in the family (7.12) 
in the subsequent two sections. First, however, let us discuss some aspects on the 
choices of L(q) and l(-) in (7.10) and (7.11). See also Section 15.2. 

Choice of L 
The effect of the filter L is to allow extra freedom in dealing with non-momentary 
properties of the prediction errors. Clearly, if the predictor is linear and time invari
ant, and y and u are scalars. then the result of filtering e, is the same as first filtering 
the input-output data and then applying the predictors. 

The effect of L is best understood in a frequency-domain interpretation and a 
full discussion will be postponed to Section 14.4. It is clear, however, that by the use 
of L. effects of high-frequency disturbances, not essential to the modeling problem, 
or slow drift terms and the like, can be removed. It also seems reasonable that certain 
properties of the models may be enhanced or suppressed by a properly selected L. 
L thus acts like frequency weighting. 
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The following particular aspect of the filtering (7.10) should be noted. If a 

model (7.3) is used, the filtered error 8f(t.0) is given by 

eFU.O) = L(q)e(t.O) = [y(0 - G(q.9)u(t)] (7 . 13 ) 

The effect of prefiltering is thus identical to changing the noise model from Hicj.O) 
to _ 

HL(q,9) = L'](q)H(q.O) (~.U) 

When we describe and analyze methods that employ general noise models in 
linear systems, we shall usually confine ourselves to L(q) = 1. since the option of 
prefiltering is taken care of by the freedom in selecting H(q.O). A discussion of the 
use and effects of L(q) in practical terms will be given in Section 14.4. 

Choice of I 
For the choice of £(•), a first candidate would be a quadratic norm: 

C(e) = \e2 (7.15) 

and this is indeed a standard choice, which is convenient both for computation and 
analysis. Questions of robustness against bad data may, however, warrant other 
norms, which we shall discuss in some detail in Section 15.2. One may also conceive 
situations where the "best" norm is not known beforehand so that it is reasonable to 
parametrize the norm itself: 

e(s.O) (7.16) 

Often the parametrization of the norm is independent of the model parametrization: 

9 

An exception to this case is given in Problem 7E.4. 

Time-varying Norms 
Tt may happen that measurements at different time instants are considered to be of 
varying reliability. The reason may be that the degree of noise corruption changes 
or that certain measurements are less representative for the system's properties. In 
such cases we are motivated to let the norm I be time varying: 

1 : V 

VN(0.ZN) = — £ * ( e ( / . 0 ) . 0 . r ) (7.1N) 
f = i 

In this way less reliable measurements can be associated with less weight in the 
criterion. 

We shall frequently work with a criterion where the weighting is made explicitly 
by a weighting function fi(N, t): 

.v 
V ( V ( 0 , Z ' v ) = £ j 8 ( t f , / ) * ( e ( f . 0 ) , 0 ) (7.19) 
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r - l i 

N 2 ^ 

u?(/,(9) = G(q,9)u(t) 

Then the D F T of w(t, 9) is, according to Theorem 2.1, 

WN(co,9) = G(ei(°, 0)UN(co) + RN(co) 

with 
C 

The D F T of s(t, 9) = v( / ) - w(t, 9) then is 

SN(<o,0) = YN(co) - G(eilo,0)UN(co) - RN(a>) 

Finally, 

e(t,9) = H-\q.$)s(t.$) 

has the DFT, again using Theorem 2.1, 

EN{co) = H~l(eia).0)SN(co,9) + RN(to) 

(7.20) 

s(t.9) = H-l(q,9)[y(t) - G(q.0)u(t)] 

Let EN(2xk/N, 9), k = 0 ,1 - 1, be the D F T of e(t. 9), t = 1, 2 N 

1 N 

EN(2nk/N.9) = — Y,£(t,9)e-27TikifN 

Then, by Parseval's relation (2.44), 
1 1 V " 1 

VN(9. ZN) = - - Y, \EN^k/N,9)\2 (7.21) 
Now let 

For fixed N, the iV -dependence of fi(N,t) is of course immaterial. However, when 
estimates 9,\ for different /V are compared, as for example in recursive identification 
(see Chapter 11), it becomes interesting to discuss how /) varies with N. We 
shall return to this issue in Section 11.2. 

Frequency-domain Interpretation of Quadratic Prediction-error 
Criteria for Linear Time-invariant Models 

Let us consider the quadratic criterion error (7.12) and (7.15) for the standard linear 
model (7.3) 

.v 
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with 

Inserting this into (7 .21) gives 

v.v(*.zv> = Iy;i|»(**"*" ,.«)| 
A7 2 

-2 

*=0 

x \YN(2jtk/N) - G{e2nik!",e)UN(27zk/N)[ + RN 

wi th \RS\ < CfyfR. or, using the definition of the E T F E G\ in (6 .24) , 

.v-i 
VN(B 

x QN(27tk/N,0) + tfiV 

0) 

with 

\UN(CO)\2 

\H(e^,$)\ 

(7.22) 

(7.23) 

First notice that, apart from the remainder term the expression (7 .22) coincides 
with the weighted least-squares criterion for a model: 

dN(e2"ik'N) = G(e2nik'N
t9) +fv(k) (7.24) 

Compare with (11.96) and (11.97). According to Lemma 6 .1, the variance of v(k) is. 
asymptotically, <Pv(27ik/N)/ \U \ (2TT k / N ) \ , so the weighting coefficient Q\-{co. 9) 
is the inverse variance, which is optimal for linear regressions, according to (11.65). In 
(7 .23) the unknown noise spectrum $ t , ( a i ) is replaced by the model noise spectrum 
i i"1 

\H(eteDy9)\ . Consequently, the prediction-error methods can be seen as methods of 
fitting the E T F E to the model transfer function with a weighted norm, corresponding 
to the model signal-to-noise ratio at the frequency in question. For notational 
reasons, it is instructive to rewrite the sum (7 .22) approximately as an integral: 

vN(9,zN) * -L r I 6 , v ( 0 - GV»,e) 
2n 2 

Qs(co,9)dco (7 .25) 

The shift of integration interval from (0, 2ir) to (—n, n) is possible since the inte
grand is periodic. 
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Ysito) 

H(euo,9) 
dco (7.26) 

(7.29) 

(7.30) 

With this interpretation we have described the prediction-error estimate as an 
alternative way of smoothing the E T F E . showing a strong conceptual relationship 
to the spectral analysis methods of Section 6.4. See Problem 7G.2 for a direct tie. 

When we specialize to the case of a time series [no input and G{q.9) = 0], the 
criterion (7.25) takes the form 

Such parametric estimators of spectra are known as "Whittle-type estimators." after 
Whittle (1951). 

In Section 7.8 we shall return to frequency domain criteria. There, however, 
we take another viewpoint and assume that the observed data are in the frequency 
domain, being Fourier transforms of the input and output time domain signals. 

Multivariable Systems (*) 

For multioutput systems, the counterpart of the quadratic criterion is 

He) = i ^ A - ' f i (7.27) 

for some symmetric, positive semidefinite p x p matrix A that weights together the 
relative importance of the components of e. 

One might discuss what is the best choice of norm A. We shall do that in some 
detail in Section 15.2. Here we only remark that, just as in (7.16), the parameter 
vector 0 could be extended to include components of A , and the function I will then 
be an appropriate function of 6. 

As a variant of the criterion (7.11), where a scalar t(e) is formed for each t, 
we could first form the p x p matrix 

1 N 

Qs{6. Z l V ) = - Y W 6)eT(t, 0) (7.28) 
N 

and let the criterion be a scalar-valued function of this matrix: 

VN(0.ZN) = h(QN(fi.ZN)) 

The criterion (7.27) is then obtained by 

HQ) = A t r ( f 2 A - ' ) 

7.3 LINEAR REGRESSIONS A N D THE LEAST-SQUARES M E T H O D 

Linear Regressions 

We found in both Sections 4.2 and 5.2 that linear regression model structures are 
very useful in describing basic linear and nonlinear systems. The linear regression 
employs a predictor (5.67) 

>•</10) = <pT(t)0 + pit) (7.31) 
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- i - t 
1 '* 

ILS • x / , a mS' 6tf = a rgmin V N ( 0 . Z A ) = 
.V ~| A7 

V ^ i t ) ' i Y <p(t)y(t) (7.34) A/ / —' N 
L t=i J t=i 

the least-squares estimate (LSE) (see Problem 7D.2). 
Introduce the d x d matrix 

1 N 

and the d-dimensional column vector 
.v 

/ ( A O = ^ X > ( ' X v ( / ) (7-36) 

In the case (7.32), (p(t) contains lagged input and output variables, and the entries 
of the quantities (7.35) and (7.36) will be of the form 

1 N 

[R(N)\U = jjYyi* ~ i ) y ( t ~ 1 - L j - "a 

l 

that is linear in 0. Here <p is the vector of regressors, the regression vector. Recall 
that for the A R X structure (4.7) we have 

<PU) = [ ->'(t - 1) - v(f - 2 ) . . . ->•( / - na) u(t-\)...u(t - nb) ] 7 (7.32) 

In (7.31). pit) is a known data-dependent vector. For notational simplicity we shall 
take ji{t) = 0 in the remainder of this section: it is quite straightforward to include 
it. See Problem 7D.1. 

Linear regression forms a standard topic in statistics. The reader could consult 
Appendix II for a refresher of basic properties. The present section can, however, 
be read independently of Appendix II. 

Least-squares Criterion 

With (7.31) the prediction error becomes 

e</ ,0 ) = v(r) - <pT(t)0 

and the criterion function resulting from (7.10) and (7.11), with L(q) = 1 and 

1 N 

VlW(e, Z N ) = - Y, \ [>'<') " <PTW]2 (7.33) 

This is the least-squares criterion for the linear regression (7.31). The unique feature 
of this criterion, developed from the linear parametrization and the quadratic crite
rion, is that it is a quadratic function in $ . Therefore, it can be minimized analytically, 
which gives, provided the indicated inverse exists. 
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and similar sums of u(t — r) - u(t — s) or u(t — r) • y(t — s) for the other entries of 
R(N). That is, they will consist ofest imatesof the covariance functionsof {>(/)} and 
[u(t)}. The LSE can thus be computed using only such estimates and is therefore 
related to correlation analysis, as described in Section 6.1. 

Properties of the LSE 

The least-squares method is a special case of the prediction-error identification 
method (7.12). An analysis of its properties is therefore contained in the general 
treatment in Chapters 8 and 9. It is, however, useful to include a heuristic investiga
tion of the LSE at this point. 

Suppose that the observed data actually have been generated by 

y(t) = <pT(t)$o + !*(/) (7.37) 

for some sequence [VQU)}. We may think of 9Q as a " t rue value" of the parameter 
vector. 

As in (1.14)-(1.15) we find that 

1 s 

lim 0]f -60 = lim R-\N)-Y<p(t)v0{t) = (R*rlf*. 
t=l 

R* = E<p(t)<pT(t). f* = E<p{t)vo(t) (7.38) 

provided t'o and <p are quasi-stationary, so that Theorem 2.3 can be applied. For the 
LSE to be consistent, that is, for $jf to converge to 9Q, we thus have to require: 

i. R* is non-singular. This will be secured by the input properties, as in (1,17)-
(1.18), and discussed in much more detail in Chapter 13. 

H. / * = 0. This will be the case if either: 

(a) {t'o(0} is a sequence of independent random variables with zero mean 
values (white noise). Then Vo(t) will not depend on what happened up 
to time t — 1 and hence £ ^ ( ; ) i !

( ) ( r ) = 0. 

(b) The input sequence {u{t)} is independent of the zero mean sequence 
{t;o(0) and na = 0 in (7.32). Then <p(t) contains onlv w-terms and hence 
E<p(t)vo{t) = 0. 

When na > 0 so that cp(t) contains y(k), t — na < k < t — 1, and v0(t) is not white 
noise, then (usually) E<p(t)vo(t) ^ 0. This follows since (p(t) contains y(t — 1), 
while >(/ — 1) contains the term vQ(t — 1) that is correlated with t'o(0- Therefore, 
we may expect consistency only in cases (a) and (b). 
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Weighted Least Squares 

Just as in (7.18) and (7.19), the different measurements could be assigned different 
weights in the least-squares criterion: 

VN{8, ZN) = - Y<*< [>•(') " <p\t)B] 
t=i 

or 

VN(9.ZN) = £ j8 (N , / ) [> • (* ) - <pT(t)9]2 

The expression for the resulting estimate is quite analogous to (7.34): 

VN -
L f = i 

(7.39) 

(7.40) 

£ 0 ( A r , r M r ) v ( o (7.41; 

Multivariable Case (*) 

If the output y(0 is a p-vector and the norm (7.27) is used, the LS criterion take; 
the form 

1 A 1 
VN(St ZN) = - ~ [>'(0 - *TW] A " 1 [>'(0 - VT(t)6] (7.42; 

This gives the estimate 

t L S _ 
7N — 

1 N I"1
 1 N 

L r = l 

In case we use the particular parametrization (4.56) with 6 as an r x p matrix, 

y(t\9) = BT<p(t) (7.44 

the LS criterion becomes 

1 N 

vN(*,zN) = - £ | | v ( 0 - e V o | | 2 (7.45 

with the estimate 

9N — 1 £ <?(* )</«) I £ ^P(f)>-r(l) (7.46 
L r=l J r = l 
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(see problem 7D.2). The expression (7.46) brings out the advantages of the structure 
(7.44): To determine the r x p estimate 8,v. it is sufficient to invert a n r x r matrix. 
In (7.43) 0 is a p • r vector and the matrix inversion involves a pr x pr matrix. 

Colored Equation-error Noise (*) 

The LS method has many advantages, the most important one being that the global 
minimum of (7.33) can be found efficiently and unambiguously (no local minima 
other than global ones exist). Its main shortcoming relates to the asymptotic prop
erties quoted previously: If, in a difference equation, 

y(t) + a\y{t - 1) + • • • + a„ay(t - na) 

=: bm(t - 1) + . . • + b„bu(t - nb) + v(t) (7.47) 

the equation error v(t) is not white noise, then the LSE will not converge to the true 
values of <?j and b{. To deal with this problem, we may incorporate further modeling 
of the equation error v(t) as discussed in Section 4.2, let us say 

t/(/) = K(q)e(t) (7.48) 

with e white and K linear filter. Models employing (7.48) will typically take us out 
from the LS environment, except in two cases, which we now discuss. 

Known noise properties: If in (7.47) and (7.48) at and b( are unknown, but AT is a 
known filter (not too realistic a situation), we have 

A(q)y(t) = B(q)u{t) + K{q)e(t) (7.49) 

Filtering (7.49) through the filter fc~^{q) gives 

A(q)yF(t) = B(q)uF (/) + e(t) (7.50) 

where 

yF(t) = K~\q)y(t), uF(t) = K~\q)u(t) (7.51) 

Since e is white, the LS method can be applied to (7.50) without problems. Notice 
that this is equivalent to applying the filter L(q) = K~l(q) in (7.10). 

High-order models: Suppose that the noise v can be well described by ic(q) = 
\/D(q) in (7.48). where D(q) is a polynomial of degree r. [That is, v(t) is supposed 
to be an autoregressive ( A R ) process of order r . ] This gives 

A{q)y(t) = B{q)u(t) + e(t) (7.52) 

or 

A(q)D(q)y(l) = B(q)D(q)u(t) + e(t) (7.53) 
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Applying the LS method to (7.53) with orders n& = na + r and « B = rib + r gives, 
since e is white, consistent estimates of A D and BD. Hence the transfer function 
from w to v. 

B{q)D(g) = 

A(fl)D(?) A($) 

is correctly estimated. This approach was called repeated least squares in Astrom 
and Eykhoff (1971). See also Soderstrom (1975b)and Stoica (1976). 

Estimating State Space Models Using Least Squares Techniques 
(Subspace Methods) 

A linear system can always be represented in state space form as in (4.84): 

x(t + 1) = Ax(t) + Bu(t) + w(t) 

y(t) = Cx(t) + Du(t) + v{t) 
("54) 

with white noises it' and v. Alternatively we could just represent the input-output 
dynamics as in (4.80): 

x(t + 1) = Ax(t) + Bu(t) 

y(f) = C x ( r ) + Z)w(r) + u(f) 
(7.55) 

where the noise at the output , i \ very well could be colored. It should be noted that 
the input-output dynamics could be represented with a lower order model in (7.55) 
than in (7.54) since describing the noise character might require some extra states. 

To estimate such a model, the matrices can be parameterized in ways that 
are described in Section 4.3 or Appendix 4A—either from physical grounds or as 
black boxes in canonical forms. Then these parameters can be estimated using the 
techniques dealt with in Section 7.4. / 

However, there are also other possibilities: We assume that we have no insight 
into the particular structure, and we would just estimate any matrices A, B, C . and D 
that give a good description of the input-output behavior of the system. Since there 
are an infinite number of such matrices that describe the same system (the similarity 
transforms), we will have to fix the coordinate basis of the state-space realization. 

Let us for a moment assume that not only are u and y measured, but also the 
sequence of state vectors x. This would, by the way. fix the state-space realization 
coordinate basis. Now. with known w. y and .r. the model (7.54) becomes a linear 
regression: the unknown parameters, all of the matrix entries in all the matrices, mix 
with measured signals in linear combinations. To see this clearly, let 

Y(0 = 
~x(t + 1) , e = 'A B~ , e = 'A B~ 

y(0 .C D. 

x(t) 

u{t) 

~w(t)~ 
. E(t) = 

_ v(t) _ _ v(t) _ 
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Then, (7.54) can be rewritten as 

Y(t) = 6<i>(/) + £(f) (7.56) 

From this, all the matrix elements in © can be estimated by the simple least squares 
method (which in the case of Gaussian noise and known covariance matrix coincides 
with the maximum likelihood method) , as described above in (7.44)-(7.46). The 
covariance matrix for E(t) can also be estimated easily as the sample sum of the 
squared model residuals. That will give the covariance matrices as well as the cross 
covariance matrix for w and v. These matrices will, among other things, allow us 
to compute the Kalman filter for (7.54). Note that all of the above holds without 
changes for multivariable systems, i.e., when the output and input signals are vectors. 

The problem is how to obtain the state vector sequence x. Some basic realiza
tion theory was reviewed in Appendix 4A. from which the essential results can be 
quoted as follows: 

Let a system be given by the impulse response representation 

>'(') = YihuUMt - j) + he(j)e(t - j)] (7.57) 

where u is the input and e the innovations. Let the formal /r-step ahead predictors 
be defined bv just deleting the contributions to y(/) from e{j), u{j): j = f , 
t-k + h 

y(t\t - *) = - J) + MvMf " j)] (7.58) 

No at tempt is thus made to predict the inputs u(j): j = r, 1 — k + 1 from past 
data. D e f i n e 

Yr(r) = 

v(/|r - 1) 

(7.59a) 

J(t + r - 1 | / - 1 ) . 

Y = [ y r ( l ) . . . Yr(N)] (7.59b) 

Then the following is true as Af —> oo (see Lemmas 4A.1 and 4A.2 and their proofs): 

1. The system (7.57) has an nlh order minimal state space description if and only 
if the rank Y is equal to n for all r > n. 
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2. The state vector of any minimal realization in innovations form can be chosen 
as linear combinations of Yr that form a row basis for Y, i.e., 

x(t) = LYr{t) (7.60) 

where the n x pr matrix L is such that LY spans Y. (p is the dimension of 
the output vector yit).) 

Note that the canonical state space representations described in Appendix 4A cor
respond to L matrices that just pick out certain rows of Y„. In general, we are not 
confined to such choices, but may pick L so that x(t) becomes a well-conditioned 
basis. 

It is clear that the facts above will allow us to find a suitable state vector from 
data. The only remaining problem is to estimate the £-step ahead predictors. The 
true predictor y(t + k — \\t — 1) is given by (7.58). The innovation e(j) can be 
written as a linear combination of past input-output data. The predictor can thus 
be expressed as a linear function of u(i). y ( i ) , i < t — 1. For practical reasons the 
predictor is approximated so that it only depends on a fixed and finite amount of past 
data, like the S\ past outputs and the s2 past inputs. This means that it takes the form 

y(t + k - l | f - 1) = a , .y (r - 1) + . . . + as,y(t - s:) 

+ 0lU{t - 1) + . . . + foMt - s2) (7.61) 

This predictor can then efficiently be determined by another linear least squares 
projection directly on the input output data. That is. set up the model 

y{t + * - 1) = Bl<psit) + yfUdt) + ?( / + * - 1) (7.62) 

or, dealing with all r predictors simultaneously 

Yrit) = &<psit) + rUdt) + Eit) (7.63) 

Here: 

<Ps(0 = [yTit - 1) . . . yTit - si) uTit - 1) . . . uT(t - s2)]F (7.64a» 

Ueit) = [uT(t) ...uTit + 1 - 1)]T (7.64b) 

IV(0 = [.v r(0 . . . >'r(/ + r - l ) ] 7 (7.64c) 

6 = [(9, . . . 0r]T . T = [Y\---Yr]T (7.64d) 

Eit) = [V(f) . . . eTit + r - l ) ] 7 (7.64e) 
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Moreover, t is the number, typically equal to r. of input values whose influence on 
Yr{t) is to be accounted for. Now, 0 and F in (7.63) can be estimated using least 
squares, giving 0,v and T.v. The &-step ahead predictors are then given by 

Yr(t) = ®t,<ps(t) (7.65) 

For large enough s, this will give a good approximation of the true predictors. 
Remark 1: The reason for the term Ut is as follows: The values of 

u(t + 1), u(t + k) affect y(r + k — 1). If these values can be predicted from 
past measurements—which is the case if u is not white noise—then the predictions 
of y(t + k — 1) based on past data will account also for the influence of Uf. If we 
estimate (7.61) directly, this influence will thus be included. However, as demanded 
by (7.58). the influence of Ui should be ignored in the "formal" fc-step ahead pre
dictor we are seeking. This is the reason why this influence is explicitly estimated in 
(7.62) and then thrown away in the predictor (7.65). 

Remark 2: If we seek a state-space realization like (7.55) that does not model 
the noise properties—an output error model—we would just ignore the terms e(t — j) 
in (7.57)-(7.58). This implies that the predictor in (7.62) would be based on past 
inputs only. i.e. S\ = 0 in (7.64). 

The method thus consists of the following steps: 

Basic Subspace Algorithm (7.66) 

1. Choose s\. S2. r and € and form Yr(t) in (7.65) and Y as in (7.59). 

2. Est imate the rank n of Y and determine L in (7.60) so that x{t) corresponds 
to a well-conditioned basis for it. 

3. Estimate A, B.C. D and the noise covariance matrices by applying the LS 
method to the linear regression (7.56). 

What we have described now is the subspace projection approach to estimating the 
matrices of the state-space model (7.54). including the basis for the representation 
and the noise covariance matrices. There are a number of variants of this approach. 
See among several references, e.g. Van Overschee and DeMoor (1996). Larimore 
(1983), and Verhaegen (1994). 

The approach gives very useful algorithms for model estimation, and is partic
ularly well suited for multivariable systems. The algorithms also allow numerically 
very reliable implementations, and typically produce estimated models with good 
quality. If desired, the quality may be improved by using the model as an initial 
estimate for the prediction error method (7.12). Then the model first needs to be 
transformed to a suitable parameterization. 

The algorithms contain a number of choices and options, like how to choose 
I, Si and /-.and also how to carry out step number 3. There are also several "tricks" to 
do step 3 so as to achieve consistent estimates even for finite values of s,. Accordingly, 
several variants of this method exist. In Section 10.5 we shall give more algorithmic 
details around this approach. 
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7 4 A STATISTICAL F R A M E W O R K FOR PARAMETER E S T I M A T I O N A N D 
THE M A X I M U M LIKELIHOOD M E T H O D 

So far we have not appealed to any statistical arguments for the estimation of 0. In 
fact, our framework of fitting models to data makes sense regardless of a stochastic 
setting of the data. It is. however, useful and instructive at this point to briefly describe 
basic aspects of statistical parameter estimation and relate them to our framework. 

Estimators and the Principle of Maximum Likelihood 

The area of statistical inference, as well as that of system identification and parameter 
estimation, deals with the problem of extracting information from observations that 
themselves could be unreliable. The observations are then described as realizations 
of stochastic variables. Suppose that the observations are represented by the random 
variable yN = ( y ( l ) . y ( 2 ) , . . . , y(N)) that takes values in R i V . The probability 
density function ( P D F ) o f y A is supposed to be 

f(0; A-!, x2 xN) = fy{9: xN) (7.67) 

That is, 

p ( y

N

 € A) = f fy{8\xN)dxN (7.68) 
JxseA 

In (7.67), 6 is a d-dimensional parameter vector that describes properties of the 
observed variable. These are supposed to be unknown, and the purpose of the 
observation is in fact to estimate the vector 9 using y A . This is accomplished by an 
estimator % 

0(yN) I (7.69) 

which is a function from R* to Rd. If the observed value of y A is y£ . then conse
quently the resulting estimate is 9* — 9(y^). 

Many such estimator functions are possible. A particular one that maximizes 
the probability of the observed event is the celebrated maximum likelihood estima
tor, introduced by Fisher (1912). It can be defined as follows: The joint probability 
density function for the random vector to be observed is given by (7.67). The prob
ability that the realization ( = observation) indeed should take the value y ; v is thus 
proportional to 

/ v ( 0 ; y ; v ) 

This is a deterministic function of 9 once the numerical value y * is inserted. This 
function is called the likelihood function. It reflects the "likelihood" that the ob
served event should indeed take place. A reasonable estimator of 9 could then be to 
select it so that the observed event becomes "as likely as possible."' That is, we seek 

^ML(yf) = a rgmax fy(9: >;v) (7.70) 
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1 
= e x P 

and the y ( / ) are independent, we have 

^ • f i j S K - l - ^ ] <"3> 

The likelihood function is thus given by fy(0; yN). Maximizing the likelihood func
tion is the same as maximizing its logarithm. Thus 

9ML(yN) = a rgmax \og fy(B:yN) 
o 

= a rgmax j - y log2jr - l o g * , - - - ^ T~ j (7-74) 

from which we find 

ft*.<y> = - 5 - ! — t^1 <7-75> 
Ai 

1 = 1 

Relationship to the Maximum A Posteriori (MAP) Estimate 

The Bayesian approach gives a related but conceptually different treatment of the 
parameter estimation problem. In the Bayesian approach the parameter itself is 
thought of as a random variable. Based on observations of other random variables 
that are correlated with the parameter, we may infer information about its value. 

where the maximization is performed for fixed y * . This function is known as the 
maximum likelihood estimator (MLE) . 

A n Example 

Let / = 1 N. be independent random variables with normal distribution 

with (unknown) means OQ ( independent of / ) and (known) variances A , : 

y( / ) € N(6{).ki) (7.71) 

A common estimator of #o is the sample mean: 

1 N 

§5M(VA') = ]y E-V(,,) <7J2> 
z'=l 

To calculate the M L E . we start by determining the joint P D F (7.67) for the observa
tions. Since the P D F for v( / ) is 
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Suppose that the properties of the observations can be described in terms of a pa
rameter vector 9. With a Bayesian view we thus consider 0 to be a random vector 
with a certain prior distribution ("prior1* means before the observations have been 
made) . The observations y , v are obviously correlated with this 0. After the obser
vations have been obtained, we then ask for the posterior P D F for 0 . From this 
posterior PDF. different estimates of 0 can be determined, for example, the value 
for which the P D F attains its maximum ("the most likely value"). This is known as 
the maximum a posteriori (MAP) estimate. 

Suppose that the conditional P D F for yN, given 9. is 

fy(9;xN) = P(yN = xN\9) 

and that the prior P D F for 8 is 

g0(z) = P(9 = z) 

[Here P(A\B) = the conditional probability of the event A given the event B. We 
also allowed somewhat informal notation.] Using Bayes's rule (1.10) and with some 
abuse of notation, we thus find the posterior P D F for 9, i.e., the conditional PDF for 
9, given the observations: 

PWy") = Pi*"W>N

P<-e) ~ M9:>•") • ft <*) (7.76) 

The posterior P D F as a function of 9 is thus proportional to the likelihood function 
multiplied by the prior PDF. Often the prior P D F has an insignificant influence. Then 
the M A P estimate j ' 

0MAP(>- V ) = arg max [f,(9: yN) • ge(8)\ (7.77) 

is close to the M L E (7.70). 

Cramer-Rao Inequality 

The quality of an estimator can be assessed by its mean-square error matrix: 

P = E p(r v ) - 0 O ] [9(yN) - 0 o ] r (7.78) 

Here 9Q denotes the " t rue value" of 0 , and (7.78) is evaluated under the assumption 
that the P D F of yN is / y ( 0 o ; yN). 

We may be interested in selecting estimators that make P small. It is then 
interesting to note that there is a lower limit to the values of P that can be obtained 
with various unbiased estimators. This is the so called Cramer-Rao inequality: 
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Let9(yN) bean estimator of 9 such that E9(y'%') = 0O> where E evaluates 
the mean, assuming that the PDF of yN is fy(90; y l V ) (to hold for all 
values of 90), and suppose that y , / v may take values in a subset o / R ' \ 
whose boundary does not depend on 8. Then 

(7-79) 

where 

vector and the Hessian (d2/d92) log fy(B\ yN) is ad x d matrix. This matrix M is 
known as the Fisher information matrix. Notice that the evaluation of M normally 
requires knowledge of 8Q, so the exact value of M may not be available to the user. 

A proof of the Cramer-Rao inequality is given in Appendix 7A. 

Asymptotic Properties of the M L E 

It is often difficult to exactly calculate properties of an estimator, such as (7.78). 
Therefore, limiting properties as the sample size (in this case the number N) tends 
to infinity are calculated instead. Classical such results for the M L E in case of inde
pendent observations were obtained by Wald (1949)and Cramer (1946): 

Suppose that the random variables {>(/)} are independent and identically 
distributed, so that 

converges in distribution to the normal distribution with zero mean and 
covariance matrix given by the Cramer-Rao lower bound [M~l in (7.79) 
and (7.80)J. 

In Chapters 8 and 9 we will establish that these results also hold when the ML 
estimator is applied to dynamical systems. In this sense the M L E is thus the best 
possible estimator. Let it, however, also be said that the M L E sometimes has been 
criticized for less good small sample properties and that there are other ways to assess 
the quality of an estimator than (7.78). 

N 

fy($;xu...txN) = J~J / V ( I ) (0. xt) 

Suppose also that the distribution of yN is given by fy(9o; x' ) for some 
value 0r> Then the random variable 0 M L ( > ' A ) tends to 9Q with probability 
1 as N tends to infinity, and the random variable 

Jx[#uL(yN)-90] 
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Probabilistic Models of Dynamical Systems 

Suppose that the models in the model structure we have chosen in Section 7.1 include 
both a predictor function and an assumed P D F for the associated prediction errors, 
as described in Section 5.7: 

M(0) : y ( / | 0 ) = £ ( / , Z ' _ 1 ; 0 ) 

e(t.O) = y(t) - y(t\0) are independent (7.81) 

and have the P D F f€(x.t\9) 

Recall that we term a model like (7.81) that includes a P D F for e a (complete) 
probabilistic model. 

Likelihood Function for Probabilistic Models of Dynamical 
Systems 

We note that, according to the model (7.81). the output is generated by 

y(t) = g(t,Z'-x;e) + e{t.B) (7.82) 

where e(t, 9) has the P D F /*(.¥, t:9). The joint P D F for the observations v A (given 
the deterministic sequence u* ) is then given by Lemma 5.1. By replacing the dummy 
variables .v, by the corresponding observations y ( i ) , we obtain the likelihood func
tion: 

.v 
7y(0\yN) = Y\fe(y(t) - g ( f . Z ' - 1 : 0 ) . r ; 0 ) 

t=\ 
(7.83) 

N i 
= Y[fe(£(t,0).r,9) 

r=l 

Maximizing this function is the same as maximizing 

1 - 1 N 

T 7 l o g / v ( 0 : / r ) = - £ l o g / f ( e ( r . 0 ) , f : 0 ) (7.84) 
If we define 

t(e,0.t) = - l o g / , ( £ , ? : # ) (7.85) 

we may write 

OML()'N) = arg min - Y I (e(t, 9).9.t) (7.86) 

The maximum likelihood method can thus be seen as a special case of the prediction-
error criterion (7.12). 
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It is worth stressing that (7.85) and (7.86) give the exact maximum likelihood 
method for the posed problem. It is sometimes pointed out that the exact likelihood 
function is quite complicated for time-series problems and that one has to resort to 
approximations of it (e.g., Kashyap and Rao, 1976: Akaike. 1973; Dzhaparidze and 
Yaglom, 1983). This is true in certain cases. The reason is that it may be difficult 
to put, say, an A R M A model in the predictor form (7.81) (it will typically require 
time-varying Kalman predictors). The problem is therefore related to finding the 
exact predictor and is not a problem with the ML method as such. When we employ 
time-invariant predictors, we implicitly assume all previous observations to be known 
[see (3.24)] and typically replace the corresponding initial values by zero or estimate 
them. Then it is appropriate to interpret the likelihood function as conditional w.r.t. 
these values and to call the method a conditional ML method (e.g.. Kashyap and 
Rao, 1976). 

Gaussian Special Case 

When the prediction errors are assumed to be Gaussian with zero mean values and 
(t-independent) covariances A , we have 

1 \e2 

l{E.9.t) = - \o%fe(e.t\0) - const + - logA + - — (7.87) 
2 2 A 

If A. is known, then (7.87) is equivalent to the quadratic criterion (7.15). If A is 
unknown, (7.87) is an example of a parameterized norm criterion (7.16). Depending 
on the underlying model structure, A may or may not be parametrized independently 
of the predictor parameters. See Problem 7E.4 for an illustration of this. Compare 
also Problem 7E.7. 

Fisher Information Matrix and the Cramer-Rao Bound for 
Dynamical Systems 

Having established the log likelihood function in (7.84) for a model structure, we can 
compute the information matrix (7.80). For simplicity, we then assume that the PDF 
fe is known (0 independent) and time invariant. Let £Q(S) = — log fe(s). Hence 

d - , v 

— l o g / v ( 0 ; y A ' ) = £ € o O ( r . 0 ) ) • 

where, as in (4.121), 

d d 
\(/(t,0) — = ~dQ£^'^% [a d-dimensional column vector] 

Also, t 0 is the derivative of to(e) w.r.t. e. To find the Fisher information matrix, we 
now evaluate the expectation of 

i w * y * > [ i * * 7 , i ' - > y " ) ] T 
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at OQ under the assumption that the true P D F for v A indeed is fy(9o: y j N ). The latter 
statement means that e(t. 60) = eoit) will be treated as a sequence of independent 
random variables with PDF's fe(x). Call this expectation Ms- Thus 

f = l 5 = 1 

l=[ 

since eo(t) and € 0 ( 5 ) are independent for s ^ ?. We also have t'0[x) = [log fe(x)\ = 
/ ; u ) / / e ( x ) , a n d 

£ [ ^ 0 ( r ) ) ] 2 = j l j ^ . f A x ) d x 

(7.88) 

If eo(0 is Gaussian with variance An, it is easy to verify that KQ = XQ. Hence 

N 

Now the Cramer-Rao inequality tells us that for any unbiased estimator 9s of 9 (i.e.. 
estimators such that E9y = #0 regardless of the t rue value 0o) we must have 

Cov0.v > M^ (7.90) 

Notice that this bound applies for any N and for all parameter estimation methods. 
We thus have 

Cov6>v > KQ ^ E ^ ( / . ^ , ) V r r ( / . 6 b ) 

Ko = Aq for Gaussian innovations 

(7.91) 

Multivariable Gaussian Case (*) 

When the prediction errors are p-dimensional and jointly Gaussian with zero mean 
and covariance matrices A . we obtain from the multivariable Gaussian distribution 

l(e.t\9) = const + ^ l o g d e t A + UTA^e (7.92) 
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Then the negative logarithm of the likelihood function takes the form 

VN(9.A,Z'W) = const + — l o g d e t A + - ^ _ V ( r . 9)A~ie(t, 9) (7.93) 

If the p x p covariance matrix A is fully unknown and not parametrized through 0, 
it is possible to minimize (7.93) analytically with respect to A for every fixed 0: 

argmin V,v(0, A. Z ' v ) = A A ( 0 ) = \- e(t.8)eT{t.6) (7.94) 
A N *—' 

Then 
9N = a rgmin V v ( 0 . A j V ( 0 ) , ZN) 

r -i < 7-9 5 ) 

= a rgmin |J logdet A,\ (#) + ?/>J 
(see problem 7D.3) where p = dim s. Hence we may in this particular case use the 
criterion 

9N = a rgmin det — > s{t, 0)e1(t, 9) (7.96) 

With this we have actually been led to a criterion of the tvpe (7.29) to (7.30) with 
fc(A) = d e t A . 

Information and Entropy Measures (*) 

In (5.69) and (5.70) we gave a general formulation of a model as an assumed P D F 
for the observations Z f : 

7m(t*Z') (7.97) 

Let / o ( / . Z f ) denote the true P D F for the observations. The agreement between 
two PDF's can be measured in terms of the Kullback-Leibler information distance 
(Kullback and Leibler. 1951): 

/(7o: 7 m ) = / 7 o G . x1) log dx< (7.98) 
J fmU,X() 

Here we use xl as an integration variable for Z{. This distance is also the negative 
entropy of / o with respect to fm: 

S(7oJm) = -l(fo-Jm) (7.99) 

An attractive formulation of the identification problem is to look for a model 
that maximizes the entropy with respect to the true system or, alternatively, minimizes 
the information distance to the true system. This formulation has been pursued by 
Akaike in a number of interesting contributions Akaike (1972.1974a. 1981). 
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With a parametrized set of models /^/</9>(f, Z ' ) = / ( 0 ; t, Z ' ) . we would thus 
solve 

9N = a rgmin / (f0(N, Z v ) ; 7 ( 0 ; A/. Z ' v ) ) (7.1IX)) 

The information measure can be written 

/ ( / 0 ; 7 ) = - j \og[f(0;N.xN)]-f0(N.xN)dxs 

+ f\og[J0(N,xN)].70(N.xN)dxN 

— — £ n ' o g / ( 0 ; A/, Z A ) + 0-independent terms 

where E q denotes expectation with respect to the true system. 
The problem (7.100) is thus the same as 

0,v = a r g m i n [ - £ o l o g 7 ( 0 : ^ ^ ; V ) l (7.101) 
o 

The problem here is of course that the expectation is not computable since the true 
P D F is unknown. A simple estimate of the expectation is to replace it by the obser
vation 

E0log7(0; AT, ZN) * l o g 7 ( 0 ; N, ZN) (7.102) 

This gives the log likelihood function for the problem and (7.101) then equals the 
MLE. The ML approach to identification can consequently also be interpreted as a 
maximum entropy strategy or a minimum information distance method. 

The distance between the resulting model and the true system thus is 

/ (jQ(N, ZN): 7 ( 0 * ; N. Z ' v ) ) (7.103.1 

This is a random variable, since 0,\ depends on ZlW. As an ultimate criterion of 
fit, Akaike (1981)suggested the use of the average information distance, or average 
entropy 

E h l ( 7 o W ZN): 7 ( 0 * ; /V. Z ' v ) ) (7.104) 

This is to be minimized with respect to both the model set and 0,v. As an unbiased 
estimate of the quantity (7.104), he suggested 

i o g 7 0 V N. ZN) - d i m 0 (7.105) 

Calculations supporting this estimate will be given in Section 16.4. 
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The expression (7.105) used in (7.101) gives, with (7.84) and (7.85). 

0 A I C ( Z A ) = arg min 
e 

This is Akaike 's information theoretic criterion (AIC) . When applied to a given 
model structure, this estimate does not differ from the MLE in the same structure. 
The advantage with (7.106) is. however, that the minimization can be performed 
with respect to different model structures, thus allowing for a general identification 
theory. See Section 16.4 for a further discussion of this aspect. 

An approach that is conceptually related to information measures is Rissanen's 
minimum description length (MDL) principle. This states that a model should be 
sought that allows the shortest possible code or description of the observed data. 
See Rissanen (1978. 1986). Within a given model structure, it gives estimates that 
coincide with the MLE. See also Section 16.4. 

Regularization 

Sometimes there is reason to consider the following modified version of the criterion 
(7.11): 

1 , v 

WN(6, Z*) = - Y e (eF(t. 0) ) + S | 0 - 0*\2 = VN($, ZN) + * | 0 - $ * \ 2 (7.107) 

It differs from the basic criterion only by adding a cost on the squared distance 
between 0 and 0*. The latter is a fixed point in the parameter space, and is often 
taken as the origin. 0 # = 0. The reasons and interpretations for including such a 
term could be listed as follows: 

• If 0 contains many parameters, the problem of minimizing V i V may be ill-
conditioned, in the sense that the Hessian V^' may be an ill-conditioned ma
trix. Adding the norm penalty will add 81 to this matrix, to make it better 
conditioned. This is the reason why the technique is called regularization. 

• If the model parameterization contains many parameters (like in the nonlinear 
black-box models of Section 5.4), it may not be possible to estimate several of 
them accurately. There are then advantages in pulling them towards a fixed 
point 0*. The ones that have the smallest influence on V.v will be affected most 
by this pulling force. The advantages of this will be brought out more clearly 
in Section 16.4. We may think of 8 as a knob by which we control the effective 
number of parameters that is used in the minimization. A large value of 8 will 
lock more parameters to the vicinity of 0 # . 

• Comparing with the M A P estimate (7.77) we see that this corresponds to min
imizing W v ( 0 . Z ' v ) = - ( 1 / A O log [7v(0. ZN) • gv(0)] if we take 

K v ( 0 . Z ' v ) = - 1 l o g / v ( 0 ; ZN) (7.108a) 

1 dim 0 
- yt(e(t,0).t,6) + 

N 
(7.106) 

g$($) = (N8/7r)d/2e-^9-^\ d = d i m 0 (7.108b) 
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that is. we assign a prior probability to the parameters that they are Gaussian 
distributed with mean 0* and covariance matrix jj^ I. This prior is clearly well 
in line with the second interpretation. 

A Pragmatic Viewpoint 

It is good and reassuring to know that general and sound basic principles, such as 
maximum likelihood, maximum entropy, and minimum information distance, lead 
to criteria of the kind (7.11). However, in the end we are faced with a sequence of 
figures that are to be compared with "guesses" produced by the model. It could then 
always be questioned whether a probabilistic framework and abstract principles are 
applicable, since we observe only a given sequence of data, and the framework relates 
to the thought experiment that the data collection can be repeated infinitely many 
times under "similar"' conditions. It is thus an important feature that minimizing 
(7.11) makes sense, even without a probabilistic framework and without "alibis" 
provided by abstract principles. 

7 5 CORRELATING PREDICTION ERRORS W I T H PAST DATA 

Ideally, the prediction error e{t, 9) for a "good" model should be independent of 
past data Z / _ 1 . For one thing, this condition is inherent in a probabilistic model, 
such as (7.81). Another and more pragmatic way of seeing this condition is that if 
£ ( f , 0 ) is correlated with Z f _ 1 then there was more information available in Z!~l 

about y(f) than picked up by y(t\9). The predictor is then not ideal. This leads to 
the characterization of a good model as one that produces prediction errors that are 
independent of past data. 

A test if e(t. 9) is independent of the whole (and increasing) data set Z - 1 

would amount to testing whether all nonlinear transformations of s(t, 9) are uncor
related with all possible functions of Zl~x. This is of course not feasible in practice. 

Instead, we may select a certain finite-dimensional vector sequence )} de
rived from Z f - 1 and demand a certain transformation of {e{t, 9)} to be uncorrelated 
with this sequence. This would give 

< ( / ) « ( * ( / , * ) ) = 0 (7.109) 
r=i 

and the 9-value that satisfies this equation would be the best estimate 9^ based on 
the observed data. Here a(s) is the chosen transformation of e, and the typical 
choice would be a(e) = s. 

We may carry this idea into a somewhat higher degree of generality. In the 
first place, we could replace the prediction error with filtered versions as in (7.10). 
Second, we obviously have considerable freedom in choosing the sequence £( r ) . It 
is quite possible that what appears to be the best choice of £( / ) may depend on 
properties of the system. In such a case we would let £(r) depend on 9. and we have 
the following method: 
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Choose a linear filter L(q) and let 

e f ( f , 0 ) = L(q)e(t.9) (7.110a) 

Choose a sequence of correlation vectors 

f ( / , 0 ) = £ ( f , Z ' _ , , 0 ) (7.110b) 

constructed from past data and, possibly, from 9. Choose a function ot(s). 
Then calculate 

0,v = sol [ / v ( 0 . Z ' v ) = 0 ] (7.110c) 

1 A ' 
fsi9.ZN) = - ^ C ( r . 0 ) a ( e f ( r . 0 ) ) (7.110d) 

Here we used the notation 

s o l [ / ( . v ) = 0] = the solution(s) to the equation f{x) = 0 

Normally, the dimension of £ would be chosen so that / v is a J-dimensional 
vector (which means that £ is d x /? if the output is a /?-vector). Then (7.110) 
has as many equations as unknowns. In some cases it may be useful to consider an 
augmented correlation sequence £ of higher dimension than d so that (7.110) is an 
overdetermined set of equations, typically without any solution. Then the estimate 
is taken to be the value that minimizes some quadratic norm of fs'-

9N = a r g m i n | / v ( 0 , ZN)\ (7.111) 

There are obviously formal links between these correlation approaches and the min
imization approach of Section 7.2 (see, e.g., Problem 7D.6). 

The procedure (7.110) is a conceptual method that takes different shapes, de
pending on which model structures it is applied to and on the particular choices of £. 
In the subsequent section we shall discuss the perhaps best known representatives 
of the family (7.110), the instrumental-variable methods. First, however, we shall 
discuss the pseudolinear regression models. 

Pseudolinear Regressions 

We found in Chapter 4 that a number of common prediction models could be written 
as 

y(t\9) = <pT(t.9)0 (7.112) 

[see (4.21) and (4.45)]. If the data vector <p(t, 9) does not depend on 9, this rela
tionship would be a linear regression. From this the term pseudolinear regression 
for (7.112) is derived (Solo, 1978). For the model (7.112), the "pseudo-regression 
vector" (p(t, 9) contains relevant past data, partly reconstructed using the current 
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model. It is thus reasonable to require from the model that the resulting predic
tion errors be uncorrelated with (p(t. 9). That is, we choose 9) = cp(t. ti) and 
a(s) — s. in (7.110) and arrive at the estimate 

0lLR = sol 0)[v ( f ) - <pT{t.9)9] = 0 
t=i 

(7.113) 

which we term the PLR estimate. 
Models subject to (7.112) also lend themselves to a number of variants of 

(7.113). basically corresponding to replacing (pit. 9) with vectors in which the "re
constructed" (^-dependent) elements are determined in some other fashion. See 
Section 10.4. 

7 6 INSTRUMENTAL-VARIABLE M E T H O D S 

Instrumental Variables 
Consider again the linear regression model (7.31): 

y(t\9) = <pT{t)9 (7.U4) 

Recall that this model contains several typical models of linear and nonlinear systems. 
The least-squares estimate of 9 is given by (7.34) and can also be expressed as 

9^ = sol 
1 A ? 

jjj^v(n[y(t) - <pTU)9] = 0 
r=l 

(7.115) 

An alternative interpretation of the LSE is consequently that it corresponds to (7.110) 
with L(q) = 1 and 9) = <p(t). / 

Now suppose that the data actually can be described as in (7.37): 

y(t) = (pT(t)90 + t<o(0 (7.116) 

We then found in Section 7.3 that the LSE 9y will not tend to 0 ( ) in typical cases, 
the reason being correlation between i'o(r) and <p(t). Let us therefore try a gen
eral correlation vector <"(/) in (7.115). Following general terminology in the system 
identification field, we call such an application of (7.110) to a linear regression an 
instrumental-variable method (IV). The elements of £ are then called instruments 
or instrumental variables. This gives 

§iv = sol { — Yj [ v O ~ <PT(f)9] = 0 
! = l 

or 

i j V l , v 

- I > ) ^ ( 0 7 7 l > > v ( » 
# = 1 

(7.11' 

(7.118) 
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provided the indicated inverse exists. For $K to tend to 0Q for large N , we see 
from (7.117) that then (1/A 7 ) J^?=\ t:(t)v0(t) should tend to zero. For the method 
(7.117) to be successfully applicable to the system (7.116), we would thus require the 
following properties of the instrumental variable £(r) (replacing sample means by 
expectation): 

~Ei;{t)(pr(t) be nonsingular (7.119) 

Et;(t)v0(t) = 0 (7.120) 

In words, we could say that the instruments must be correlated with the regression 
variables but uncorrelated with the noise. Let us now discuss possible choices of 
instruments that could be subject to (7.119) and (7.120). 

Choices of Instruments 

Suppose that (7.114) is an A R X model 

y(f) + a ,y(f - 1) + • • • + anay(t - na) 

= bMt - 1) -I- • • • + b„bu(t - nb) + v{t) (7.121) 

Suppose also that the true description (7.116) corresponds to (7.121) with the coef
ficients indexed by "zero."' A natural idea is to generate the instruments similarly to 
(7.121) so as to secure (7.119), but at the same time not let them be influenced by 
{uo(0}- This leads to 

C ( 0 = K(q)[-x(t-l) - x ( r - 2 ) . . . 

-x(t - na) u(t - 1 ) . . . u{t - nb)]T (7.122) 

where K is a linear filter and x{t) is generated from the input through a linear system 

N(q)x{t) = M(q)u(t) (7.123) 

Here 

Niq) = 1 +nxq~] + + nnnq-"» 

M(q) - m 0 + niiq-1 + • • • + mnmq~nm (7.124) 

Most instruments used in practice are generated in this way. Obviously, £( / ) is 
obtained from past inputs by linear filtering and can be written, conceptually, as 

((t) = t.it,u1-1) (7.125) 

If the input is generated in open hop so that it does not depend on the noise t'o(r) in 
the system, then clearly (7.120) holds. Since both the <p-vector and the £-vector are 
generated from the same input sequence i<p contains in addition effects from i'o), 
it might be expected that (7.119) should hold "in general." We shall return to this 
question in Section 8.6. 

A simple and appealing choice of instruments is to first apply the LS method 
to (7.121) and then use the LS-estimated model for N and M in (7.123). The in-
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struments are then chosen as in (7.122) with K(q) = 1. Systems operating in closed 
loop and systems without inputs call for other ideas. See Problem 7G.3 for some 
suggestions. 

As outlined in Problem 7D.5, the use of the instrumental vector (7.122) to 
(7.124) is equivalent to the vector 

K(q) r 

S*W = TFT\lult - 1) u(t - 2 ) . . . « < / - na - nb))r (7.126) 

The IV estimate 6N

V in (7.118) is thus the same for as for £ in (7.122) and does 
not, for example, depend on the filter M in (7.124). 

Model-dependent Instruments (*) 

The quality of the estimate 0]^' will depend on the choice of £ ( r ) . In Section 9.5 we 
" TV 

shall derive general expressions for the asymptotic covariance of 0J/ and examine 
them further in Section 15.3. It then turns out that it may be desirable to choose 
the filter in (7.123) equal to those of the true system: N(q) = Ao(q): M(q) = 
B0(q). These are clearly not known, but we may let the instruments depend on the 
parameters in the obvious way: 

? ( / ,0 ) = K(q)[-x(t - 1 , 0 ) . . . -x(t -na,9) u(t - l ) . . . w ( f - n , , ) ] 7 " 

A(q)x(t,9) = B(q)u(t) (7.127) 

In general, we could write the generation of , 0 ) : 

< ( f , 0 ) = Ku(q.9)u(t) I (7.128) 

where Ku(q, 0) is a d-dimensional column vector of linear filters. 
Including a prefilter (7.110a) and a "shaping" function a(-) for the prediction 

errors, the IV method could be summarized as follows: 

where 

eF(t,9) = L(q)[y(t) - <pT(t)9] 

= sol r/A<(0, ZN) = 0l 

(7.129a) 

(7.129b) 

h(9,Zs) 
1 N 

/=i 
(7.129c) 

= Ku(q,9)u(t) (7.129d) 
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Extended IV Methods (*) 

So far in this section the dimension of £ has been equal to dim 9. We may also 
work with augmented instrumental variable vectors with dimension dim £ > d. The 
resulting method, corresponding to (7.110) and (7.111), will be called an extended TV 
method and takes the form 

2 

(7.130) 

Q 

The subscript Q denotes £>-norm: 

\ x \ l = x

TQx (7.131) 

In case <" does not depend on 9 and a(s) = e, (7.130) can be solved explicitly. See 
Problem 7D.7. 

Frequency-domain Interpretation (*) 

Quite analogously to (7.20) to (7.25) in the prediction error case, the criterion (7.129) 
can be expressed in the frequency domain using Parseval's relationship. We then 
assume that a(e) = e, and that a linear generation of the instruments as in (7.128) 
is used. This gives 

fN(9,ZN) « ~ j " [ 6 J V ( 0 - G<««*\0)] \UN(co)\2 

x A ( ^ , 9)L(eia,)Ku(eiw. 0) dco (7.132) 

Here A(q, 9) is the A-polynomial that corresponds to 0 in the model (7.121). 

Multivariable Case (*) 

Suppose now that the output is p-dimensional and the input m-dimensional. Then 
the instrument £ ( ' ) is a d x p matrix. A linear generation of £(f, 9) could still be 
written as (7.128), with the interpretation that the / th column of £(r , 9) is given by 

KU\t,S) = K{^(q,9)u(t) (7.133) 

where K„\q,9) is a d x m matrix filter. [Ku{q, 9) in (7.128) is thus a tensor, a 
"three-index entity"]. With ct{e) being a function from to Rp and L(q) a p x p 
matrix filter, the IV method is still given by (7.129). 

7.7 U S I N G FREQUENCY D O M A I N DATA TO FIT LINEAR M O D E L S { * ) 

In actual practice, most data are of course collected as samples of the input and 
output time signals. There are occasions when it is natural and fruitful to consider 
the Fourier transforms of the inputs and the outputs to be the primary data. It could 
be. for example, that data are collected by a frequency analyzer, which provides the 

? J v ' v = a r g m i n 

o 
- 2 J < ( f . e ) a ( £ F < r . 0 ) ) 

t = l 
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transforms to the user, rather than the original time domain data. It could also be 
that one subjects the measured data to Fourier transformation, before fitting them 
to models. In some applications, like microwave fields, impedances, etc.. the raw 
measurements are naturally made directly in the frequency domain. This view has 
been less common in the traditional system identification literature, but has been 
of great importance in the Mechanical Engineering community, vibrational analysis, 
and so on. The possible advantages of this will be listed later in this section. The 
usefulness of such an approach has been made very clear in the work of Schoukens 
and Pintelon; see in particular the book Schoukens and Pintelon (1991 )and the survey 
Pintelon et.al. (1994). 

There is clearly a very close relationship between time domain methods and 
frequency domain methods for linear models. We saw in (7.25) that the prediction 
error method for time domain data can (approximately) be interpreted as a fit in the 
frequency domain. We shall in this section look at some aspects of working directly 
with data in the frequency domain. 

Continuous Time Models 

An important advantage to frequency domain data is that it is equally simple to build 
time continuous models as discrete time/sampled data ones. This means that we can 
work with models of the kind 

y(0 = G(p,6)u(t) + H(p,9)e(t) (7.134) 

(where p denotes the differentiation operator) analogously to our basic discrete 
time model (7.3). See also (4.49) and the ensuing discussion. Note the considerable 
freedom in parameterizing (7.134): from black-box models in terms of numerator 
and denominator polynomials, or gain, time-delay, and time constant (see (4.50)). 
to physically parameterized ones like (4.64). In addition to these traditional time-
domain parameterizations, one may also parameterize the transfer functions in a way 
that is more frequency domain oriented. A simple case (see Problem 7G.2) is to let 

d 

G(i<o.O) = y \ g f + igl)Wy(k,cD - cok) 

tl (7-135) 

' = [*,*. s\ *L s'A 
One should typically think of the functions WY(k,co) as bandpass filters, with a 
width that may be scaled by y. The parameter g* would then describe the frequency 
response around the frequency value a>k. If the width of the passband increases with 
frequency we obtain parameterizations linked to wavelet transforms. See, e.g.. the 
insightful discussion by Ninness (1993). 
Estimation from Frequency Domain Data 
Suppose now that the original data are supposed to be 

Z v = {Y(cok).U(cok),k = 1 A T } (7.136) 
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where Y(tOk) and U(tok) either are the discrete Fourier transforms (2.37) of y(t) and 
uit) or are considered as approximations of the Fourier transforms of the underlying 
continuous signals: 

Y(a>) ^ / \{t)e-iuadt (7.137) 1 
Which interpretation is more suitable depends of course on the signal character, 
sampling interval, and so on. 

How to estimate 9 in (7.134) or its discrete time counterpart from (7.136)? In 
view of (7.25) it would be tempting to use 

9s — arg min V(9) 

N , . (7.138) 

k=\ \H(ei<0kT.6)\ 

(replacing e'c"kT by icok for the continuous-time model (7.134)). Here T is the 
sampling interval. 

If H in fact does not depend on 9 ( the case of fixed or known noise model) 
experience shows that (7.138) works well. Otherwise the estimate 9\ may not be 
consistent. 

To find a better estimator we turn to the maximum likelihood (ML) method 
for advice. We give the expressions for the continuous time case: in the case of a 
discrete time model, just replace icok by e w > k T . We will also be somewhat heuristic 
with the treatment of white noise. 

If the data were generated by 

yit) = G(p.B)u(t) + H(p.B)eit) 

the Fourier transforms would be related by 

Y(co) = G(ito.9)U(co) + Hiico.9)Eico) (7.139) 

To be true, (7.139) should in many cases contain an error term that accounts for finite 
time effects and the fact that the measured data Yicok) often are not exact realizations 
of (7.137). For periodic signals, observed over an integer number of periods. (7.139) 
may however hold exactly for the input-output relation between u and y. 

Now, if e(t) is white noise, its Fourier transform (7.137) will have a complex 
Normal distribution (see (1.14)): 

E(co) € AL(O.x) (7.140) 

This means that the real and imaginary parts are each normally distributed, with 
zero means and variances A / 2 . The real and imaginary parts are independent and. 
moreover, Eico\) and E(a>2) are independent for to\ ^ c&i. (For finite time there 
will remain some correlation for neighboring frequencies, which we will ignore here.) 
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This implies that 

Y(cok) e Nc(G(itok.9)U(tok).X\H(ia>k.9)\2) 

Y{cok) and Y(cot) independent for cok ^ cot 
(7.141) 

according to the model, so that the negative logarithm of the likelihood function 
becomes 

N 

VN(9) = N log A. + £ 2 1 o g | / / ( i a > * , 0 ) | 

+ ^ r l ^ ( ^ ) - G(icok.9)U{cok)Y 

(7.142) 
1 

A-l 

The Maximum Likelihood estimate is 

\H(icok.9)\2 

9,\ = arg min V j V (0) (7.143) 

Remark: This is the M L criterion under the assumption (7.141). We noted 
above that the data might not be exactly subject to this condition, due to finite time 
effects when forming the Fourier transforms. It still makes sense to use the criterion 
(7.143), though. 

If we perform analytical minimization of (7.143) w.r.t. X, we obtain 

.v 
N - log W W * ) + 2 j ^ l Q g | t f ( i a > i k , 0 ) 9s = arg min (7.144) 

N 

= T ? I ] l r ^ > " G(icok.9)U(cok)\2 • — -
N \H(icoi a*. 0)1 

2 (7.145) 

A I V = WN(0N) (7.146) 

Compared to (7.138) we thus have an extra term 

A' 

£ l o g | / / ( f a > A . 0 ) | 2 (7.147) 
k=\ 

If the noise model is given and fixed, H does not depend on 9, and the term (7.147) 
does not affect the estimate. This case of fixed noise models is very common in 
applications with frequency domain data (see Schoukens and Pintelon, 1991). One 
reason is that for a periodic input, we can obtain reasonable estimates of H in a 
preprocessing step. See Schoukens et.al. (1997)and (7.154) below. 
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We may also note that for any monic, stable, and inversely stable transfer 
function H{q* 0) we have 

£ \oz\H{eilo,6)[ dco = 0 (7.148) 

The expression will also hold if the integral is replaced by summation over the fre
quencies Ink jN, k — 1 N. This is the reason why (7.147) is missing from time 
domain criteria, like (7.25), which correspond to equally spaced frequencies c o k . 

Note that lV,y(0) in (7.144) can be rewritten as 

N ' " W(cok)\2 

WN(B) = ^Y\G(itok) - G(ia>k.O) 
N k = r 

\H(i<ok.e)\* 
(7.149) 

in formal agreement with (7.25). Here G is the empirical transfer function estimate, 
ETFE, defined in (6.24). 

Some Variants of the Criterion 

Weighted Nonlinear Least Squares Criterion. Given an estimate G of the frequency 
function (the ETFE or anything else), it is natural to fit a parametric model to it by 
a (non-linear) least squares criterion 

N 
}'wk (7.150) 

1 N i A 

N 
k=l 

with some weighting function Wk. We see that this corresponds to the ML criterion 
with Wk = \U(cok)\z j \H{icvk, 9)\2. In other words, (7.150) can be interpreted as 
the ML criterion with a fixed noise model 

7 \U((Ok)\2 

\H(icok)\2 = 1 (7.151) 

The numerical minimization of this criterion is typically carried out using a damped 
Gauss-Newton method, like for most of the other criteria discussed in this book. See 
Section 10.2. 

A Linear Method. If we use an ARX-parameterizat ion of the model (see (4.9)) 

B(p) 1 

Mp) A(p) 

then the criterion (7.149) takes the form 

WS(0) = -J2\Micok)G(icok) - B{icok) U(cok)\2 (7.152) 

This is a quadratic criterion in the coefficients of the polynomials A and B. It can 
therefore be minimized explicitly by the least squares solution. 
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There are several distinct features with the direct frequency domain approach that 
could be quite useful. We shall list a few: 

• Prefiltering is known as quite useful in the time-domain approach. See Section 
14.4. For frequency domain data it becomes very simple: It just corresponds 
to assigning different weights to different frequencies in the weighted criterion 
(7.150). This, in turn, is the same as invoking a special noise model (7.151). 

Normally, it does not quite make sense to combine prefiltering with esti
mating a noise model, since a parameter-dependent weighting as in 

may undo any applied weighting from W. 
• Condensing Large Data Sets. When dealing with systems with a fairly wide 

spread of time constants, large data sets have to be collected in the time domain. 
When converted to the frequency domain they can easily be condensed, so 
that, for example, logarithmically spaced frequencies are obtained. At higher 
frequencies one would thus decimate the data, which involves averaging over 
neighboring frequencies. Then the noise level (/.*) is reduced accordingly 

• Combining Experiments. Nothing in the approach of (7.141)—(7.143) says that 
the frequency response data at different frequencies have to come from the 
same experiment, or even that the frequencies involved (cu*. k = 1 N) 
all have to be different. It is thus very easy to combine data from different 
experiments. 

• Periodic Inputs. The main drawback with the frequency domain approach is 
that the underlying frequency domain model (7.139) is strictly correct only for 
a periodic input and assuming all transients have died out. On the other hand, 
typical use of the time domain method assumes inputs and outputs prior to 
time r = 0 to be zero. Whichever assumption about past behavior is closer to 
the truth should thus affect the choice of approach. Note, though, that both 
the t ime-domain and the frequency-domain methods allow the possibility to 
estimate a finite number of parameters that pick up these transients, and thus 
give correct handling of these effects. See also Section 13.3. 

• Non-Parametric Noise Estimates from Periodic Inputs. We have for the true 
system y(t) — yu(t) + v(t). where v w ( / ) = Go(q)u(t). If u{t) is periodic with 
period A/, so will yu(t) be, after a transient. By averaging the output over K 
periods. 

Data 

v 

K-\ 

M (7.153) 

A number of other variants can also be defined. We can. for example, define a 
frequency domain IV-method in analogy with (7.132). See Pintelon et.al. (1994)f o r 

a more complete survey. 

Some Practical Features with Estimation from Frequency Domain 
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we can thus get a better estimate of y w ( f ) , and also estimate the noise sequence 
as 

v(t) = yit) - yit) (7.154) 

where the definition of J(t) has been extended to 1 < t < N by periodic con
tinuation. Estimating the spectrum of £»(/) with any (non-parametric) method 
gives a noise spectral model \H(ico)\~ that can be used in (7.144). 

• Band-Limited Signals. If the actual input signals are band-limited (like no 
power above the Nyquist frequency), the continuous time Fourier transform 
(7.137) can be well computed from sampled data. It is then possible to di
rectly build continuous-time models without any extra work. Notice also that 
frequency contents above the Nyquist frequency can be eliminated from both 
input and output signals by anti-alias filtering (see Section 13.7) before sam
pling. Such filtering will not distort the input-output relationship, provided the 
input and output are subjected to exactly the same filters. 

• Continuous-Time Models. The comment above shows that direct continuous-
time system identification from "continuous-time data" can be dealt with 
in a rather straightforward fashion. Otherwise, continuous time data with 
continuous-time white noise descriptions are delicate mathematical objects. 

• Trade-off Noise/Frequency Resolution. The approach also allows for a more 
direct and frequency dependent trade-off between frequency resolution and 
noise levels. That will be done as the original Fourier transform data are deci
mated to the selected range of frequencies o>jt, k = 1 N. 

78 S U M M A R Y 

There are several ways to fit models in a given set to observed data. In this chapter we 
have pointed out two general procedures. Both deal with the sequence of prediction 
errors {e(t, 0)} computed from the respective models using the observed data, and 
both could be said to aim at making this sequence "small." 

The prediction-error identification approach (PEM) was defined by (7.10) to 
(7.12): 

0 l V = a r g m i n VN($,ZN) 

1 V 

V ( V (0 , ZN) = TT £ € ( « ( / , 0 ) . 0. t) (7.155) 

It contains well-known procedures, such as the least-squares (LS) method and the 
maximum-likelihood (ML) method and is at the same time closely related to Bayesian 
maximum a posteriori (MAP) estimation and Akaike 's information criterion (AIC) . 

The subspace approach to identifying state-space models was defined by (7.66). 
It consists of three steps: (1 ) estimating the fc-step ahead predictors using an LS-
algorithm, and (2) selecting the state vector from these, and finally (3) estimating the 
state-space matrices using these states and the LS-method. 
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The correlation approach was defined by (7.110): 

eF(t,9) = L(q)s(t,0) 

eN = sol [ / i V ( 0 , Z'v) = ol 

1 , v 

fN{B*ZN) = - £ c ( / . 0 ) a ( e f ( ' . 0 ) ) (7.156) 
r=l 

It contains the instrumental-variable (IV) technique, as well as several methods for 
rational transfer function models. 

System identification has often been described as an area crowded with seem
ingly unrelated ad hoc methods and tricks. The list of names of available and sug
gested methods is no doubt a very long one. It is our purpose, however, with this 
chapter, as well as Chapters 8 to 11, to point out that the number of underlying basic 
ideas is really quite small, and that it indeed is quite possible to orient oneself in the 
area of system identification with these basic ideas as a starting point. 

It might be added that for systems operating in closed loop some special iden
tification techniques have been devised. We shall review these methods in Section 
13.5, in connection with a discussion of the closed loop experiment situation. The 
bottom line is that a direct application of the prediction error methods of this chapter 
should be the prime choice, also for closed loop data. 
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and Khargonekar (1992)and Helmicki, Jacobson, and Nett (1991). 
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Section 7.3: The statistical roots of the least-squares method are examined 
in Appendix II. The application to times series has its origin in the work of Yule 
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principle of maximum likelihood was then applied to dynamical systems by Astrom 
and Bohlin (1965)(ARMAX model structures) and Box and Jenkins (1970)[model 
structure (4.31)]. Since then a long list of articles has dealt with this approach. 
Astrom (1980)may be singled out for a survey. 

Frequency-domain variants or approximations of the likelihood function have 
been extensively used by Whittle (1951). Hannan (1970), and others. The Bayesian 
M A P approach is comprehensively treated in Peterka (1981a). and Peterka (1981b). 
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7 1 0 PROBLEMS 

7G.1 Input error and output error methods: Consider a model structure 

y(t) = G(q,6)u(t) 

without a specified noise model. In the survey of Astrom and Eykhoff (1971 )identifi-
cation methods that minimize " the output er ror" 

.v 
0,v = a rgmin £ [ y < f ) - G(q. 6)u(t)]2 

t=i 

and the "input error" 

$ s = a rgmin J ] [ w ( r ) - G~l{q,6)y(t)]2 

i=i 

are listed. Show that these methods are prediction error methods corresponding to 
particular choices of noise models H(q.$). 

7G.2 Spectral analysis as a prediction error method: Consider the model structure 

G(eia.O) = (gk + igl) wrl<» ~ «*> 

k=l o-[t? ti rf tl]T 

and let H(e"°. rj) be an arbitrary noise model parametrization. Let0,v be the predict son-
error estimate obtained by minimization of (7.23) and (7.25): 

|6 ; V(^) - G(e^.B)[/\Uy(co)\2 

0N = a r g m i n / = dco 
(>.r> J-iT \H(eiw,r))\ 

(a) Consider the special case H(e,a>. n) = 1 and 

Wy(co) = 
L M < | 

0. \co\ > ij-

COL = 

Show that G(ei(°k, 0N) is then given by (6.46). 

(b) Assume, in the general case, that 

H(eiu. n) • Wy{a> - cok) * //Vw*, rj) • Wy(co - cok) 

G(eieo.O) • Wy{co - cok) % G(ei<Ok\0) • Wy(co - <ok) 

Show that (6.46) then holds approximately. 
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7G.3 Instruments for closed-loop systems: Consider a system 

Ait{q)y{t) = B„[q)u(t) + i „ (D 

under the output feedback 

u(t) = F\{q)r(t) - F2(q)y(t) 

(a) Let x(t) and £(r) be given by 

N(q).x(t) = M(q)r(t) 

f(f) = K(q)[-x(t - 1 ) . . . -x{t - na) r(t - 1 ) . . . r ( r - n„)]T 

Show that (7.120) holds for these instruments, and verify that (7.119) holds for a 
simple first-order special case. 

(b) Suppose that i'o(/) is known to be an MA process of order s. Introduce the 
instruments 

r(t) = [ -y(t - 1 - s)... - y ( / - na - s) u(t - 1 - 5 ) . . . u ( t - nh - s)]T 

Show the same results as under part (a) . See also Soderstrom. Stoica and Trulsson 
(1987). 

7G.4 Suppose Yy = [y ( l ) y(N)]T is a Gaussian N-dimensional r andom vector with 
zero mean and covariance matrix Ry(B). Let 

/?v(0) = Lv(t f )A.v<tf)Lj{0) 

where Ly(9) is lower triangular with l 's along the diagonal and Ay (6) a diagonal 
matrix with h,(t) as the r . t element. Let 

Ey(0) = Z ^ ' ( W . v 

Ey(0) = [£ (1 .0 ) e(N.6)]T 

Show that, if 9 is a parameter to be estimated, then the negative log likelihood 
function when Yy is observed is 

y Iog2T + i l o g d e t r t . v ( 0 ) + X-YlR-N

[(B)YN 

Show also that this can be rewritten as 

— log2vT + - > 1 o b a ^ ( / ) + - > 

where e(t.B) are independent , normal random variables with variances kt,(t). H o w 
does this relate to our calculations (7.81) to (7.87)? 
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7G.5 Let the two random vectors X and Y be jointly Gaussian with 

EX — mx; EY = my 

E(X - mx)(X - mx)T = Px E(Y - mY){Y - mY)T = Py 

E(X - mx)(Y - mY)T = PXY 

Show that the conditional distribution of X given Y is 

(X\Y) e N(mx + PXYPy-\Y - my), Px - PxyPy~'PXY) 

7G.6 Consider the model structure 

X = F{0)W 

Y = H(0)X + E 
.157) 

where W and £ are two independent, Gaussian random vectors with zero mean values 
and unit covariance matrices. Note that state-space models like (4.84). without input, 
can be written in this form by forming X1 = \xT(l) xT(2).. ,xT(N) ] and Y1 = 
I y d ) y (2) . . . y< t f ) ) . Let 

R(0) = I + H(9)F(6)FT{d)HTm 

Show the following: 

(a) The negative log likelihood function for 9. (ignoring 6 -independent terms) when 
y is observed is 

V(0) = - logp(Y\6) = \YTR-\6)Y + £ logdet R{6) 

Let 

OML = argmin V(0) 

(cf. Problem 7G.4). 

(b) Let the conditional expectation of X. given Y and $ be Xs(0). Show that 

E(X\Y,$) = Xs(0) = [F(9)FT(9)HT(0)]R-X(0)Y (7 .158) 

and that 

- l o g p ( X | 0 , Y) = ±(x - Xs($)y S-X(6)(x - XJ(6>)) + £ logdet S(0) 

S(0) = F(6)FT(0)- F(e)FT(9)HT(9)R-](0)H{$)F(0)FT(9) (7 .159) 

(cf. Problem 7G.5) [Xs(0) gives the smoothed state estimate for the underlying 
state space model, see Anderson and Moore (1979)]. 
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(c) Assume that the prior distribution of 0 is flat. (p(0) ~ independent of 0). Then 
show that the joint M A P estimate (7.77) of 6 and X given K, 

is given by 

(0M*P-*M*P ) = a r g m a x p($.X\Y) 
v.x 

arg min [ - l o g p(Y. X\V)] 
x.n 

where 

-\ogp(Y. X\6) = \ \Y - H(0)X\2 + \ \F-](0)X'-2 + l o g d e t F ( 0 ) (7.160) 

(d) Show that the value of X that minimizes (7.160) for fixed Y and ft is X*{6). 
defined by (7.158). Hence 

#MAP = a r 8 m i n \ Y ~ H(e)Xsm\ + i IF- 1^)^^)! 2 + logdetF(0)J 

^MAP = -^ J ^MAP) 

(e) Establish that 

-\og p(Y\$) = -log p(Y.X\$) + log p(X\0.Y) (7.161) 

(f) Establish that 

- logp(Y\0) = i | y - tf(0)X'(0)j" + I |F-1(0)X'(0)J2 + £ l o g d e t / ? ( 0 ) (7.162) 

[Hint: Use the matrix identity (cf. (7.159)) 

S{9) = [F-T{0)F-\6) + HT($)H(e)]~l 

and the determinant identity 

d e t ( / r + AB) = det( / 4 . + BA) 

for A and B being r x s and 5 x r matrices and Ir the r x r identity matrix.] 

(g) Conclude that 0ML ̂  0.MAP m general . 

Remark: The problem illustrates the relationships among various expres
sions for the likelihood function, the smoothing problem, and MAP-est imates. 
"Log likelihood functions" of the kind (7.160) have been discussed, e.g., in Sage 
and Melsa (1971)and Schweppe (1973), Section 14.3.2. 

.7 Consider the linear regression structure 

v(0 = <PTU)0 + v(t) 

Based on the theory of optimal algorithms for operator approximation. (Traub and 
Wozniakowski, 1980), Milanese and Tempo (1985), and Milanese, Tempo, and Vicino 
(1986)have suggested the following estimate: 
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For given 8. y l V and )}f • define the set 

A6 = {0||y</> - <pTU)9\ < 8 a l l ; = 1 N\ 

Assuming As. to be bounded and non-empty define its "center" 0L(A&) as follows: 
The t'th component is 

(superscript (i) denoting / : th component) . The estimate 9\- is then taken as «. (A.) . 

(a) Suppose that dim 9 = 1 . Prove that 0\ is independent of 8. as long as A> is 
nonempty and bounded. 

(b) When dim 9 > 1. may in general depend on 8. Suppose that as 8 decreases 
to a value 8*. A* reduces to a singleton 

A6* = 

Then clearly 0 V " = 9*. Show that 

#v = a rgmin max 1 v<r) - <pT{t)9\ 

This "optima! es t imate" thus corresponds to the prediction error estimate (7.12) 
with the £ ^ - n o r m 

(eN{-,6)) = ma\\E(t.9)\ 
t 

This in turn can be seen as the limit as p —*• oc of the criterion functions 

* ( « ) = 1*1" 

in (7.11). 

7E.1 Estimating the AR Part of an ARMA model: Consider the A R M A model 

A{q)y(t) = C(q)e(t) 

with orders nu and nc. respectively. A method to estimate the A R part has been given 
as follows. Let 

1 V 

* ? ( t ) = j v £ - v ( ' ) - v ( ' - r ) 

f = r 

Then solve for a* from 

R*{x) + alR^(r - 1) + ••• +anaR*(r - na) = 0 

T = nc + 1. nc + 2 ni + n„ 

Show that this (essentially) is an application of the IV method using specific instruments. 
Which ones? (See Cadzow, 1980. and Stoica, Soderstrom, and Friedlander. 1985.) 
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7E.2 Sinusoids in noise: Consider a sinusoid measured in white Gaussian noise: 

y(t) = oteiw' + e(t) 

For simplicity we use complex algebra. The constant a is thus complex-valued. The 
amplitude, phase and frequency are unknown: $ = (or, a>). The predictor thus is 

y</ |0) = ae"1" 

If e(t) has variance 1 (real and imaginary parts independent) , the likelihood function 
gives the prediction-error criterion: 

1 V 

VN($,ZN) = - £ | ? ( r ) - y ( 7 | 0 > | 2 

Show that the M L E 

0 i V = f I = arg min V w ( 0 , Z , v ) 
L ^ v J 0 

obeys 

o>lV = arg max | Yy (a)) \2 

a) 

where Yy(co) is the Fourier transform (2.37) of y(t). 

7E.3 Error-in-variables models: Econometr ic models often include disturbances both on 
inputs and outputs (compare our comment in Section 2.1 on Figure 2.2). Consider the 
model in Figure 7.1. The true inputs and outputs are thus s and JC, while we measure u 
and y . In a first-order case, we have 

x(t) + ax(t - 1) = bsit - 1) 

>•(/) = x{t) + e{t) 

u(t) = s(t) + w(t) 

Suppose that w and e are independent white noises with unknown variances. 
Discuss how a. b. and these variances can be estimated using measurements of y and u. 

- 6 

Figure 7.1 An error-in-variables model. 
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(7.163c) 

Assume initial conditions for Jt(0) (mean and variance) such that the prediction y (r | n ) 
becomes a stationary process for each 9 (i.e.. so that the steady-state Kalman filter can 
be used). Determine the log-likelihood function for this problem. Compare with the 
log-likelihood function for a directly parametr ized innovations representat ion model 
(4.91). 

7E.5 Consider the nonlinear model structure of Problem 5E.1 . Discuss how the LS. ML. IV. 
and PLR methods can be applied to this structure. (Reference: Fnaiech and Ljung. 
1986). 

7E.6 Consider the model structure 
f 

y(t) = <pT(t)9 + vit) 

where the regression vector <pit) can only be measured with noise: 

r]it) = <pit) + wit) 
The noises {w(t)} and [vit)} may be nonwhite and mutually correlated. Suppose a 
vector £ ( / ) is known that is uncorrelated with [v(t)} and {«;(?)) but correlated with 
(fit). Suggest how to estimate 9 from yit). r/(r). and C(f), f = 1, N. 

7E.7 Suppose in (7.86) and (7.87) that a does not depend on 6. Determine k\. 

7EJ& Consider the model structure 

y ( r | 0 ) = -ayit - 1) + bait - 1) 

and assume that the true system is given by 

yit) - 0.9y(r - 1) = u(t - 1) + e0(t) 

where [eo(t)} is white noise of unit variance. Determine the Cramer-Rao bound for 
the estimation of a and b. How does it depend on the propert ies of w? 

[Remark: With the assumption that the color of the noises are known, the prob
lem is relatively simple. Without this assumption the problem is more difficult. See 
Kalman (1991)', Anderson (1985), Soderstrom (1981), McKelvey (1996), and Stoica 
et.al. (1997)]. 

7E.4 Consider a probabilistic model , implicitly given in the state-space form 

x(t + 1) = ax(t) + w{t) 

yit) = xit) + v(t) (7.163a) 

where {u'(r)} and [vit)} are assumed to be independent , white Gaussian noises, with 
variances 

Ew2it) = ri 

Ev2(t) — 1 (assumed known) (7.163b) 

Let the parameter vector be 
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7E .9 Suppose that u(t) is periodic with period M , and that all transients have died out. We 
collect data over K periods: [y(t). «(f)] , t = 1 KM. We take the D F T of the 
signals and form (7.144) for a fixed noise model H*(i<o). Show that this gives exactly 
the same results as if we just take the DFT over one period and use the averaged output 
(7.153). Is it essential that the noise model is fixed? 

7T.1 Suppose that a true description of a certain system is given by 

y ( / ) + aJyO* - 1) + . . . + a]

nay{t - na) = b"u(t - 1) + . . . + b°„hu(t - nb) + v0(t) 

for a stationary process {i !o(0} independent of the input. Let <p(t) be defined, as usual, 
by (7.32). and let <p(?) be given by 

y{t) = [ - y „ < / - 1 ) . . . -y0ti - na) u(t - 1 ) . . . u{t - nb) } T 

where 

y0(f) + a?yo(f - 1) + . . . + a°„ayQ(t - na) = b\u{t - 1) + . . . + b°„hu(t - nb) 

Prove that for any vector of instrumental variables of the general kind (7.122) we have 

E<(0<pT(t) = E<;(t)ipT(t) 

7D.1 Consider the A R X structure (4.7) where one parameter , say b\. is known to have a 
certain value b\. Show that the associated predictor can be written as 

y</ |0) = $T

v(t) + n(t) 

with proper definitions of 6, <p. and fi (<p and ju to be known variables at t ime / ) . 
Derive the LS estimate and the IV estimate for this model. 

7D.2 Let A be a given, positive symmetric definite matrix and let B and C be given matrices. 
Establish that 

eTA6 - eTB - BTO + c = [o - A-*B]TA[$ - A~1B\ + c - BTA~1B 

> C - BTA~l B 

and use this result to prove all the expressions for the LSE in Section 7.3 [(7.34). (7.41). 
(7.43). and (7.46)]. The matrix inequality D > B is to be interpreted as "D — B is a 
positive semidefinite matrix." 

Hint: For (7.46). rewrite (7.45) as 

1 V 

VN(9, Z ' v ) = t r - Y [ v O " 9T<P«)] [v(f > - 0T<p(t)]T 

t=\ 

7 D . 3 Let £ be an invertible square px p matrix with elements ai}. Prove the differentiation 
formula 

a 
d e t E = d e t [ £ ] - p n 

dctjj 

where p,j is the / , j element of E - ' . [Hint: Use d e t ( / + eA) = 1 + e tr A+ higher-
order terms in e\. Use the result to prove (7.94) and (7.95). 

7 D . 4 Show that the two instrumental variable vectors, of dimension d. hit) and £(f )» where 
p1(t) = Tp2U) with T invertible. give the same estimate 0.y in (7.118). 
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7D.5 Show that if two variables x and u a re associated as in (7.123) and (7.124) then we can 
write 

r ~x(t - 1 ) 1 

-x{t - n„) 
uit - 1) 

- S(-M.N) 
N(q) 

u(t - 1) 

uit - 2) 

~u(t - nn - nm). 

L u(t - nm) J 

for an (n„ + nm) x (n„ 4- nm) matrix 

Si-M, N) = 

" - m o - m i . . • ~ m n m 
0 0 " 

0 - m 0 • — m , i W - i 0 

0 0 . . - m o - m i . • ~ m n m 

1 0 0 

0 1 0 

_ 0 0 1 « 1 

Such a matrix is called a Sylvester matrix (see. e.g., Kailath. 1980), and it will be 
nonsingular if and only if the polynomials in (7.124) have no common factor. Use this 
result to prove that the instruments (7.126) give the same IV estimate as the instruments 
(7.122). Reference: Soderstrom and Stoica (1983). 

I 
7D.6 Show that the prediction-error estimate obtained from (7.11) and (7.12) can also be 

seen as a correlation estimate (7.110) for a particular choice of L, £ . and a. 
7D.7 Give an explicit expression for the est imate #j^ l v in (7.130) in the case f does not depend 

on 9. and a(e) = s. 

7D.8 Consider the symmetric matrix 

Show that if H > 0. then 

Hint: Consider xHxT for 

"'Is' '] 

A - BC~lBT > 0. 

x = [x\ —x\BC 1 ] 

with JCI arbitrary. 
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APPENDIX 7A: PROOF O F T H E C R A M E R - R A O INEQUALITY 

The assumption E6(y's) = OQ can be written 

Bv definition we also have 

1 = f MBo. x*)dx' 

(7A.1 

(7A.2) 

Differentiating these two expressions with respect to On gives 

i i a \ T 

I 

= E9(y 

(I is the d x d unit matrix) and 
\T 

= / R > , v , [ i ^ ' v ' V ) ] 

(7A.3) 

° = / [̂ />(^rV)l d * N = f [ -^ l o g/v (%-**)1 M0o.xN)dxN 

JKs [dOo • J / R A -

(7A.4) 

Expectation in these two expressions is hence w.r.t. y l V . 
Now multiply (7A.4) by 0Q and subtract it from (7A.3). This gives 

Now denote 

E [0(yN) - Oo] ^ - l o g / v ( 0 o , yN)J = 

a = e(y*) -Oo, 0 = — log / v ( 0 « , yN) 
dVo 

(both d-dimensional column vectors) so that 

Eaf = / 

Hence 

(7A.5) 

(7A.6) 

(7A.7) 

•[;][;]' - [ f 
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/ 

where the positive semidefiniteness follows by construction. Hence Problem 7D.8 
proves that 

EaaT > [EfifiT]~] 

which is (7.79). It only remains to prove the equality in (7.80). Differentiating the 
transpose of (7A.4) gives 

which gives (7.80). 



8 

CONVERGENCE AND 
CONSISTENCY 

8.1 I N T R O D U C T I O N 

In Chapter 7 we described a number of different methods to determine models from 
data. To use these methods in practice, we need insight into their properties: How 
well will the identified model describe the actual system? Are some identification 
methods better than others? How should the design variables associated with a 
certain method be chosen? 

Such questions relate, from a formal point of view, to the mapping (7.7) from 
the data set Z ' v to the parameter estimate 0 # : 

Z ' v - + 9N € DM (8.1) 

Questions about properties of this mapping can be answered basically in two ways: 

1. Genera te data ZN with known characteristics. Apply the mapping (8.1) (cor
responding to a particular identification method) and evaluate the properties 
of 0,y. This is known as simulation studies. 

2. Assume certain properties of ZN and try to calculate what the inherited prop
erties of 0,v are. This is known as analysis. 

In this chapter we shall analyze the convergence properties of 9\< as N tends 
to infinity. Since we will never encounter infinitely many data, such analysis has the 
character of a " thought experiment," and we must support it with some assumptions 
about a corresponding infinite data set Z 0 0 . There are some different possibilities for 

247 
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such assumptions (see Problem 8T.1). Here we shall adopt a stochastic framework 
for the observations, along the lines described in Chapter 2. We shall thus consider 
the data as realizations of a stochastic process with deterministic components. It 
might be worthwhile to contemplate what analysis under such assumptions actually 
amounts to. A probabilistic framework relates to the following questions: What 
would happen if I repeat the experiment? Should I then expect a very different 
result? Will the limit of 8\ depend on the particular realization of the random 
variables? Even if the experiment is never repeated, it is clear that such questions 
are relevant for the confidence one should develop for the estimate, and this makes 
the analysis worthwhile. It is then another matter that the probabilistic framework 
that is set up to answer such questions may exist only in the mind of the analyzer and 
cannot be firmly tied to the real-world experiment. 

It should also be remarked that a conventional stochastic description of dis
turbances is not without problems: For example, suppose we measure a distance 
with a crude measuring rod and describe the measurement error as a zero-mean 
random variable, which is independent of the error obtained when the experiment 
is repeated. This assumption implies, by the law of large numbers, that the distance 
can be determined with arbitrary accuracy, if only the measurements are repeated 
sufficiently many times. Clearly such a conclusion can be criticized from a practical 
point of view. Results from theoretical analysis must thus be interpreted with care 
when applied to a practical situation. 

The question of how 9\ behaves as N increases clearly relates to the question of 
how the corresponding criteria functions V,v(0. Z* v) and / y (0. Z A ) behave. These 
are. with a stochastic framework, sums of random variables, and their convergence 
properties will be consequences of the law of large numbers. Our basic technical 
tool in this chapter will thus be Theorem 2B.1. In order not to conceal the basic 
ideas with too much technicalities, we shall only complete the proofs for linear, time-
invariant models (such as those in Chapter 4) and quadratic criteria. The techniques 
and results, however, carry over also to more general cases. 

The chapter is organized as follows. Assumptions about the infinite data set 
Z 3 0 are given in Section 8.2. Convergence for prediction-error estimates is treated 
in Section 8.3. Consistency questions (i.e., whether the true system is retrieved in the 
limit) are discussed in Section 8.4. A frequency-domain characterization of the limit 
estimate is given in Section 8.5. In Section 8.6. the corresponding results are given 
for the correlation approach. 

A Preview 

In the chapter a general and natural result is derived: the estimate 9^ obtained by 
the prediction-error method (7.155) will converge to the value that minimizes the 
average criterion Ei (e{t,6), 9). Here E can heuristically be taken as averaging 
over time or ensembles (possible realizations) or both. The chapter deals both with 
the formal framework for establishing this "obvious" result and with characteriza
tions of the limit value of 9^. The reluctant reader of theory should concentrate on 
understanding the main result. Equation (8.29), and the frequency-domain charac
terization of the limit model in Section 8.5. 
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S.2 C O N D I T I O N S O N T H E DATA SET 

The data set 

Z'v = {«(!), yd) u(N).y{N)} 

is the basic starting point. Analysis, we said, amounts to assuming certain properties 
about the data and computing the resulting properties of 0.\. Since the analysis of 
0,v will be carried out for /V —> oo, it is natural that the conditions on the data relate 
to the infinite set Z 0 0 . In this section we shall introduce such conditions, as well as 
some pertinent definitions. 

A Technical Condition D l (*) 

We shall assume that the actual data are generated as depicted in Figure 8.1. The 
input u may be generated (partly) as output feedback or in open loop (w = w). 
The signal eo represents the disturbances that act on the process. [The subscript 0 
distinguishes this " t rue" noise eo from the "dummy*' noise e we have used in our 
model descriptions (7.3).] The prime objective with condition D l is to describe the 
closed-loop system in Figure 8.1 as a stable system so that the dependence between 
far apart data decays. The most restrictive condition is the assumed linearity (8.2). It 
can be traded for more general conditions, at the price of more complicated analysis. 
See Ljung (1978a). condition S3. For our analysis, we shall use the following technical 
assumptions: 

D l : The data set Z x is such that for some filters j d}'' (k) J 

v(r) = £</, a , (*)r(f - *) + £</,'21<*te>(f - *) 

oc oc 

«(/) = JTd?\k)r(t -k) + £<//4,(*)«,(/ - k) 

(8.2) 

where 

1. {/•(?)} is a bounded, deterministic, external input sequence. (8.3) 

2. {eo(0} is a sequence of independent random variables with zero mean values 
and bounded moments of order 4 + 8 for some 8 > 0. (8.4) 

Moreover, 

3 . The family of filters J</f

(,,(Jt) j , / = 1—4; / = 1. 2 . . - - is uniformly 

stable. ~ (8.5) 

4. The signals {>(/)}, {«(/)} are jointly quasi-stationary. (8.6) 
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System 

Feedback 

Figure 8.1 The data-generating configuration. 

Recall the definitions of stability (2.29) and quasi-stationarity (2.58) to (2.62). 
(Problem 2T.4 showed that uniform stability holds, even if the closed-loop system 
goes through "unstable transients.*') 

Remark. When we say that | r ( f )} is "deterministic." we simply mean that 
we regard it as a given sequence that (in contrast to e^) can be reproduced if the 
experiment is repeated. The stochastic operators and qualifiers, such as E. w.p. 1. and 
AsN will thus average over the properties of {?o(f)} for the fixed sequence \r{t)\. Of 
course, this does not exclude that this particular sequence {r(t)} actually is generated 
as a realization of a stochastic process, independent of the system disturbances. In 
that case it is sometimes convenient to let the expectation also average over the 
probabilistic properties of {>*(/)}. We shall comment on how to do this below [Eq. 
(8.27)]. 

A True System S 
i 

We shall sometimes use a more specific assumption of a " true system": 
SI: The data set Z 5 0 is generated according to 

S : y(f) = Goiq)u(t) 4- H()(q)e()(t) (8.7) 

where [eo(t)} is a sequence of independent random variables, with zero mean values, 
variances A O , and bounded moments of order 4 + 6. some 8 > 0. and Ho(q) is an 
inversely stable, monic filter. 

We thus denote the true system by 5 . Given a model structure (4.4). 

M : {G(q.9)yH(q,0)\9 € D:KT} (8.8) 

it is natural to check whether the true system (8.7) belongs to the set defined by (8.8). 
We thus introduce 

DT(S.M) = {6 € DM\ G(eiiO.0) = Gu(ei(t}): 

H(eiM,0) = Hu(eho)\-7T < co < TT] (8.9) 
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This set is nonempty precisely when the model structure admits an exact description 
of the true system. We write this also as 

S € M (8.10) 

Although such an assumption is not particularly realistic in practical applications, it 
yields a quite useful insight into properties of the estimated models. 

When SI holds, a more explicit version of conditions D l can be given: 

Lemma 8.1. Suppose that SI holds, and the input is chosen as 

«(/) = -F(q)y(t) + r(t) 

such that there is a delay in either Co or F and such that 

[1 + Go(q)Fiq)]-1 Gn{q). [1 + G()(q)F{q)]~] H0(q). 

F(q) [1 + Go(q)F(q)]~] G0(qh F(q) [1 + G0(q)F(q)]'1 H0(q) 

are stable filters and that {w(t)} is quasi-stationary. Then condition D l holds. 

Proof. We have, for the closed-loop system, 

y(t) = [1 + Go(q)F(q)]'1 G0(q)r(t) + [1 + G0(q)F(q)}-1 H0{q)e0(t) (8.11) 

and similarly for w. The stability condition means that the filters in (8.11) are stable. 
Thus (8.6) follows from Theorem 2.2. Moreover. (8.2), and (8.5), are immediate from 
(8.11) and the stability assumption. C 

Information Content in the Data Set 

The set Z A is our source of information about the true system. This is to be fit to 
a model structure M of our choice. (The reader might at this point review Section 
4.5. if necessary.) The structure M describes a set of models M* within which 
the best one is sought for. Identifiability of model structures concerns the question 
whether different parameter vectors may describe the same model in the set M*. 
See Definitions 4.6 to 4.8. A related question is whether the data set Z x allows us to 
distinguish between different models in the set. Recall that, according to Definition 
4.1. a (linear time-invariant) model is given by a filter W(q). We shall call a data 
set informative if it is capable of distinguishing between different models. We thus 
introduce the following concept: 

Definition 8.1. A quasi-stationary data set Z 3 0 is informative enough with respect 
to the model set M* if. for any two models W\ (q) and W2(q) in the set, 

EKWjtq) - W2(q))z(t)f = 0 (8.12a) 

implies that W^e^) = W2{eio)) almost all a>. 
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We note that with 

W\{q) ~ W2(q) = [AWu(q) AWy(q)] 

(8.12a) can be written 

~E[AWu(q)u(t) + AWy(q)y(t)f = 0 (8.12b) 

Note that the limit in (8.12) exists in view of (8.6) and Theorem 2.2. Recall also 
(4.112) and the definition of equality of models. (4.116). 

Definition 8.2. A quasistationary data set Z 5 0 is informative if it is informative 
enough with respect to the model set £*, consisting of all linear, time-invariant 
models. 

The concept of informative data sets is very closely related to concepts of "per
sistently exciting*" inputs, "general enough" inputs, and so on. We shall discuss the 
concept in detail in Chapter 13 in connection with experiment design. Here we give 
an immediate consequence of Definition 8.2. 

Theorem 8.1. A quasi-stationary data set Z x is informative if the spectrum matrix 
for z(t) = [ ii(f) y(t) ]T is strictly positive definite for almost all co. 

Proof. Consider (8.12) for arbitrary linear models Wi and W 2 . Let us denote 
W] (q) — W2{q) = W{q). Then applying Theorem 2.2 to (8.12) gives 

where 

0 = J W(e^)<Pz(co)WT(e-ia>)djLo 

L<i>vii (w) * v w) J 

Since $ , ( w ) is positive definite, this implies that W(et(u) = 0 almost everywhere, 
which proves the theorem. • 

Some Additional Concepts and Notations (*) 

In Definition 4.3 we defined a model structure as a differentiable mapping, such that 
the predictors and their gradients were stable for each 6 e DM. To facilitate the 
analysis, we now strengthen this condition. 

Definition 8.3. A model structure JA. is said to be uniformly stable if the family 
of filters {W(q, 0), V(q.6) and (d/dO)V(q, 0): 6 € DM] is uniformly stable and if 
the set Dm is compact. [Recall the definition (2.29).] 
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Analogous to (4.109), we shall, when SI holds, define 

Xo(') = 

and 

u(t) 

e0(t) 
(8.14a) 

T0(q) = [G0{q) H0(q)] (8.14b) 

The system (8.7) can thus be written 

y(r) = T0(q)xo(t) 

The difference will be denoted 

f{q.9) = Tn(q)-nq.$) = [G{q,$) H(q.O)] (8.15) 

8.3 PREDICTION-ERROR APPROACH 

Basic Result 

The prediction-error estimate is defined by (7.12) 

0N = arg min VN(6, ZN) (8.16) 

To determine the limit to which $x converges as TV tends to infinity is obviously 
related to the limit properties of the function VN(9. Z A ) . For a quadratic criterion 
and a linear, uniformly stable model structure M, we have 

1 N 

VN(9,ZN) = -Y\e2(t,9) (8.17) 
N ' -

and, using (7.2). 

e(t,9) = [1 - Wy(q,9)]y(t) - Wu(q,9)u(t) (8.18) 

Under assumption D l we can replace y(t) and u(t) in the preceding expression by 
(8.2), which gives 

e(t,9) = f^dl5)(k:9)r(t - k) + jrd}*\k: 9)e0(t - k) (8.19) 
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Now the filters in (8.18) are uniformly (in 0 ) stable since M is uniformly stable. 
Under assumption (8.5) the filters in (8.2) are uniformly (in / ) stable. Hence the 
cascaded filters \d\'\k: 0)}, i = 5, 6. in (8.19) are also uniformly (in both 9 and / ) 
stable (see Problem 8D.2). That is, 

oc 

dli}(k:0) < A . V r , V 0 € DM.i = 5 , 6 £ f t < oc (8.20) 
l 

Finally, under assumption (8.6). Theorem 2.2 implies that {£(/. 0)} is quasi-stationary. 
All conditions for Theorem 2B.1 are thus satisfied, and applying this theorem 

to (8.17) with (8.19) gives the following result. 

Lemma 8.2. Consider a uniformly stable, linear model structure M (see Defi
nitions 4.3 and 8.3). Assume that the data set Z x is subject to D l . Then, with 
V v ( 0 . Z ' v ) defined by (8.17), 

sup | V. v (0, Z ' v ) - 7(0)1 0. w.p. 1 as N oc (8.21) 

where 

V(9) = £V(f,0) (8.22) 

The criterion function V,\(0, Z i V ) thus converges uniformly in 0 € DM to 
the limit function V(0 ) . This implies that the minimizing argument 0y of also 
converges to the minimizing argument 0* of V since DM is compact. Notice that it 
is essential that the convergence is indeed uniform in 0 for this to hold (see Problem 
8D.1). It may happen that V(0) does not have a unique/global minimum. In that 
case we define the set of minimizing values as 

DC = a rgmin V(9) = 9\9 e DM,V(9) = min V(9')\ (8.23) 

We can thus formulate this corollary to Lemma 8.2 as our main convergence result: 

Theorem 8.2. Let 0.y be defined by (8.16) and (8.17). where e(f. 0) is determined 
from a uniformly stable linear model structure M. Assume that the data set Z ^ is 
subject to D l . Then 

0.v -> DC. w.p. l a s /V oc (8.24) 

where D( is given by (8.22) and (8.23). 

Remark. Convergence into a set as in (8.24) is to be interpreted as 

_inf 0 l V - 0 - ^ 0 , as N -> oc (8.25) 
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The function V(0) will in general depend both on the true system and the input 
properties. With a quadratic criterion and a linear model structure, it follows from 
Theorem 2.2 that it depends on the data only via the spectrum matrix <&:(a>) in 
(8.13). [Explicit expressions will be given in (8.63) to (8.66).] This has the important 
consequence that it is only the second-order properties of the data that affect the 
convergence of the estimates. 

Ensemble- and Time-averages 

The signal sources for e(t. 0) are r and eo. as evidenced by (8.19). Recall that 
r — u in case of open loop operation. The symbol E denotes as defined in (2.60) 
ensemble-averaging ('"statistical expectation*') over the stochastic process [eo(t)} 
and time-averaging over the deterministic signal {r(t)}. The function V(6) is thus 
"the average value" of e2(t. 6) in these two respects. 

The reason for time-averaging over \r{r)} is. as we have stated several times, 
that it might not always be suitable to describe this signal as a realization of a stochas
tic process. However, when indeed [r{t)} is taken as a realization of a stationary 
stochastic process, ( independent of eo), Theorem 2.3 shows that, under weak condi
tions, time averages over {r(t)} will, with probability 1, equal the ensemble averages: 

1 , V 

lim — yV(f)r(f - T ) = Err{t)r{t - r ) w . p . 1 (8.26) 
J V ^ O C N z—' 

t=i 

Here Er denotes statistical expectation with respect to the r -process. 
This means that ^ o - e n s e m ^ l e * a r »d r-time-averaging by E will, w.p. 1, be equiv

alent to taking total statistical expectation over both eo and r : 

"E = ErEets w.p. 1" (8.27a) 

i.e., 

V{9) = Ee2(t.O) = ErEeoe2(t,6) w.p. 1 (8.27b) 

For ' 'hand calculation'* it is often easier to apply this total expectation: See 
Examples 8.1 to 8.2. 

[Conversely, one could also replace ensemble averages over eo by time averages 
to eliminate the probabilistic framework entirely: See Problem 8T.1.] 

The General Case 
With a little more technical effort, the results of Lemma 8.2 and Theorem 8.2 can 
also be established for general norms t(e, 6) as in (7.16), in which case the limit is 
defined as 

V(0) = El{e{t.0),G) (8.28) 

The result can also be extended to nonlinear, time-varying models and less restrictive 
assumptions on the data set than D L See, for example. Ljung (1978a)for such results. 
In summary we thus have 
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0v - a rgmin Et (<?(/. 0 ) . 0 ) . w.p. 1 as N —• oc (8.29) 

This convergence result is quite general and intuitively appealing. It states that the 
estimate will con verge to the best possible approximation of the system that is available 
in the model set. The goodness of the approximation is then measured in terms of 
the criterion V(0) in (8.28). We shall dwell on what "best possible" actually means 
in more practical terms in the next two sections. First we give two examples. 

Example 8.1 Bias in A R X Structures 

Suppose that the system is given by 

y ( 0 + anv(f - 1) = bnu(t - 1) + e{i(t) 4- c()efl(t - 1) (8.30) 

where [u(t)} and {e()(t)} are independent white noises with unit variances. Let the 
model structure be given by 

y(t\0) + ayit - 1) = bu(t - 1), 0 = | | (8.31) 

The prediction-error variance is 

V(B) = E[y(t) + ay(t - 1) - buit - I ) ] 2 

= r0(l + a1 - 2aa0) + b1 - 2bb0 + 2acQ (8.32) 

where 

e . v b l + c o < c u _ ao) ~ ^oCo + 1 
ro = c v" ( f ) = ; 1 •> 1 - 05 

(see Problem 2E.7). It is easy to verify that the values of a and b that minimize (8.32} 
are 0* = [ a* b* ]T given by 

* Co 
a = a{)  

r ° (8.33) 
b* = bo 

These values give a prediction-error variance 

- c2 

V{0*) = 1 + rg 2. (8.34) 

This variance is smaller than the "true values" OQ = [ao bo]T inserted into (8.32) 
would give: 

V(9Q) = 1 + c2 (8.35) 
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\-4 + + l 

Hence 
bs -* b[)d<\> w.p. 1 as Af oo 

since this gives the smallest prediction-error variance. Now the predictor 

y{t\t - 1 ) = M>«(/ " 2) (8.39) 

is a fairly reasonable one for the system (8.36) under the input (8.37). It yields the 
prediction-error variance 1 +b^, compared to the optimal value 1 for a correct model 
and the output variance 

1 - d0 

Notice, however, that the identified model is heavily dependent on the input that was 
used during the identification experiment. If (8.39) is applied to a white-noise input 
{u(t)}, the model (8.39) is useless: It yields the prediction-error variance 1 + b^ + 
b^dl, which is larger than the output variance 1 + b^. LZ 

When we apply the prediction error method to (8.30) and (8.31). the estimates as and 
bs will converge, according to Theorem 8.2, to the values given by (8.33). The fact 
that a* ^ ao is usually expressed as that the estimate is "biased." However, it is clear 
from (8.34) and (8.35) that the bias is beneficial for the prediction performance of 
the model (8.31). It gives a strictly better predictor for a = a* than for a. = «(). • 

Example 8.1 stresses that the algorithm indeed gives us the best possible pre
dictor, and it uses its parameters as vehicles for that. It is, however, important to 
keep in mind that what is the best approximate description of a system in general 
depends on the input used. We illustrate this by a simple example. 

Example 8.2 Wrong Time Delay-

Consider the system 
y(t) = b0u(t - 1) + e0(t) (8.36) 

where 
u(t) = d0u(t - 1 ) + w(t) (8.37) 

and where {eo(t)} and {w(t)) are independent white-noise sequences with unit vari
ances. Let the model structure be given by 

y(t\B) = bu(t - 2), S = b (8.38) 

The prediction-error variance associated with (8.38) is 

£[v ( f ) - bu(t - 2 ) ] 2 = E[b0u(t - 1) - bu(t - 2 ) ] 2 + £eg(f) 

= E [(Mo - b)u(t - 2) + b0w(t - l ) ] 2 + 1 

(Mo - b)1 
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8.4 C O N S I S T E N C Y A N D IDENTIFIABILITY 

Suppose now that assumption SI holds so that we have a true system, denoted by 5. 
Let us discuss under what conditions it will be possible to recover this system using 
prediction-error identification. 

Clearly, a first assumption must be that 5 e M\ that is. the set DjiS. 'M) 
defined by (8.9) is nonempty. 

5 € M: Quadratic Criteria 

The basic consistency result is almost immediate. 

Theorem 8.3. Suppose that the data set Z 0 0 is subject to assumptions D l and S I . 
Let M be a linear, uniformly stable model structure such that 5 € M. Assume 
also that Z°° is informative enough with respect to M. If the input contains output 
feedback then also assume that there is a delay either in the regulator or in both 
Go(q) and G{q, 9). Then 

Dc = DT(S, M) (SAo) 

where Dc is defined by (8.22) and (8.23) and DT ( 5 . M) by (8.9). If, in addition, the 
model structure is globally identifiable at 9o e Z ) j ( 5 , M). then 

Dc = {Oo} (8.41) 

Theorems 8.2 and 8.3 together consequently state that the estimated transfer 
functions obey 

G{eiw.9N) -> Go{ei<0)\ H(eio\9N) -± H0(ei(O). . w.p. 1 as N -+ oo (8.42) 

Proof of Theorem 8 . 3 . Let 0Q € Dj and consider, for any 6 € DM* 

V(0) - V($0) = E[s(t,0) - e(t,0o)]e(t,0o) + \E[£(t.9) - e{t. 00)]2 ( 8 . 4 3 1 

Since Oo € Dr, 

e(t,00) = -H0-1(q)Go(q)u(t) + H~l(q)y(t) = e0(0 

according to SI . Moreover, the difference 

e(t,0) - e(t,90) = y(t\9o) - y(t\9) 

depends only on input-output data up to time / — 1 and is therefore independent of 
eo(t) [ci (8.2)]. (If there is no delay in the system/model, the term u(t) will appear 
here. But then, according to the assumptions, there will be a delay in the regulator, 
so that u(t) and eo(t) are independent.) The first term of (8.43) is therefore zero. 
The second term, which equals 

E[y(t\Oo) - y(t\0)f 
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is strictly positive if 9 and 9o correspond to different models, since the data set is 
sufficiently informative; see (8.12). Hence (8.40) follows from (8.23). The result 
(8.41) follows since global identifiability of M at 90 implies that DT = {#0} [see 
(4.135)]. 

Go € Q\ Quadratic Criteria 

Often it is more important to have a good estimate of the transfer function G than of 
the noise filter H. We shall now study the situation where the set of model transfer 
functions 

§ = {G(eia>,6)\0 € DM) 

is large enough to contain the true transfer function, 

G 0 € <g (8.44) 

but the true noise description Ho cannot be exactly described within the model set. 
Hence 5 £ M. We then have the following result: 

Theorem 8.4. Suppose that the data set is subject to assumptions D l and 
SI . Let M be a linear uniformly stable model structure, such that G and H are 
independently parametrized: 

9 = [j] G i « ' B ) = G ( 4 - p ) ' H{q,0) = H{q.ri) (8.45) 

and such that the set 

DG(S,M) = {p\G(eUo, p) = C 0 ( O V f t > ) (8.46) 

is nonempty. Assume that Z 0 0 is informative enough with respect to M and that the 
system operates in open loop; that is, 

{«(/)} and \eo(t)} are independent (8.47) 

Let 

*• • R:] 
be obtained by the prediction-error method (8.16) and (8.17). Then 

Av DG(S.M) w.p. l a s i V oo (8.48) 

The result (8.48) can be written more suggestively as 

G(eieo,9N) G 0 ( O , w.p. l a s i V -+ oo (8.49) 
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Proof. Consider the function V(9) given by (8.22). We have from SI 

s(t.6) = // -V *)[>•(') - G(q.p)u(t)] 

= H-Hq.nMGote) - G{q.p))u(t) + H0(q)e0(t)} 

= uF(t, n , p ) + eF(t, n) 

with obvious notation. Since M an eo are independent, we have that 

V(9) = V(p. n) = 5 [ £ « 2

F U . p . 17) + Ee2

F(t. «)] 

The first term is zero precisely when p € £>c(5, Jvf), and the second term is inde
pendent of p. Hence 

are min V(p. n) = Dc(S, M) 
p 

irrespective of H, which, together with Theorem 8.2. concludes the proof. .J 

We may add that both assumptions (8.45) and (8.47) are essential for the result 
to hold. See Example 8.1 and Problem 8E.3. 

The case of independent parametrization (8.45) covers the output error model 
(4.25) along with variants with fixed noise models 

y ( / ) = G(q,0)u(t) + Hm(q)e(t) (8.50) 

[which alternatively can be regarded as the output error model used with a prefilter 
L(q) = l/H*(q); see (7.13) and (7.14)]. It also covers the Box-Jenkins model 
structure (4.31). These model structures consequently have the important advantage 
that the transfer function G can be consistently estimated, e/ven when the noise model 
set is too simple to admit a completely correct description of the system. 

Example 8.3 First Order Output Error Model 

Consider the system (8.30) of Example 8.1, and let the model structure be a first-order 
output error model: 

y(t\0) = * 
1 + aq~l 

In this case it follows from Theorem 8.4 that the estimates and bs will converge 
to the true values ao and bo. -

S € Mi General Norm t(e) (*) 

With a general, 9-independent norm i(e). the estimate converges into the set Dc: 

9N D f = arg min I t 9)) (8.51) 
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according to (8.29). In general, the set D( will depend on i. However, when 5 € M 
it is desirable that D, = DfiS. M) for all reasonable choices of t. Clearly, some 
conditions must be imposed on t. and Problem 8D.3 shows that it is not sufficient 
to require C(e) to be increasing with \e\. We have to require t(e) to be convex in 
order to prove a result that holds for all distributions of the innovation eo(t). We 
thus have the following extension of Theorem 8.3. 

Theorem 8.5. Let t(x) be a twice d i f fe ren t ia te function such that 

El'(e{)(t)) = 0 (8.52) 

fix) > 8 > 0. V.v (8.53) 

Here eoit) are the innovations in assumption SI. Then, under the assumptions of 
Theorem 8.3. 

Dc = DT(S.M) 

with Dc defined by (8.28) and (8.23). 

Proof. Let 9o £ Dj and denote as usual 

e(t.Oo) = e0(t) 

Then for any 6 £ DT 

e(t.O) = eoit) + yit,0) 

where E[y(t.9)]2 > 0 since the data set is sufficiently informative. Hence, by 
Taylor's expansion, 

Cieit,0)) = tieoit)) + yit.OU'ieoit)) + \ [yit, 9)f *"<$(/)) 

where £(>) is a value between eoit) and eit. 0). Since eoit) and y(f. 0) are inde
pendent , this expression gives 

Eiieit.0)) = liieoit)) + 0 + ^ £ j [ y ( / . (9)]-1" ( | (r))} 

_ 5 — _ 
> ^ ( ^ ( O ) + - • E[y(t.9)Y > Elieoit)) 

using (8.52) and (8.53) and E [yit, 0)]2 > 0. respectively. This concludes the proof. 

Clearly, an analogous extension of Theorem 8.4 can also be given. 
In the maximum likelihood method the norm £ is chosen as the negative 

logarithm of the P D F of the innovations; (7.85): 

tix) = - l o g / , ( x ) (8.54) 

It can be shown that (8.52) automatically holds for this norm, and that Theorem 8.5 
holds without condition (8.53). See Problem 8G.3. 
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S e M: General Norm i(s. a) (*) 

We consider now the case where the norm is parametrized by an a that is independent 
of the parametrization of the predictor as in (7.17). We thus have that the limit values 
of 0 and a are given by 

(0\ct*) = arg min V(6>. a) = arg min £ £ (e(r, 0 ) , a ) (8.55) 
O.ct O.a 

If S 6 M and the conditions of Theorem 8.5 are satisfied for all a. then it is clear 
that 6* € D r ( S , M). regardless of a. This means that 

cr* = arg min £ l ( e D ( 0 > a ) (8.56) 
a 

We shall study what (8.56) tells us about the limit value a*. We first have the following 
result. 

Lemma 8.3. Consider a norm (7.17), normalized so that 

e - t { x a ) d x = 1 Va (8.57) 
J—x 

Let the P D F of e${t) be fe(x), and assume that for some <XQ 

€ ( j r , a 0 ) = - l o g / « U ) (8.58) 

Then a* = a 0 in (8.56). 

Proof. Let / 

/ 0 < j r ) = e-l{x<a) 

Hence 

El{e0(t),a) - Ee(e0(tha0) = - £ l o g 4 ^ 7 7 
fe(e0(t)) 

> - i o g £ ^ > ) = _ l o g f f e ( x ) d x = _ l o g f f a { x ) d x = u 
/*>(<?() ( 0 ) J lfe(x)J J 

The inequality is Jensen's inequality (see Chung, 1974) since — log A- is a convex 
function, and equality holds if and only if fa(x) = const • f,(x). This proves the 
lemma. • 

Heuristically, we could thus say that 

the minimization with respect to a in (8.55) tries to make the norm l(s,a) 
look like the negative logarithm of the PDF of the true innovations. (8.59) 
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Example 8.4 Estimating the Innovations Variance 

Let t(s. a) be given by (7.87): 

1 I V 1 
£(f, or) = h logo; 

2 |_Gf J 
We find that 

E [t (e«(0.cr) = - — ^ + logcr = - - + log a 
2 | _ o r J 2 L a ? 

which is minimized by a = AQ. The estimate a ; y will thus converge to the innovation 
variance as /V tends to infinity. See also Problem 7E.7. • 

When the parametrizations of the predictor and of the norm tie. 0) have com
mon parameters, the conclusion is that 

0* = a rgmin ~Et (eit,6), S) 
<f€DM 

will give a compromise between making the prediction errors {e(t. $)) equal to the 
true innovations {eoit)} and (8.59). that is. making the norm look like — log fe(x). 
In case these two objectives cannot be reached simultaneously, consistency may be 
lost even if £>r(5 , M) is nonempty. See Problem 8E.2. 

Multivariable Case (*) 

The convergence and consistency results for multivariable systems are entirely anal
ogous to the scalar case. The result (8.29) holds without notational changes for the 
multivariable case. The counterparts of Theorems 8.3 and 8.4 with quadratic criteria 

I t (sit, 6)) = x{EeT(t.6)A.-le(t,e) (8.60) 

hold as stated, with only obvious notational changes in the proofs. For Theorem 8.5. 
the condition (8.53) takes the form that the p x p matrix t"ie) should be positive 
definite. 

1.5 LINEAR T I M E - I N V A R I A N T M O D E L S : A F R E Q U E N C Y - D O M A I N 
DESCRIPTION OF T H E L IMIT M O D E L 

Theorem 8.2 describes the limiting estimate 0*. 6* € Dc, as the one that minimizes 
the prediction error variance among all models in the structure M. In case 5 € M, 
this means that 0* = Oo is a true description of the system (see Theorem 8.3). but 
otherwise the model will differ from the true system. In this section we shall develop 
some expressions that characterize this misfit between the limiting model and the 
true system for the case of linear time-invariant models. See also Problem 8G.4. 
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A Note on Data from Arbitrary Systems (*) 

Even though the approximation expressions below take their starting point in a "true 
linear system" according to assumption SI . it is of interest to note that they are equally 
applicable to data from arbitrary, nonlinear, time-varying systems. Suppose that the 
input and output signals are jointly quasi-stationary, so that their spectra are defined. 
Then we can determine the optimal predictor Wiener filter for predicting yit) from 
past data: 

y(r|f ~ 1) = Wti(q)u(t) + Wy(q)yin (8.61) 

where Wy and Wu are computed from the cross spectra dj>H. <t>v„ and <t>v in a well 
defined way. (See Wiener (1949)and also Problem 8G.5). The error e{){t) = y(t) — 
y( / | r — 1) will by construction be uncorrelated with past inputs and outputs. This 
also means that <?o(£). k < t will be uncorrelated with eQ(t). since it is constructed 
from past input-output data. If we introduce Hoiq) = (1 — W v ( g ) ) - 1 and Goiq) = 
H0(q)Wu(q) (cf (4.114)), we can rewrite (8.61) as 

y{t) = G{)iq)uit) + H0(q)e0{t) (8.62) 

where eoit) is an uncorrelated sequence, and uncorrelated also with past input-output 
data. In general, independence will not hold, but in the calculations to follow we 
will only utilize the second-order properties of the data. All this means that (8.62) 
is a correct description of the observed data, if only their second-order properties 
are considered: "the best linear time-invariant approximation of the true system." (it 
may still be useless for control and decision-making, though, since this approximation 
depends on the actual data spectra.) 

An Expression for V{0) 
t 

By the fundamental expression (2.65), we may write 

— — 1 r T 

V(9) = EU2(t.S) = — / <&e(co.0)dco (8.63) 

where <3>f (OJ. 9) is the spectrum of the prediction errors {eit. 9)}. Under assump
tions SI we have 

yit) = Goiq)u(t) + H0iq)el)(t) (8.64^ 

where the noise source has variance An- Then, for a linear model structure, we 
obtain the prediction errors 

e(t%9) = H-\q,0)[yU) - G f a , 0 ) n ( / ) ] = H~] [ ( G 0 - Ge)u(i) + H0e0{t)} 

= HQ1 [(GO - G»)u{t) + ( f lb - HB)eoit)] + eQ(t) 

= V [ ( G o - G < 0 {Ho-H9)] 
uit) 

enit) 
+ eoit) (8.65; 
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Here, we introduced the shorter notation He = H(q.O) and similarly for G^. 
Assume now. as in Theorem 8.3. that the system may be under feedback control, 
but is such that there is a delay either in the system and the model (i.e. Go and 
Gfy both contain a delay), or in the regulator (so that u(t) may depend only on 
y(t — 1) and earlier values). Note also that, since both HQ and Hs are monic. the 
term (Ho — Hf,)eo(t) is independent of eo(t). All this means that the innovation 
eo(t) will be uncorrelated with the first terms in (8.65). Then, according to (2.95), 
the spectrum of £ can be written 

^e(co,0) = [ (Go - Ge) (Ho-H,)] 

<*>« <*V 
<&eu A 0 

(Go - Go) 

(H0 - He) 
(8.66) 

Overbar here means complex conjugation. <J>eu = <&ue is the cross spectrum between 
eo and it. which of course is zero if the system operates in open loop. Note that the 
data spectrum can be factorized as 

/ 0 
$>eu J 

* u 1 

0 

0 A 0 - i % ^ 0 / 
(8.67) 

Let us introduce 

B{eim

s 0) = 
( / / 0 (O - H(eUl>.6))<i>ue(o)) 

<M*>> 
Then, using (8.67), (8.66) can be rewritten 

* t m | G ° + Be - Ge\ dj> (o>.#) = -
\He\2 

We now have a characterization of 

\He\2 

(8.68) 

+ A 0 (8.69) 

Dc = arg min V(9) 
6 

(8.70) 

in the frequency domain. We see that if there is a parameter value 0 O such that 
G% = Go and Hon — HQ. then this value will minimize the integral of (8.69). since 
the first two terms then vanish. This we knew before: it is a restatement of Theorem 
8.3. We have however also obtained a more explicit picture of how the model is 
approximating the true system in case it cannot be exactly described. We see that 
G$ will be pulled towards Go + B$ and Ha to Ho with the indicated weightings. To 
be more specific, let us investigate some special cases. 
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Open Loop Case 

If the system operates in open loop, u and e will be independent, so <Pue = 0. and 
hence B — 0. If the noise model is fixed to H{q,9) = //.(<?), (8.70) and (8.69) 
specialize to 

Dc = a rgmin j \G0ieia) - G(ei<t}. 9)f Q*(co)dco 

QAco) = 
\HAeUo)\ 

(8.71a) 

(8.7lb] 

where we disposed of the 6-independent terms. L e t 0 * e Dc. In this case the limitino 
model G(el0\ 6*) is a clear-cut best mean-square approximation of Go(e,ti>), with a 
frequency weighting (2*. This depends on the noise model H* and the input spectrum 
d>H, and can be interpreted as the model signal-to-noise ratio. 

Consider now an independently parameterized noise model with 9 = [ p q] 
as in (8.45). (4.128). We can define the spectrum of the output error 

(G0(q) - G(q.p))u(t) + H0(q)e0U) 

for each value p as 

®ER(CO.P) = \G0(eiM) - G(eiM, p)f <t>u(co) + A 0 | / / 0 ( ^ ] 

= ^\R(ei(a.p)\2 

(8.72] 

where the last equation is a definition of the spectral factor R. This is a monic 
function; see the spectral factorization result in Section '2.3. Then the integral of 
(8.69) takes the form 

IGo - C7 p\2<$>u 

\Hr, 
+ 1 \dco 

T <&ER(cotp) 

- . t \H(eiM. n)\2 

da) 
- I . 

r \R(eia,.p)\~ f" = / ft, \ dco = / ft 
J-* \H(e,(0. n)\ J-n 

R{e,<0. p) 
- 1 

1 1 
H{eia>,n) R(eiw,p)\ 

H{elu>. n) 

<J>ER(<̂  P)dco + IxQp 

+ \\dco 

where we twice used the identity / \ R\2dco = / (\R — 1| 2 + l ) dco for a monic 
function R. 

file:////dco
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Now. we can characterize the parameters that minimize the criterion function. 
Let 0* G Dr. Then we can write 0* = [p* tf J. with 

p* = a rgmin / G n ( 0 - G(el(0. p)\ QJco. rf)da) (8.73a) 
P J—-T 

Qm(a>. n) = -7 (8.73b) 
\H(eU0. n)l 

• j T ! 1 1 
rf = a rgmin run / i :— 

n 7_T \H(e"°, 
rj) R{eiM, p*) 

4>ER{a), p*)dco (8.73c) 

Here 3>ER and Rp are defined by (8.72). In this case we see that G ( e ' w , p*) is 
fitted to Go{elta) in the Q(a>, )f) norm. This norm is not known a priori, but will 
be known after the minimization, once rf is computed. We also see that the noise 
model H(etaj, rj) is fitted to describe the spectrum of the output error. 

In the general case, where G and H share parameters, no clear-cut formal 
characterization of the fit of G can be given. It is useful, though, and intuitively 
appealing to see the resulting estimate 0* as a compromise between fitting Gt, to GQ 
in the frequency norm <t>u/\H$*\2 and fitting the model spectrum \H»\2 to the output 
error spectrum <t>ER(&>. 6"). 

Closed Loop Case 

Let us assume that the regulator is linear, so that u will be a linear function of the 
reference signal r and the noise source as in Assumption D l . We can then split up 
the input spectrum <t>M into that part that originates from r and that part that comes 
from eo: 

&u{o>) = <*>;>) + d > J » (8.74) 

If the linear filters that define the input are time-invariant. u(t) = K\(q)r{t) + 
Ki(q)eo(t), we find that $>ue(co) = k0K2(eiw) and hence 

\<t>«e(a>)\2 = koK^) (8>75) 

This means that we can characterize the size of the "bias-pull" term B in (8.68) more 
explicitly as 

\B(e^.0)\2 = • . | / / 0 (O - H(e'\6)\2 (8.76) 
<Mw) Quia) 1 

and the resulting parameter 0* will be the value that minimizes 

£ \Go(eiM) + B(eUo.O) - G(eiu>.B)\2 ^ " ^ ,da> 
\H{ei(".9)[ 

, , \Ho(eiti>) - H(e,(0,e)\2 <yu(co) t 

+ Aij / • ^ ~ r • ~ do) 

(8.77) 

\H{ei(°.9)[ Quito) 

We shall investigate this expression further in Section 13.4. 
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Example 8.5 Approximation in the Frequency Domain 

Consider the system 
y(f) = G0(q)u(t) 

with 

_ 0.001<?~2(10 + lAq~x + 0.924ff- 2 + Q.i764<T 3)  
G ° ( q ) ~ 1 - 2 . 1 4 4 - 1 + 1 .553^" 2 - 0.4387<r3 + 0.042,?~ 4 ( 8 ' 7 8 ) 

No disturbances act on the system. The input is a PRBS (see Section 13.3) with basic 
period one sample, which gives <J>M(a>) ~ 1 all co. 

This system was identified with the prediction-error method using a quadratic 
criterion and prefilter L(q) = 1 in the output error model structure 

b\q~l + b2q~2 

i + / i ? 1 + hq 2 

Bode plots of the true system and of the resulting model are given in Figure 8.2a. 
We see that the model gives a good description of the low-frequency properties but 
is bad at high frequencies. According to (8.71), the limiting model is characterized 
by 

0* = a r g m i n f | G 0 ( O - G(eio}\0)f dco (8.80) 

since H*(q) = 1 and <Pu(co) = 1. Since the amplitude of the true system falls off 
by a factor of 10~ 2 to 10~ 3 for co > 1, it is clear that errors at higher frequencies 
contribute only marginally to the criterion (8.80): hence the good low-frequency fit. 

Consider now instead an A R X structure 

v ( 0 = _ , « ( , ) + —JJ—m (8.81, 
1 + a\q 1 + a2q " 1 + a\q 1 + a2q 1 

a b 

0.1 1 10 0.1 1 10 
frequency (rad/s) frequency (rad/s) 

Figure 8.2 Amplitude Bode plots of true system (thick lines) and model (thin 
lines), (a) OE model estimated in (8.79). (bj ARX model estimated in (8.81). 
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8.6 THE CORRELATION APPROACH 

In Section 7.5 we defined the correlation approach to identification, with the special 
cases of PLR and IV methods. The convergence analysis for these methods is quite 
analogous to the prediction-error approach as given in the previous few sections. 

Basic Convergence Result 

Consider the function 

1 A 

fN(B, ZN) = - 5J f </, B)eF{t. B) (8.83) 

corresponding to the linear regression predictor 

v( / |0) = -a]y(t - 1) - a2y(t - 2) + b^itU - 1) + b2u(t - 2) 

When applied to the same data, this structure gives the model description in Figure 
8.2b, with a much worse low-frequency fit. According to our discussion in this section, 
this limit model is a compromise between fitting 1 /[ 1 + ci\et0} + a2e2la)\2 to the error 
spectrum and minimizing (tfj* and aX correspond to the limit estimate $*). 

j \G0(ei(0) - G(eiu),B)f • | l + a\ek,} + a^e2iw\2 dco (8.82) 

The function | AJeia))\2 = | l + a\eiw + a^e2ia)\2 is plotted in Figure 8.3. It assumes 
values at high frequencies that are 10 4 times those at low frequencies. Hence, com
pared to (8.80), the criterion (8.82) penalizes high-frequency misfit much more. This 
explains the different properties of the limit models obtained in the model structures 
(8.79) and (8.81). respectively. • 
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where EF is given by 

eF(t,0) = L(q)e(t,9) (8.84) 

and the correlation vector £(f, 0 ) is obtained by linear filtering of past data: 

C ( i \ 0 ) = Ky(q.9)y(t) + Ku(q,9)u(t) (8.85) 
(both filters contain a delay). Determining the e s t i m a t e ^ by solving fs(0.Zs ) = 0 
gives the correlation approach (7.110). We have here specialized the general instru
ments (7.110b) to a linear case (8.85). 

The convergence analysis of (8.83) is entirely analogous to the prediction-error 
case. Thus we have from Theorem 2B.1: 

Lemma 8.4. Let the data set Z 0 0 be subject to D l , and let the prediction errors be 
computed using a uniformly stable linear model structure. Assume that the familv 
of filters 

{Ky(q,6),Ku(q*0y,e € DM\ 

is uniformly stable. Then 

sup | / l V ( 0 , Z , v ) - 7 ( 0 ) | 0, w.p. 1 as N oc (8.86) 

where _ _ 
/ ( 0 ) = Er(t,9)eF(t,9) (8.87) 

A 

For the estimate 9s, we thus have the following result. 

Theorem 8.6. Let 9s be defined by 

9N = sol [ / * ( 0 , ZN) = 0] 

Then, subject to the assumptions of Lemma 8.4, 

ON Dcf, w.p. l a s N oo (8.88) 

where _ 
Dcf = {0|0 € DM, / ( 0 ) = 0} (8.89) 

The theorem is here given for the special choice a(£F) = £F in (7.110). The 
extension to general a(•) is straightforward. 

This convergence result is quite general and also quite natural. The limiting 
estimate 0* € Dcf will be characterized by the property that the filtered prediction 
errors {SF(^0*)} indeed are unco r rec t ed with the instruments ( £ ( r , 0 * ) } . This 
was also our guideline when selecting 0 # . We shall now characterize Dcf in more 
practical terms for some special cases. 

5 e M: Consistency (*) 

An assumption 5 € !M would in this case be that there exists a value 0Q e Dm 
such that | e ( f , 0o) = eo(t)} is a white noise. With L(q) = 1, we thus find that 
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f(6o) = 0, since eo(t) is independent of past data and in particular of £(r. Oo). 
Hence, as expected. 

Oo e Dcf (8.90) 

Whether this set contains more elements when the data are informative and the 
model structure globally identifiable at Oo is not so easy to analyze in the general 
case. 

GQ e Q: Instrumental-variable Methods 

Consider the IV method with instruments 

= Ku(q.0)u(t) (8.91) 

The underlying model is 

A(q)y(t) = B(q)u(t) + v(t) 

for which the predictor 
y ( / | 0 ) = <pT(t)B 

is determined as in (4.11) and (4.12). 
Under assumption SI . the true system is given by (8.7). If there exists a Oo 

corresponding to (Ao(q), BQ(q)) such that 

Go(q) = [Go € g: cf. (8.44)] 
Ao(q) 

we can consequently write (8.7) as 

>'<'> = T t \ u ^ + Ho(<l)ea(t) (8.92) 

or 
>-(f) = <pT(t)0Q + wo(i) (8.93) 

where 
w0(t) = A0(q)Ho(q)e0(t) (8.94) 

Suppose now that the system operates in open loop so that {wo(t)} and {«(/)} 
are independent. Then 

7 ( 0 ) = ES(t.9)L(q)[ipT{t)(<h ~0) + wo(t)] 

- 0)<pT

F(0] (9o-0) (8.95) 

where 
(pT

F(t) = L(q)<pT(t) (8.96) 

The second equality in (8.95) follows since £(f, 0) is entirely constructed from past 
w(f), while L(q)wo(t) is independent of {u(t)}. Under the stated assumptions, we 
thus have that Oo € Dcf. and whether this set contains more 0-values depends on 
whether the matrix £"£(/, 0)<pT

F(t) is singular. 
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Suppose now that the instruments £ do not depend on 9 and are generated 
according to (7.122) to (7.124). The matrix 

R = Ec;{t)<pT

F{t) (8.97) 
is then a constant matrix that depends only on the filters L(q)> K(q), N{q). and 
M(q), on the true system, and on the properties of {«</)}. A thorough discussion of 
the nonsingularity if R is given in Soderstrom and Stoica (1983). We first note the 
following facts. Let n°a. wjj be the orders of the true description (8.92), and let ni;. n>, 
be the corresponding model orders. Let the orders of the instrument filters (7.122) 
to (7.124) be n„ and nm. Then 

1. If min(/ j H — n{)

a.tib — nQ

b) > 0. then R is singular. (8.9Na) 

2. If m i n ( « a — nn,rib — nm) > 0, then R is singular. (8.98b) 

To see this, let 

Zoit) = ^y\u(t) (8.99) 
Ao(q) 

£(/) = [~Zo(t - 1 ) . . . -zo(t - na) u(t - l ) . . . n ( f - nb)]F 

Let<pF(t) = L(q)<p(t). lina > n°u andn^, > nb\ then (8.99) implies that there exists 
an {na + nt>)-dimensional vector S such that <pT{t)S = 0. Then also (j>T

F{t)S = t). 
Now, since {W[}(t)} and {u(t)\ are independent, we have 

R = ~ES(t)<pl-(t) = (M (8.1(H)) 

which shows that RS = 0 and R is singular. Similarly, (8.98b) implies the existence 
of a vector 5 such that S r £ ( 0 = 0. 

When neither of (8.98) hold, the matrix R is "generically" nonsingular. To 
show this, the reasoning goes as follows: For a given true system and a given input, 
denote the coefficients of the filters L, K. N, and M by p. The matrix R is thus a 
function of p : R(p). Now consider the scalar-valued function det R{p). This is an 
analytic function of p (see Finigan and Rowe, 1974). If such a function is zero for p 
in a set of positive Lebesque measure, then it must be identically zero. If we can find 
a value p* such that det Rip'') # 0. we thus can conclude that det R(p) ^ 0 for 
almost all p (in the set where det R is analytic). Such p* can be found if the input 
spectrum <Pu(a>) > 0 for all co and the orders of the filters N and M are chosen at 
least as large as the corresponding model orders na and rib (see Problem 8T.2). We 
thus have the following result. 

Suppose that the system is given by (8.92), that <!>«(&>) > 0, and that u and 
eo are independent. Let the instruments £(f) be given by (7.122) to (7.124). 
Assume that neither of the conditions in (8.98) holds. Then R in (8.97) is 
nonsingular for almost all such choices of J V , M, L. and AT . (8.101) 



Sec. 8.7 Summary' 273 

frequency-domain Characterization of Dcf for the IV Method (*) 

The prediction errors, under assumption SI , can be written 

s(t.O) = A{q)y{t) - B(q)u(t) 

= A(q) |Gofo)«</) + HQ(q)e0(t) - ^«<'>] 

using (8.92). With the instruments given by (8.91), we thus have, analogous to (8.63) 
to (8.71). 

7(0) = Er(t.0)£F(t.O) 

= ^ j * [G0{ei»)-G(ei».0)} 

x <t>u(to)A(eia,)L(eiiO)Ku(e-i<o,0)dco (8.102) 

with 

Gtf>>.e> -
A(e'") 

Here Ku(e~l0}. 0) is a ^-dimensional column vector. 
The limiting estimates 9fv e Dc/ are thus characterized by the fact that certain 

scalar products with the error Go(e!0>) — G(eta>, 0{y) over the frequency domain are 
zero. 

8.7 S U M M A R Y 

In this chapter we have answered the question of what would happen with the esti
mates if more and more observed data become available. The answer is natural: We 
have for the prediction-error approach (7.155) that 

$ N arg min It (e(t. 0), 0), w.p. 1 as N -+ oo (8.103) 

and for the correlation approach (7.156) that 

£v - » sol \Et.(t,0)a(sF(t,0)) = 0 l , w.p. 1 as N oo (8.104) 

These results were proved in Theorems 8.2 and 8.6, respectively. 
The limiting models are thus the same as those that we could have computed 

as the best system approximations, in case the probabilistic properties of the system 
had been known to begin with. 

In case a true description of the system is available in the model set, the model 
will converge to this description under certain natural conditions on I* provided the 
data set is informative enough. This was shown in Theorems 8.3 to 8.5. 

When no exact description can be obtained, the model will be fitted to the 
system in a way that for linear time-invariant models can be characterized in the 
frequency domain as follows [see (8.71) to (8.77)]: 
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The limiting transfer function estimate G*(el(°) is partly or entirely de
termined as the closest function to the true transfer function, measured 
in a quadratic norm over the frequency range, with a weighting function 
<&u{co)/ \H(eito. 6*)\2, while the resulting noise model \H(ela>, 0*)\2 re
sembles the output error spectrum OER {CO) as much as possible. (8.105) 

We have not specifically addressed the convergence and consistency of the subspace 
method (7.66) for estimating state-space models. That will be done in connection with 
the algorithmic details in Section 10.6. However, a heuristic convergence analysis 
follows from the results of this chapter: As s and N increase to infinity (s much 
slower than /V) the k-step ahead predictors in Y will converge to the true ones. This 
means that the procedure will extract a correct state vector, which in turn means that 
the second LS-step will estimate the system matrices A, B, C. D and K consistently. 
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8.9 PROBLEMS 

8G.1 Local minima: Consider the matrix r2(9) defined in Problem 4G.4 and recall that the 
condition 

r 2 (0) > 0 (8.106a) 

implies local identifiability of the model structure at 9. Show that this condition together 
with the condition 

<DxoM > 0. (8.106b) 

[<I>Xo(ft>) is the spectrum of Xo(0 defined in (8.14)] implies that 

E~$(t,9)\j/T{t.O) > 0 

where \J/(t, 9) as usual is (d/d9)y{t\9). Show also that if s(t. 9 q ) = eo(t) is white noise 
and if 

ECieoit)) = 0. El"(e0(t)) > 0. 

then the conditions (8.106) (at 0 = 0 O ) imply that V(0) = ~Et (e(f, 9)) has a strict local 
minimum at 9 — 9^. 

8G.2 Suppose that the transfer-function model set {G{q.9)\ consists of wth-order linear 
transfer functions: 

1 + axq~l + • • • + anq-» 

and suppose that the input consists of n sinusoids of different frequencies, COJ. i = 
1 n. 0 < TOJ < ,T. 

(a) Suppose that the noise model is independently parametrized. Show that the 
limit model G*(e,0}) fits exactly to the true system Go(eltu) at the frequencies in 
question. It is consequently the same result as if we applied frequency analysis 
with these input frequencies. 

(b) Suppose that the noise model has parameters in common with G(q.0), but that 
the system is noise-free: 4>v(to) = 0. Show that the result under part (a) still 
holds. 

8G.3 Consistency of the maximum likelihood method: Suppose that the conditions of The
orem 8.5. except (8.52) and (8.53). hold. Let 

t(x) = -logfAx) 

where fe(x) is the P D F of e0(t). Show that (8.52) holds and that the theorem holds 
even if (8.53) is not satisfied. 

8G.4 Suppose that the system is controlled by output feedback: u(t) — r(t) — F(q)y{t). 
Show that V(9) in (8.63) then also can be written 

f \G(e'".0) - G()(eiU})\~ 
V(9) = / — -. ~—-<*>'«o)dw 

J \H(e"».9)\2 

J 1 + G0(e' 
. 1 + G(e,a>.0)F(e"")\ 1 A , x . 

+ I : : ! : -Vy((o)do> 
' ' • ~ )F{e'<°) ; \H(e"».9)\2 
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where <Z>r

u is defined by (8.74). Suppose that we have parameterized G . so that there 
is a #o for which G{q. Oo) = G0(q). and that no noise model is of interest. U s e the 
above expression for V(9) to suggest a parameterization of H{q, 9). such that 9S win 
converge to $o even though no correct noise model is obtained. 

8G.5 Let {M, y} be an arbitrary, quasistationary input-output data set. and consider the output 
error linear model with prediction errors e(t. 9) = y{r) — G(q,9)u(t). Assume that 
G starts with a delav. 

(a) Show that 

f T I <b....(r,>\ 2 

<Pu(to)dto + 9—independent terms 2JT J-„ | <&u(a>) 

(b) Let * „ be factorized as <t>u(co) = L{eia>)L(e-iaj) for L such that both L and 
L~] are stable, and causal. (That L is casual means that 

L(eiu>) = ^ £ k e ' l k m 

k=l 
Now define, 

t = - C W 

- i r . , A 

k=--x k=l 
where we have split R into an anti-causal and a causal part. Define Go(e"") = 
Rc{ei<0)L{eiu'h and show that ^ 

— 1 
Ee2(t,S) = — / \Go(e,<!>) - G(e,eo, 6)\2Qu{a))dco + 6— independent 

2* /_„ 
terms 

(c) Show that if a fixed noise model H+ is used, the corresponding expression becomes 

/ / . ( e ' ' w ) 

causal L(e{0)) 

where [-]causai means the causal part . Show also that e(t) = H~](q){y(t) -
Go{q)u(t)) will be uncorrelated with past inputs, for the Go thus defined. (Him: 
Derive the cross spectrum between u and e and show that is an anti-causal func
tion.) 

8G.6 Consider (8.75) and assume that both Go(e"") and G(eiw. 9) are causal. Show that t h e 
"bias-puir-function B(e,a>, 9) can be replaced by 

B i e ' L Ue-'^Hie'o.O) Jcausal' Lie'*) 

with notat ion as in the previous problem. 
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8E.1 Apply Theorem 8.2 to the LS criterion (7.33) and verify the heuristically derived result 
(7.38). 

8E.2 Consider Problem 7E.4. Here the criterion function C {Eit. 9). 9) is not parametrized 
independently from the parametrization of the predictor. Suppose that the true system 
is given by 

x(t + 1) = avxV) + u-oU) 

yit) = xit) + t „ ( r ) 

where (u'oU)} and {i ;o(f)l are independent , white Gaussian noises with variances 
Ew^it) = 0.1 and Ei^it) = 10. respectively. 

(a) Show that there exists a value 9* in the parametrizat ion (7.163) such that 

eit. 9*) — eoit) = the true innovations 

(b) Show that the maximum likelihood estimate 9™1 does nor converge to 9* as N 
tends to infinitv. 

(c) Explain the paradox. 

8 E 3 Consider the output error model structure 

y( , |0> = 1 , b . .uit - 1) . 
1 + fq~l 

Suppose the true system is as in Example 8.1: 

y(r ) + a0y(t - 1) = fouit - 1) + e0(t) + c0e„{t - 1) 

and that the input is generated as 

uit) = -k0yit) + rit) 

where {rit)) is white noise and 

loo + Mol < 1 

Give an expression that characterizes the limit of 9$. Will it be equal to [ a 0 bo ]T? 
On what point are the assumptions of Theorem 8.4 violated? 

8E.4 Consider the model structure 

yit) + ay(t - 1) = bait - 1) + eit), 0 = 

Suppose that the true system and input are given as in Problem 8E.3. Let 9_\ be the IV 
estimate of 9 with instruments 

Kit) = Tuit - in 
[uit - 2)\ 

Does 0\< converee to 0 O = I ? 

LM 
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8E.5 Consider the expression for <i>f in (8.69). Suppose that the feedback can be described 
as 

«(/) = K(q)e(t) + r(t) 

Show that the error spectrum can then be written as 
2 

X0 + 
G(e"*,9) 4>Aco) + G{e"°.0)K(e"a) + H(e"*.9)\ A 0 

\H{eiw.9)\ 

8T.1 Consider a quasi-stationary sequence {«(?)} and a uniformly stable family of filters 
\G(q,9).9 e DM}. Let 

zit.B) = G(q,0)u(t) 

Use the corollary to Theorem 2.2 (Appendix 2A) to note: For each 9 € D^. {-(r. 
is a quasi-stationary sequence and 

sup 
1 N 

»=1 
0. as /V oc 

Here 

/?«(0) = £ z 2 ( / c ( ^ , 0 ) r 4 > H ( w ) r f « 

Use this result to give a probabilistic-free counterpart of Theorem 8.2: For any quasi-
stationary deterministic sequences {.>•(/)} and {u(t)}. 

9s -*• argmin Ee2(t,9) 
eeDM 

where 

Ee2{t,9) = lim — V V ( f . 0 ) ' 
f = l 

See Ljung (1985d)for a related discussion. 
8T.2 Consider the situation of (8.101). Let the true system be given by (8.92) and suppose 

that the filter choices are as follows: 

L(q) = K(q) = 1 

N(q) = AQ(q) 

M(q) = B0(q) 

Suppose <J>u(<w) > 0 for all co. Show that R(p) is positive definite (and hence nonsin-
gular) for this choice of filters. 

8T.3 Let the system be given by 

S : y(0 = G0(q)u(t) + HQ{q)eQ(t) 

and an underlying model by 

M : y(f) = G0(q,0)u(t) + H0(q.9)e(t) (8.107) 
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Suppose that 

DT(S,M) = {00} 

and that the data are informative. Now let 

y(t\t - k\0) 

be the k-step-ahead predictor computed from (8.107). and let $s be determined by 

1 N 

0.v = arg min - V | v ( / ) - v(t\t - k; 9)f 
N —' 

t=i 

Show that 0v —> 0q as N —• oc , provided there is no output feedback in the generation 
of the input. What happens if there is feedback? What happens if there is feedback, 
but there is a £-step time delay between input and output? (Hint: Note that the k-
step-ahead predictor is a special case of the general linear model so that Theorem 8.2 
is applicable. Try to copy the technique of Theorem 8.3.) 

8D.1 Show that if _ 
sup \fN(x) - f(x)\ 0, N -> oc 

-\<x<l 

and 
xN = a r g m i n fN(x) 

-l<x<l 

then 

XN -*• arg min f(x) 
8D.2 Show that (8.20) follows from (8.18). (8.2), and (8.5). 
8D.3 To show that it is not sufficient to require l(x) to be increasing with |.T | in Theorem 8.5, 

consider the following counterexample: 

0, x = 0 
i(x) = \ 2\x\. 0 < | * | < i 

1, 1*1 > \ 
. n v . . i t * , with probabilitv 1/2 e(t. $o) = eQ(t) - 1 • -I: with probabihty 1/2 

Suppose there exists a value 9 such that y(t\9) — y(t\Oo) has the following distribution: 

1 + 1 , with probability 1/2 
— 1 , with probability 1/2 

Check that 

(a) Condit ion (8.52) of Theorem 8.5 is satisfied, but not (8.53). 

(b) Ee2(t,d) > EE2(t,90). 

(c) Ei (e(t. 9)) < El (s(t. 90)) so that 9N 00. 
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ASYMPTOTIC DISTRIBUTION 
OF PARAMETER ESTIMATES 

9.1 I N T R O D U C T I O N 

Once we have understood the convergence properties of the estimate 9\<, the ques
tion arises as to how fast the estimate approaches this limit. If 0* denotes the limit, 
we are thus interested in the variable 9s — 9*. We shall impose the same stochas
tic framework on the estimation problem as in the previous chapter. This means 
that 9s — 9* will be a random variable, and its "size" can be characterized by its 
covariance matrix or, more completely, by its probability distribution. It would be 
a difficult task to compute the distribution in the general case for any N. and we 
will have to be content with asymptotic expressions for large N. It will turn out that 
(9s — 9*) typically decays as \/y/~N. so the distribution of the random variable 

VN(9n - 9*) 

will then converge to a well-defined distribution, which will turn out to be Gaussian 
under weak assumptions. 

In this chapter we shall derive expressions for these asymptotic distributions. 
The chapter is structured analogously to Chapter 8. Thus, in Section 9.2 we give the 
basic result for prediction-error methods. Section 9.3 gives explicit expressions for 
the asymptotic covariance matrices in cases where the limit 9* gives a correct descrip
tion of the true transfer function. Frequency-domain expressions for the variances, 
as well as the variance of the resulting transfer function, are derived in Section 9.4. 
The correlation approach to parameter estimation is treated in Section 9.5, and Sec
tion 9.6 deals with the practical use of the results derived in the chapter. The reader 
might find it useful to first review the analysis in Appendix II, Section II.2, which could 
serve as a simplified preview of the techniques and results of the present chapter. 

280 
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9.2 THE PREDICTION-ERROR APPROACH: BASIC T H E O R E M 

Heuristic Analysis 

Consider, as before, 

6N = arg min VN{8. Z ' v ) (9.1) 

1 * 

VN(9.ZN) = - £ | * 2 ( / . 0 ) (9.2) 
/—I 

Then, with prime denoting differentiation with respect to 0 , 

v'N{eN.zN) = o 

Suppose that the set D r , in (8.23) consists of only one point, 9*. Expanding the 
preceding expression into Taylor series around 9* gives 

0 = VN(9\ ZN) + V£$N, Zs')(9n - 8*) (9.3) 

where is a value "between"' 0(y a r j d 0*. We know that 0# —* 9* w.p. 1. By 
arguments analogous to Lemma 8.2, it should be possible to show that V'^{$, ZJV) 
converges uniformly in 9 to V " ( 0 ) . Then 

V ^ . Z " ) -+ V"(0*) , asA> ocw.p . 1 (9.4) 

Provided this matrix (d x d) is invertible, (9.3) suggests that for large A7 the difference 
is given by 

(0 ; V - 9*) = -[V"(9*)]-1VN(0\ Z v ) (9.5) 

The second factor is given by 

1 N 

-V'N{0\ ZN) = - £ , 9*)e(t, 9*) (9.6) 
f=t 

where, as usual, 

is a d-dimensional column vector. By definition 

V'<0*) = -E\l/(t.0*)e(t,0*) = 0 
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Apart from the difference 

D.v = E 
1 ' -

- Y W . 0 * ) e ( f . 0 " ) - ^ ( f i ' ) f ( f . e ' ) ] 
N 

:9.7) 

which we assume to tend to zero "quickly" the expression (9.6) is thus a sum of ran
dom variables \ff (r. 6*)e(t, 0*) with zero mean values. Had they been independent, 
it would have been a direct consequence of the central limit theorem that 

with 

- — Y > ( / , 0 * ) * < / , 0 * ) € AsNdlQ) 

Q = lim N • E\[VN{e\Zs)]\Vv(9\ZN)]T\ 

19.8) 

[9.9) 

Here (9.8) means that the random variable on the left converges in distribution to 
the normal distribution with zero mean and covariance matrix Q [see (1.17)]. The 
terms of V's are not independent, but with assumptions D l and (8.5) the dependence 
between distant terms will decrease. It seems reasonable that (9.8) will still hold. 

If (9.8) holds, we have directly from (9.5) that 

S/N{9n - 6*) € AsN(0, P9) 

P9 = [V"(9m)]-}Q[V"(6*)]-1 

(9.10) 

(9.11) 

Asymptotic Normality 

The preceding heuristic analysis can be rigorously justified as shown in Appendix 
9A. The result is summarized as follows. 

Theorem 9.1. Consider the estimate 9:\ determined by (9.1) and (9.2). Assume 
that the model structure is linear and uniformly stable (see Definitions 4.3 and 8.3) 
and that the data set Z x is subject to Dl (see Section 8.2). Assume also that for a 
unique value 9* interior to DM we have 

9s -+ 9*. w.p. 1 as N oc 

V"(9*) > 0 

and that 

VNDN -+ 0. as/V oc 

with DN defined by (9.7). Then 

>/N(h' ~ 9*) € AsN(0, P0) 

where P9 is given by (9.11) and (9.9). 
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With more technical effort the same result can also be shown under relaxed 
assumptions on the data set and the model structure (see, e.g.. Ljung and Caines. 
1979). Notice in particular that the result holds, without changes, for general norms 
t(s,0. t). provided I is sufficiently smooth in £, and 9. The calculations of the 
derivatives V's, and V" become more laborous, though. For 

1 , v 

VN(0,ZN) = - Ye(e(t,0).0,t) (9.12) 

we have 

1 K 

V'S(0.2N) = — £[ -W' .0)* i<e( f .0 ) .0 .M + t'6(e(t.9),9.t)] (9.13) 
t=] 

where t'e is (B/de)C(s. 0. t) and t'$ is the d x 1 vector (d/d0)C(e, 0, t). Similarly. 

V"(9) = E\fr(t.9)ele(E(t.0).0.t)irT(t,0) 

- E^-rff(t,0)e'e(e(t,0),0.t) -Ii,(t,9U';d(e(t,0),0.t)(9.U) 
00 

- E£;e(s{t. 9). 0. tW\t, 0) + El'wieit. 9), 9, t) 

with obvious notation for the second-order derivatives. We shall allow ourselves to 
use the asymptotic normality result in this more general form, whenever required. 

The matrix P$ in (9.11) is thus the covariance matrix of the asymptotic distri
bution. When our main interest is in the covariance, we shall write 

1 
Cov0,v -~ ~PB 

N 
(9.15) 

In Appendix 9B a formal verification of (9.15) is given. 
The expression for the asymptotic covariance matrix P& via (9.9). (9.11), (9.13). 

and (9.14) is rather complicated in general. In the next section we shall evaluate it 
in some special cases. 

9.3 EXPRESSIONS FOR THE A S Y M P T O T I C VARIANCE 

In this section we shall consider the asymptotic covariance matrix for prediction-
error estimates in case, essentially, a true description of the system is available in the 
model set. 
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S € M: Quadratic Criterion 

Assume that the conditions of Theorem 8.3 hold. Then Dc = {9Q} and e{r, 9o) = 
eo(t) is a sequence of independent random variables with zero mean values and 
variances A.o. From (9.6) and (9.9) we then have 

Q= l i m ^YJ]Exlf(t.0o)e(i(t)e()(s)^T(s,e()) 
N--oc /V ' - ^ 

1 V _ 
= lim —yyA.0EiJ/(t,00WT(t.60)=XoEilr(t,e0WT(t,e0) 

since {eo(t)} is white (see also Problem 9D.1). Similarly. 

V"($o) = Eif(t,00)V(t.Oo) ~ flo)*o(0 = ^ ( f . # o ) 

The last equality follows since \fr\t, 9Q) is formed from Z ' - 1 only. Hence, from 
(9.11), we obtain 

PE = A0[Ent,90)ifT(t.90)] 1 (9.17) 

This result has a natural interpretation. Since \jr is the gradient of y , we see that the 
asymptotic accuracy of a certain parameter is related to how sensitive the prediction 
y(t\9) is with respect to this parameter. Clearly, the more a parameter affects the 
prediction, the easier it will be to determine its value. A very important and useful 
aspect of expressions for the asymptotic covariance matrix like (9.17) is that it can be 
estimated from data. Having processed N data points and determined 9N , we may 
use 

i * V 
- £ * ( / , 0 * ) * T ( / , 0 ; v ) N 

(9.18) 

1 * 

1=1 

as an estimate of PQ. See Problem 9G.3 for the case in where S "almost" belongs to 

Note also that according to Problem 9G.5, the estimate %s will be asymptoti
cally uncorrelated with 0;v • 

file:///fr/t


Sec. 9.3 Expressions for the Asymptotic Variance 285 

or 

y( / |0 ) = -ay(t - 1) + u(t - 1) (9.21) 

using a quadratic prediction-error criterion. We thus obtain, in this case, the LS 
estimate (7.34). We have 

= = " > ' ( ' - 1) (9.22) 

Hence 

P = = — — (9.23) 
£ v 2 ( r - 1 ) 

To compute the covariances, square (9.20) and take expectation. This gives 

Ry(0) + alRy(0) + 2a0Ry(l) = fx + A 0 

with the standard notation (2.61). (We used (8.27) for the evaluation of £".) Multi
plying (9.20) by y(t — 1) and taking expectation gives 

Ry(l) + aoRy(0) = Ryu(0) = 0 

where the last equality follows, since u(t) does not affect y{t) (due to the time delay). 
Hence 

Ey2(t - 1) = RAO) = ( 9 t 2 4 ) 
1 - «5 

and 

An 1 — ah 
Cova.v - — - 2 - (9.25) 

N ju + AO 

Example 9 .1 Covariance of LS Estimates 

Consider the system 

5 : y(t) + a0y(t - 1) = « ( / - 1) + e{)(D (9.20) 

The input {«(?)} is white noise with variance ^ . i n d e p e n d e n t of {eo(t)} which is white 
noise with variance AQ. We suppose that the coefficient for u(t — 1) is known and 
the system is identified in the model structure 

M : y(t) + ay(t - 1) = u(t - 1) 4- e(t). 6> = a 
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fit, Co) = 
1 

-€ 0(f - 1) 
1 + c0q-[ 

If i's is the P E M estimate of c . we have, according to (9.17), 

C0VC\v ~ T7 
/V Ei,2(t,c0) 

1 - eg 
AT 

(9.26) 

(9.2^) 

(9.28) 

5 € ^vf: 0-independent General Norm 1(e) i 

Consider now the general criterion (9.12). with £(s. 0. t) = t{e) (no explicit 0- and 
t-dependence). Assume that Ete(eo(t)) = 0. Then, under the assumption that 
S € M, we find after straightforward calculations from (9.13) and (9.14) that 

P E = Ktt)[E,j,(t.$o)r«,Oo)] 
- 1 

[Ef'ieoit))] 

(9.29) 

(9.30) 

Here i' and t" are the first and second derivatives of I with respect to its argument. 
Clearly, for Us) = \e2. t(e) = e, and t(e) = 1, so K(1) = Eel(t) = A , . 

for quadratic I. This confirms (9.17) as a special case of (9.29) and (9.30). It is 
interesting to note that the choice of t in the criterion only acts as scaling of the 
covariance matrix. 

Example 9.2 Covariance of an MA (1) Parameter 

Consider the system 

y ( / ) = e0(t) + c 0*o(f - 1) 

where [eo(t)} is white noise with variance A.0. The MA(1) model structure 

y(/) = e(t) + ce(t - 1) 

is used, giving the predictor (4.18): 

y(t\c) + cy(t - l | c ) = cyit - 1) 

Differentiation w.r.t. c gives 

^ ( r , c ) + cxff{t - l . c ) = - y ( r - 1, c) + y(f - 1) 

At c — CQ. we have 
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Asymptotic Cramer-Rao Bound 

The Cramer-Rao bound (7.91) applies to all unbiased estimators and all N. It can 
be rewritten 

Cov (V/VfAv " 0o)) > *o - E^<* 00) (9.31) 
L t=i 

With fe{-) denoting the P D F of eo(t). it can be verified that 

* ( - l o g / , ) = K0 

where AC0 is defined by (7.88) and the function K{1) by (9.30). We thus find that 
the asymptotic covariance matrix P$ in (9.29) equals the limit (as N —* oc) of the 
Cramer-Rao bound if £(•) is chosen as — log fe(-). In this sense the prediction-
error estimate (= the maximum likelihood estimate for this choice of I) has the best 
possible asymptotic properties one can hope for. 

G ( ) € Q4. Quadratic Criterion, G and H Independently 
Parametrized (*) 

We now turn to the case of Theorem 8.4, where G and H are independently para
metrized and Go can be exactly described in the model set. but not necessarily so for 
Ho. Assume that all the conditions of Theorem 8.4 hold, and assume in addition that 

Dc(S.M) = (A)} (9.32) 

and 

Dc = {0*1 9* = I " " I (9.33) 

Let 

F ( q ) = JM«L = y f i q - i (9 .34) 

where H(q,rf) is the limiting noise model and H0(q) the true one according to 
(8.7). We then have 

e{t.0m) = " V >?*)[v(>) - G(fl.A)>«(01 = F(q)eo(t) (9.35) 

and 

d0 IH 1 (<?.*?*)Hq(q.r]*)F{q)e0U) J 

Moreover, with £(s) = 

V"{9*) = e*WT(t. 0*) - £[(*'(/, 0*)F(q)eo(0] (9.37) 

Since {w(f)}and {eo(t)} are independent, the off-diagonal blocks of the matrix (9.37) 
will be zero (the blocks corresponding to the decomposition of 9 into p and n) . 
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Similarly. Q in (9.9) will be block diagonal and hence so will Pa. We now concentrate 
on the interesting block corresponding to p. Denote 

xl/p{t) = H'\q.if)G'p(q.p0)u(r) (9.3S) 

which is a deterministic ( ^ - independen t ) quantity. Here G'p is the gradient oi G 
w.r.t. p . Then 

1 .V N 

Qp = \\m^-Yj

rZ,^fAt)^1

p{s)EF{q)e()(t) • F(q)ei)(s) 

iV AT nc x 

l = ] 5=1 ( -0 j=Q 

j A' A'-r A ; - r 

= [, - i = j - ; = T] = Jirn^ - X 0 E E E f ^ T + W j * * + J» 
r = l ;=0 ;'=() 

Define 

1=0 

(9.39) 

Then 
(9.40) 

Similarly, for the upper left block of (9.37). 

[V"(9*)]p = Ei;PmT

p{t) f (9.41) 

We can summarize the result as follows: 

Under the assumptions of Theorem 8.4 and (9.33) 

VN(pN - ai) € AsN((l Pp) 

where 

Pp = Ao[£^(r)^J(/)]" ,[r^(/)^T(r)][£^(r)VrJ(/)]-1 (9.42) 

The estimates p,v and are asymptotically uncorrelated. 

This result can be extended to more general norms I(e) analogously to the case 
S e M. 

One might ask what (fixed or estimated) noise model H(q, n*) minimizes P,,. 
Not surprisingly, the result is H{q. n*) = Ho(q) so that F(q) = 1 in (9.34). See 
Problem 9 G . 6 . ' 
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i + fq~l 

(9.43) 

or 

y(t\e) = 
1 + fq 

—«(') 

This is an output error model. Clearly, / = o will give a correct description of the 
transfer function, while the noise properties of (9.20) cannot be correctly described 
within (9.43). since 

H0(q) = 
1 

— r and H(q.9) s 1 
1 + a()q-1 

We are thus in a situation, to which the result (9.42) applies. We find that 

1 M / . 0 ) = ~Hr\0) = ~q. * u(r) = ~ * u(t - 2) (9.44) 
df (i + fq ly (i + m ly 

when evaluated at 9* = OQ. For F(q) in (9.34). we have 

1/(1 + a0q~l) =

 0 0 

i=0 
F(q) = 

1 
(9.45) 

Hence 

cc 

fit) = £ ( - a 0 ) > p ( / + 1 ) = 

j=0 
The spectra are 

cc 

X>-«o)V 
L/=o 

1 

1 + a0q 

| l + a o ^ f w | 4 ' * | l + a o ^ ! 6 

from which the variances can be computed as in Appendix 2C. This gives 

^ ' ( l - a 2 , ) 3 (1 - a 0

2 ) 5 

and thus the variance is. according to (9.42), 

1 1 A n -> |~1 — On -> 2 — fln 

C o v / A , - . /> = - al) — - | + 2 f l 5 — 
2 1 

(9.46) 
) 2 

Example 93 Covariance of Output Error Estimate 

Consider again the system (9.20). now together with the model structure 



290 Chap. 9 Asymptotic Distribution of Parameter Estimates 

Multivariable Case (*) 

Consider the case where e(t) is a p-dimensional vector, and 

1 N 

vN($,zN) = jj^mt.o)) 
/= i 

The formulas (9.9) to (9.14) are still applicable. Assuming 9* — 9Q is such that 
e(t,90) = eo(t) is a sequence of independent, zero mean vectors with Ete(eo(t)) = o 
then straightforward calculations give 

x [Exlr(t.e0)2ZrlfT(t.e0)][Eif(t.Oo)Si/T(t.e0)]~l (9.47) 

Here \j/(t, #o) is the d x p matrix (d/dQ)y(t\$) and 3 and S are p x p matrices: 

3 = £ £ ' W 0 ) (9.48a) 

Z = Et\eo(t))[t(e0(t))]T (9.48b) 

For the quadrat ic criterion (7.27). 

1(e) = \eTh-ls 

we find that 
2 = A " 1 

and 
2 = A - 1 A r j A - 1 j 

where A 0 = Ee0(t)e^(t). 
If the choice of weighting matrix A in the criterion is A = An we thus obtain 

from (9.47) 

Pe = [Exff(t, 9n)A-]ijfT(t, 90)]~l (9.49) 

See also Problem 9E.4 and the discussion in Section 15.2. 

9.4 F R E Q U E N C Y - D O M A I N EXPRESSIONS FOR THE A S Y M P T O T I C 
VARIANCE 

Variance When $ € M 

We found in the previous section that the asymptotic variance is given by (9.17) when 
5 e M. This can be expressed in terms of frequency functions if Parseval's relation 
(or Theorem 2.2) is applied. First we need a convenient expression for \ji(t, 9). 
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C o v 0 > v - i [ / —L-TV*. $0)<P,9(to)J^(e-iw, 90)dco] (9.54) 

under the assumption that 5 € M and that a quadratic criterion is used. Recall the 
definition o f T ' i n (4.125). 

Variance when Co e Q (*) 

The expression (9.42) can be given in the frequency domain by quite analogous 
calculations. We obtain 

With T ' being the gradient of T = [G H] w.r.t. 0 , we have from (4.121) and 
(4.124) 

A t 0 = #o- using e(t, 0 O) = eo(t), we thus obtain 

f(t,$0) = H-l(q,e0)T(q,00)xo(t) (9.51) 

where xo(0 is defined by (8.14). Let QXo(co) be the spectrum of / 0 (a 2 x 2 matrix): 

* * ( < B ) " [ * „ ( « ) Xo J ( 9 - 5 2 ) 

Here <J>He.(<w) is the cross-spectrum between the input and the innovations (which is 
identically zero when the system operates in open loop). 

From Theorem 2.2 and Parseval's relation we thus have 

E\lr(t.OoWT(t,00) 

= \H(e^>Oo)\~2r(eiw,eo)QXo(co)T,\e-^,S0)da) (9.53) 

Now, using 

<*>«(«>) = A 0 | / / 0 ( O | 2 

for the noise spectrum, we find that 
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I 
C O V A V ~ — R~lQR~l 

N 

CO 

(9.55) 

Variance of the Transfer Functions 

So far. we have discussed the covariance matrix of the parameters 9. For linear, 
black-box models these parameters are only means to describe various input-output 
properties, like the frequency function, the impulse response, the poles and zeros, etc. 
It is of interest to translate the covariance matrix of the parameters to the covariance 
of these properties. 

First, let us consider in general how the covariance properties transform. Let 
the d-dimensional vector 9 be an estimate with mean Oo and covariance matrix P. 
We are interested in the p-dimensional random variable f(0). Asymptotically, as 9 
becomes sufficiently close to 9o,we bave with good accuracy 

f(9) * f(9o) + f\9o)(9 - 9o) 

where / ' is the p x d derivative of / with respect to 9. This means that we asymp
totically have 

Cov / ( t ? ) = E ( / ( f 3 ) - Ef{9)) ( / ( 0 ) - Ef(9))T 

* E ( / ( 0 ) - f{90)) (f(9) - f(90))7 <9-56) 

* f\Oo)P(f\9o))T 

This expression is also known as Gauss' approximation formula. 
Let us now focus on the frequency functions: 

GN(eio>) = G ( < > <9„), HN(eia)) = H(eIWJN) 

These are complex-valued functions, and in accordance with (1.13) we define 

C o v G ( 0 = E G(et0}) ~ EG(elw) (9.57] 
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and 

Cov 
G(eia>) G(eUo) 

- E 
G(ei0>) 

H(eitv) H(ei(0) H(eiw) 

G(e-iM) 

H(e~iM) 
- E 

G(e-'w) 
- i \ T 

(9.58) 

If the asymptotic covariance matrix of 9.\ is j^Pe- then Gauss" approximation for
mula directly gives 

Cov [ ? * £ " J ] * 1 ( T V " . e0)f Petie->'\ ft) (9.59) 

where T' is defined by (4.125). By plugging in the expression for Pp from (9.54), a 
nicely symmetric expression for the variance of the frequency functions is obtained. 

We can be more specific for certain common choice of model structures. Con
sider an ARX-model 

G(q.d) = ^ T T T . H{q,9) = 1 

Mq) A{q) 

with the same order of the ,4-and Z?-polynomials: A(q) = 1 +ci\q~l + .. . + a„q~". 
B(q) = b]q~[ +... + b„q~". Let 9k = [ b^ ]. Then the derivative with respect 
to 8k. i.e. the rows 2(k - 1) and 2k - 1 of T'iq. 8). will be 

f d B{q) _d !_ 1 _ 
\_d$i.\(q) dm .Mq) J 

*0±a-k J—q~k 

-J-a~k 
= q~kM(q,9) 

where the last step is a definition of M{q.9). This means that 

T'(ef<0.9) = Wn(e-ito)M(e'w.9) 

Bie"") 1 

M{ela,.0) = 
A2ie*" } 

1 
|_ Aie^) 

A-if"*) 

J 

(9.60a) 

(9.60b) 

(9.60c) 

0 
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Here / is the 2 x 2 identity matrix. This shows how we can easily build T' for arbi
trary orders n. It is also straightforward to show that all the black-box models in the 
family (4.33) obey the same structure, with different definitions of M. This matrix 
will have dimension 5 X 2 , where s is the number of different polynomials used bv 
the structure, i.e., 3 for A R M A X , 2 for O E and 4 for BJ. Moreover the identity matrix 
will then be of dimension s X s. 

Asymptotic Black-Box Theory 

The expressions (9.60), (9.59), and (9.54) together constitute an explicit way of com
puting the frequency function covariances. It is not easy, though, to get an intu
itive feeling for the result. It turns out, however, that as the model order increases, 
n —> o c . the expressions simplify drastically. The simplification is based on the fol
lowing result: Let Wn be defined by (9.60c) with the identity matrix of size s. and 
let L(co) be a s X s invertible matrix function, with a well defined inverse Fourier 
transform. Then 

lim -Whe-i(* 
>i—*oc n [271 X, Wn(e' 

= [L(a>)]-}&, (9.61) 

where & S J is 1 if the subscripts coincide and 0 otherwise. This result is proved as 
Lemma 4.3 in Yuan and Ljung (1985). See also Lemma 4.2 in Ljung and Yuan 
(1985). 

We can now combine (9.59) with (9.60) and (9.54): 

N • Cov 
C W » ) TV —JGJi 

X ^){M(e-iKOo)^^MT(ei^e0)}W^e-i^ 

X Wn(et<0)M(e-"°.eo) 

* n • M V " , #o) [M(^-/W. 0o)%i-^M V * . flb)l M(e-i0}, 0 O ) 

= n^v{co)<^~l(-co) 

where the approximate equality follows from (9.61). We complex-conjugated (9.54) 
first, which is allowed since the parameter covariance matrix is real. In summary w e 
have 

Cov ~ — 4>r(ft>) 
' <$U(C0) $>UE(-C0) i - l 

(9.62) 
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where n is the model order and N is the number of data, and where the approximation 
improves as the model order increases. Note that (9.61) also implies that estimates 
at different frequencies are uncorrelated. We showed the result here for the A R X -
model, but the only requirement on the model structure is the shift property (9.60). 
This holds for many black-box parameterizations, including the family (4.33). The 
result (9.62) is thus fundamental. However, note that it is asymptotic in the model 
order n. and corresponds to the case where the model structure is so flexible that the 
estimates at different frequencies become decoupled. 

In open loop operation, where <Pue = 0, we find that the estimates G.v and 
Hy are asymptotically uncorrelated. even when they are parameterized with common 
parameters. Then 

n O, (co) 
CovGN(el<l)) * —- ~z~i (9.63a) 

N $>u(co) 

CovHN(eia}) * ^ | / / 0 ( O | 2 (9.63b) 
N 

In Part III we shall find (9.62) to be of considerable use for many issues in 
experiment design. It is therefore of interest to check how well (9.62) describes the 
exact expression for moderate values of n. 

Example 9.4 Comparing (9.62) with Exact Expressions for Finite n 

Consider a second-order system 

y(t) + af.v(f - 1) + 4y(t - 2) = b\u(t - 1) + b\u(t - 2) + eQ(t) (9.64) 

We assume that this system is identified using the least-squares method in a model 
structure given by 

y{t) + a}yit-l) + -- + a„y(t-n) = bxu(t -1) + • • > + bnu{t-n) +e(t) (9.65) 

The input {u(t)} is taken as white noise with variance 1, and the disturbance eo(t) 
to the system (9.64) is also supposed to be white noise with unit variance. 

Let G\(e'<0, n) be the estimate of the transfer function obtained with model 
order n. Since the true system (9.64) is of second order, we can use (9.54). (9.59), 
and (9.60) to evaluate Pn(co) in 

C o v 6 l V - \-Pn(to) 
N 

for n > 2. This gives an explicit, but complicated expression for P„(co), which is 
exact in n (but asymptotic in N). According to (9.63a) we have, asymptotically in n. 

n n <Z>v(co) n/N 
CovGN(e / a \ n ) PL(co) = — = ^ j r — — (9.66) 

' • N NQK(a>) |1 + a?*'« + a 2 V ' " | 2 

We shall thus compare how well n • PL(CO) approximates P„. We do this by plotting 
Pi(co) and (\/n)Pn(co) as functions of co. First consider the "'Astrom system."' 

a? = - 1 . 5 . a\ = 0.7, b\ = 1. b\ = 0.5 (9.67) 
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In Figure 9.1(a) we plot log(l/n)P„(co) for n — 2 .10 , and log PL{CO) against logw. 
The figure illustrates well the convergence to the limit as n increases. The conver
gence could be said to be rather slow. Of greater importance, however, is that, even 
for small /?, the limit expression gives a reasonable feel for how the exact variance 
changes with frequency'. To test this feature, we evaluate the expression for a num
ber of second-order systems with different characteristics. The results are shown in 
Figures 9.1(b) to 9.1(d). 

According to the asymptotic expression (9.62). the variance should not depend 
on the number of estimated parameters, but only on the model order. This is a 
slightly surprising result. To test whether this result also has relevance for low-order 
models, we identified the system (9.64) and (9.67) also in the ARMAX-structure . 

y(t) + ai\(t - 1) + a2y(t - 2) 

= b^it(t - 1) + b2u(t - 2) + e(t) + C]e(t - 1) + c2e(t - 2) (9.68) 

which employs 5 0 % more parameters than (9.65) with the same model order. In 
Figure 9.1(e) we show the variance of the transfer function when estimated in the 
model structures (9.65) and (9.68), respectively, with n = 2. The agreement is 
striking. 

Finally, we identified the system (9.64) and (9.67) in the A R M A X model struc
ture (9.68), with a low-frequency input with spectrum 

0.25 
*«(<») = TT- (y-69> 

1.2D — cos CO 
The results are shown in Figure 9.1 (f). Comparing with Figure 9.1 (a), we see that the 
agreement between the asymptotic and exact expressions is now worse, especially at 
low frequencies. ~ 

We may conclude from the example that the asymptotic variance expressions 
give a good feel for character of the true variance, but must be used with care for 
quantitative calculations. 

9.5 THE CORRELATION APPROACH 

Basic Theorem 

The correlation estimate 0,v is defined by (7.110). We shall confine ourselves to the 
case studied in Theorem 8.6, that is, ct(e) = e and linearly generated instruments. 

We thus have 

0s = S O 1 [ / A , ( 0 , Z * ) = 0] (9.70a) 

/N(0. ZN) 
1 N 

(9.70b) 

eF(t.S) = L(q)e(t,0) (9.70c) 

Sit.O) = K,{q,9)y(t) + Ku(q,$)u{t) (9.70d) 
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2 

0 

0.01 0.1 1 0.01 0.1 1 

0.01 0.1 1 0.01 0.1 1 

0.01 0.1 1 0.01 0.1 1 

Figure 9.1 Plots of log(l/n)Pn{w) and of log PL(CD) versus w for different 
systems, model structures, and inputs. Thick line = the asymptotic expression PL . 
Thin lines: Normalized true variance for n = 2 (solid) and n — 10 (dashed). 
(a) System: (9.64). (9.67): model: (9.65); input: white noise. 
(b) System: (9.64). a'; = - 0 . 8 . a°x = 0.2. b({ = 1. M' = -0 .9 : model: (9.65): input: 
white noise. 
(c) System: (9.64). ojf = -1 .8 . a\ = 0.81. b°x = l.b" = 0: model: (9.65); input: 
white noise. 
(d) System: (9.64). = - 1 . 4 . a\ = 0.98, = 1. b\ = 0.5; model: (9.65): input: 
white noise. 
(e) System: (9.64). (9.67); Thick line: model (9.65). Thin line: model (9.68). n = 2. 
Input: white noise. 
(f) System: (9.64). (9.67): model: (9.68); input: (9.69). 
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Then 

with 

V W N - 6>*) € AsN(0, Pe) ( 9 . 7 2 ] 

ft = [f'(0*)]-lQ[f'(9*)]-T (9.73) 

(2 = lim AT • EfN(9\ZN)fJ;{9\Zs) (9.74) 

We find from (9.70) that /-

7'(^) = ESl(t.9)eF(t,e) - J^(t,9)[L(q)xff(t,9)]T (9.75.1 

where V as before denotes the negative gradient of e, with respect to 0 . 

Variance Expression when S € M> L(q) = 1 (*) 

Under the assumption S € there exists a value OQ such that e(f, 0 O ) = £o(0 is a 
sequence of independent random variables with zero mean values and variances /.(,. 
We thus obtain, for L(q) = 1, 

7 ( 0 O ) = -~Ei:(t.0o)i'T(t,9o) + Ei;'(t,90)eQ(t) = -£c ( / ,^ )^ r ( f ,^ , ) (9.76) 

and 

j N N 

Q= lim £ - Y ] y ; < ( / > ^ o ( / ) ^ ) C 7 ' ( ^ ^ ) 
f = ] .v = l 

= AoEK(t,9onT(t,Oo) (9.77) 

so 

By Taylor's expansion, we obtain 

0 = fN(0Nm Z ' v ) = / v ( 0 * , ZN) + (§ . v - e * ) f ' N i £ N , Z v ) ( 9 . 7 1 , 

This is entirely analogous to (9.3) with the difference that xj/(t,9*) in V^(0*. Z v ) 
is replaced by £(f, 0*) in / # ( £ * . Z ' v ) . The analysis of (9.71) is therefore essentially 
identical to the case already studied in Section 9.2. and the result can be formulated 
as follows. 

Theorem 9.2. Consider #,y determined by (9.70). Assume that s(t, $) is computed 
from a linear, uniformly stable model structure, and that 

av au 

is a uniformly stable family of filters. Assume that the data set Z , 3 C is subject to D l 
(see Section 8.2). Assume also that 9s 9* w.p. 1 as N —• oc that f'(8") is 
nonsingular [ / defined by (8.87)], and that 

J~NEfN(9\ZN) 0, as A7 -> oo 
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P6 = A 0 [ES(t. W r C 0 o ) ] 

x [ I f (/,fl,)f r(/,ft>)][IiK*.ft))Cr(f,M —i 
(9.78) 

See also Problem 9G.4. 

Example 9 . 5 Covariance of Pseudolinear Regression Estimate 

Consider again the system and the model of Example 9.2, but suppose that the c-
estimate is determined by the PLR method (7.113): that is. 

— J^eit - l . c ) e ( / , c ) = 0 [ c$R = sol 
1=1 

Here f (/, 9) = (pit, 9) - s{t - 1, c) = v(f - 1) - >-(f - l | c ) . 0 = c. At c = <r0 we 
have [see (9.27)] 

f ( / . 0 o ) = - t ) . ^ ( ' . 0 « ) = — -eQ(t ~ 1) 
1 + CQU'1 

Hence 

so, according to (9.78). 

E^(t,9o)fT{t,90) = Ao 

C o v e - ~ jf 

Compare with (9.28). Note that < 1 always. • 

Instrumental-variable Methods: Go € Q 
It is of interest to specialize Theorem 9.2 to the instrumental-variable case of Section 
7.6. We then have the model 

y(t\9) = <pT(t)9 (9.79) 

and the procedure (7.129). Suppose now that the true system is given as in (8.92) to 
(8.94) by 

y(t) = <pT(t)90 + Ho(q)A0(q)e0(t) (9.80) 

where {e?u(f)} is white noise with variance A 0 . independent of {«(/)}. Then 

eF(t,0») = L(q)HQ(q)A0(q)e0(t) 

is independent of {«(/)} and hence of f (/, #o) if the system operates in open loop. 
Thus f?o is a solution to 

ES(t,$)eFU,9) = 0 
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F(q) = L(q)H0(q)A0(q) = ^fa'* (9.82) 

i=0 

Inserting these expressions into (9.72) to (9.74) gives, by entirely analogous calcula
tion as in (9.42), the following result: 

For the IV estimate #.v we have, under assumptions (9.80) and (9.81). that 

P0 = A 0 [ £ f ( f . ^ J ( / ) ) - I [ £ C F ( r , ^ ) ^ ( f . ^ ) ] [ £ ? ( / , ^ ) ) ^ ( f ) ] - 7 " (9.83) 

with 
<pT

F{t) = L(q)<pT{t) 

Example 9.6 Covariance of an IV Estimate 
/ 

Consider again the system (9.20) of Example 9.1. Let the model be the linear regres
sion (9.21) and let a be estimated by the IV method using 

C(0 = ~—^ TU(t ~ 1) 
1 + a*q~l 

as the instrument and L(q) = 1. To evaluate (9.83), we find by comparing (9.80) 
and (9.20) that 

F(q) = H0{q)A0(q) = 1. 

Hence 

q'1 1 
nit) = -y(t - l) = - — ^ -Mt - i) - — -eo(t - i) 

1 + a0q~l 1 + a0q~} 

Sfit) = a t ) 

as we also found in (8.95). To get an asymptotic distribution, we shall assume it is 
the only solution in DM'-

Et:(t,9)eF(t,9) = 0 and 9 e DM =» 9 = 90 (9.81) 

Introduce also the monic filter 
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and 

Hence 

2TT J _ t 1 + a0e"° 1 + a*e-tw 1 - < 

2;r 7_<T |1 + ate"°\2 1 - a\ 

1 A 0 (1 - a^a*)1 

Cov 
N n (1 - aj) 

(9.84) 

• 

frequency-domain Expressions for the Variance (*) 

Frequency-domain expressions for the covariance matrices in (9.78) and (9.83) can 
be developed along the same lines as for (9.54) and (9.55). For example, for (9.83) 
we find that 

Cov§,v ~ 

R = Kl(e~ia>) • L(e-i(0)<Pu{co)dco (9.85) 

Q = tfJV'") • \F(eiw)\2<i>u(co)dco 

Here Ku and F are given by (7.128) and (9.82), respectively, while 

BO(Q) _, 
Q 

MQ) 

K0(Q) = 
AOIQV 

L <I 
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Note that 

(p(t) = Ko(q)u(t) + ^ - d e p e n d e n t terms 

An "asymptotic black-box analysis'" as in (9.62) can be developed also for IV and 
PLR estimates. The result is that, for open-loop operation, (9.63) still holds. See 
Ljung (1985c). 

9.6 U S E A N D RELEVANCE OF A S Y M P T O T I C VARIANCE E X P R E S S I O N S 

In this chapter we have developed a number of expressions for the asymptotic co-
variance of the estimated quantities. Now, what are these good for? There are two 
basic uses for such results. One is to use the covariance matrix P$. (or some deri\ ed 
quantity) as a quality measure for resulting estimates. Our expressions can then be 
used for analytical or numerical studies of how various design variables affect the 
identification result. We shall make extensive use of this approach in Part III when 
discussing the user's choices. 

The other application of the asymptotic covariance results is to compute con
fidence intervals to assess the reliability of particular estimates obtained from an 
observed data set. We shall comment on this application shortly. 

The derived expressions are asymptotic in N, the number of observed data. Our 
theory has not told us how large N has to be for the results to be applicable. Clearly, 
this is an important question in order to evaluate the relevance of the covariance 
expression. 

Confidence Intervals 

If the vector 0,v obeys 

VN(9N - OQ) € AsN(0, Pe) (9.86) 

then the &th component obeys 

yTN{9{k) - 0(

Q

k)) € AsN{0, P{

6

kk)) (9.87) 

P$kk) being the k, k diagonal element of Pe. This means that the probability distribu
tion of the random variable *fN(9^ — 9r\k)) converges to the Gaussian distribution, 
and we can use the limit to evaluate, for example, the probability 

P(\8P - O > a) * / * * f e - ' ^ ^ d x (9.88) 

In this way we may form confidence intervals for the true parameter; that is. we 
can tell, with a certain degree of confidence, that the true value 0Qk) is to be found 
in a certain interval around the estimate (provided the underlying assumptions are 
satisfied, that is). 
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The vector expression (9.86) tells us more. If a random vector n has a Gaussian 
distribution 

n € N(0. P) 

then the scalar 

z = nTp-}n 

has a x2 distribution with dim n = d degrees of freedom, 

z € X

2(dh 

From (9.86) we thus draw the conclusion that 

n N = N • (9N - 9o)TPe-l(9N - 9f>) € AsX

Z(d) (9.89) 

That is, rjs converges in distribution to the x2(d) distribution as N tends to infinity. 
Using x2 tables, we can thus derive confidence intervals for rjs, which correspond 
to confidence ellipsoids for 9s (see also Section 11.2). 

Estimating the Covariance Matrix 

The expressions (9.86) to (9.89) require the knowledge of Pg to be used in practice. 
Typical expressions for Pg. assuming S e such as (9.17), (9.42). (9.78), and (9.83) 
involve both 0<), XQ and the symbol £ , and as such are unknown to the user. Natural 
estimates Ps of P(, are, however, straightforward, replacing 9Q by 9s and E by the 
sample sum. as in (9.18) and (9.19). Under weak conditions. Theorem 2.3 will then 
imply that Ps converges w.p.l to P$, so it is still reasonable to apply the asymptotic 
results with Ps replacing P#. (If 9s has an exact Gaussian distribution for finite N, 
more sophisticated calculations, involving /- and F-distribution, can be carried out 
to find more accurate nonasymptotic, confidence intervals. See Section II.2.) 

It could be noted that it is more cumbersome to find estimates of Pe in the more 
general case when 5 $ M. Replacing 9* by 9s in (9.9), gives, trivially. Q = 0. which 
is a useless estimate. Hjalmarsson and Ljung (1992)have shown how to circumvent 
this problem, by devising a consistent estimator of Q also in this case. For the output 
error case, note that the expressions (9.42) and (9.83) contain the noise filter Ho(q). 
which typically would not be known to the user. 

Relevance of the Asymptotic Expressions for Finite A/ 

From the asymptotic expressions we know the behavior of \/N(9s — #o) for "large"' 
Af. This information is, as we saw, crucial for the confidence we develop in the model. 
The question remains, how large N has to be for the asymptotic expressions to be 
reliable. No general answer can be given to this question. Monte-Carlo studies have 
been performed, in which systems have been simulated many times with different 
noise realizations. The statistics over the estimates so obtained have been compared 
with the estimated covariance matrices, (9.18)—(9.19). Such studies show that for 
typical system identification applications, the asymptotic variance expressions are 
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reliable within 10% or so for /V Z- 300. Such Monte-Carlo tests depend however also 
on the properties of the random generators used. Despite the slight vagueness of 
these statements, the conclusion is that the estimated asymptotic variance expression 
gives a reliable picture of the actual variability and uncertainty of the estimates. 

An alternative picture of the estimate uncertainty, that does not rely upon ana
lytical, asymptotic expressions is obtained using bootstrap techniques. The bootstrap 
principle starts from the Monte-Carlo idea just described: If we know how our data 
have been generated, we may regenerate them many times and compute the statistics 
over the resulting estimates, to determine their reliability. Now. in practice, we do 
not know the mechanism behind the data generation. Instead, the only information 
is the data set Z ; N itself. The bootstrap idea is now to generate new data sets that 
resemble Z , v in the sense that they are drawn from the empirical distribution that 
the observed data Z N defines. Monte-Carlo studies over such collection of dtua 
sets will now yield confidence intervals and covariance properties. See e.g. Efron 
and Tibshirani (1993)for a thorough treatment and Zoubir and Boashash (1998) and 
Politis (1998)for tutorials focused on signal processing applications. 

9.7 S U M M A R Y 

In this chapter we have shown that the parameter estimates obtained by the pre
diction error or the correlation approach are asymptotically normal distributed as 
the number of observed data tends to infinity. This was established in Theorems 9.1 
and 9.2. Several explicit expressions for the asymptotic covariance matrix have been 
developed under varying assumptions. The archetypal result is (9.17): 

Covgjv = }jj[E$(t.e{))ilrT(t,eQ)]-1 (9.90) 

which is valid for a quadratic prediction-error criterion estimate under the assump
tion that 5 € M. It tells us that the covariance matrix is given by the inverse of the 
covariance matrix of the predictor gradients ^ . n o r m a l i z e d by the innovations vari
ance Ao divided by the number of observed data N. This expression is also the limit 
of the Cramer-Rao lower bound, in case the innovations are normally distributed. 
This means that the estimate 0,\- then is asymptotically efficient. 

The corresponding expression for the correlation approach is (9.78): 

covfl.v - ^ [ £ < ( r , w 1 ^ ) ] - 1 

x [E;(t,e0)i:T(t,e0)][E;{t,eo)Vu,eo)rT (9.9D 

We have also developed results for the asymptotic distribution of the resulting 
transfer-function estimates in black-box parametrizations. They tell us that 

_ | " G ( ^ J . v ) l n f *„(*>) <!> 
Cov * - • 0>v(to) 

asymptotically both in model order n and number of data N. 

(9.92) 
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The distribution of the random vector 9 s stresses that the result of the param
eter identification phase is not a model: rather it is a set of models. Guided by the 
data, we have narrowed the original model set to, it is hoped, a much smaller set of 
possible descriptions around M(9.\). Expressions (9.90) and (9.91) form a "quality 
tag" with which the model M{9s) is delivered to the user. 

9.8 BIBLIOGRAPHY 

The asymptotic distribution of parameter estimates is, as we have seen, basically 
an application of a suitable central limit theorem (CLT). The probability literature 
offers an abundant supply of CLTs under varying conditions (see, e.g., Chung. 1974; 
Brown. 1971; Ibragimov and Linnik. 1975; Withers. 1981; and Dvoretzky, 1972). A 
key assumption in these results is that the dependence between samples far apart 
should be decaying at at least a certain rate. Mixing conditions are used to describe 
this. In our treatment, the stability assumption (8.5) played this role. 

The asymptotic normality of ML estimates in the case of independent observa
tions is discussed in, for example. Kendall and Stuart (1961). This result was extended 
by Astrom and Bohlin (1965)to A R M A X models. 

In the statistical literature, asymptotic normality for parameter estimates in 
A R M A models of time series has been treated in a number of articles. Let us in 
particular mention the work of Hannan (1970, 1973, 1979), Dunsmuir and Hannan 
(1976), Hannan and Deistler (1988), and Anderson (1975). 

The situation where S g M was studied in Kabaila and Goodwin (1980)and in 
Ljung and Caines (1979). Kabaila (1983)has studied the OE-result (9.42). 

Frequency-domain expressions for the covariance matrices, such as (9.54). have 
been used in. for example, Hannan (1970)and Kabaila and Goodwin (1980). The 
black-box expression (9.62) has been derived in Ljung (1985b). Results where the 
order n is a function of the number of data /V and increases to infinity are given for 
FIR models in Ljung and Yuan (1985)and for the A R X model (4.7) in Ljung and 
Wahlberg (1992). Related results for A R modeling of spectra were obtained by Berk 
(1974). 

Extensions of the results (9.62) to the multivariable case are given in Zhu (1989), 
and to recursively identified models in Gunnarsson and Ljung (1989). 

The asymptotic normality for IV estimates was shown by Caines (1976b)and 
a comprehensive treatment is contained in Soderstrom and Stoica (1983). For PLR 
methods, results are given by Stoica et.al. (1984). 

Discussions of the use of confidence intervals are standard in many textbooks 
(see, e.g.. Draper and Smith, 1981). 

9.9 PROBLEMS 

9G.1 Consider the asymptotic expression (9.62) and let < $ u e ( t o ) = 0. Note that the real 
and imaginary parts are uncorrelated. (This follows as in (6.62) since the estimates are 
uncorrelated at different frequencies.) Let 

A l V M = |G.v(e , "") | . faiw) = argG.v (*?'<") (radians) 
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Show that 
* In 

Cov Ax (to) 

Cov<px(to) 

Show also that 

E\GN(e,a,)f - | £ G l V ( O l 

2 N <t>u(co) 

1 n $>v((o) 
2 X <t>u{{O)\G0(e"")\2 

n &v(to) 
N *„(<») 

9G.2 From a model H #.y) and an estimate A # of the innovation variance, we can form 
an estimate of the noise spectrum 

<t>;V) = kN\Hifiiu.ds)\2 

Use the asymptotic expression (9.62) to show that 

Var<t>*'(o>) ~ ^*J , (o>) , to # 0 , 2 * 

in case <£u<;(a>) = 0. (Note that the variance of k,\ does not increase with the model 
order n; cf. Problem 9E.1.) Compare with (6.75). 

9G.3 Suppose that 5 £ M but that 5 "is close t o " M in the sense 

6(1,$*) - e0(t) + p(t) 

where [eo(t)\ is white noise with variance X 0 and Ep2(t) = a2. Show that the matrix 
in Theorem 9.1 then can be written 

p& = ko[Ent,o*)ifT(t,e*)]-1 + Rio) 

where 
\\Rio)\\<C-o 

What quantit ies does the constant C depend on? 
9G.4 Consider the correlation estimate 0x defined by (7.110) for a general, d i f fe ren t ia te 

function a(-). Use the expressions (9.73) and (9.74) to show that, in case S e M. the 
asymptotic covariance is given by (9.78), with Xo replaced by 

E[a(e0(t))]2 

[Ea'ieoit))]2 

9G.5 Show that the estimate X.v in (9.19) is asymptotically uncorrelated with 9x in case 

Hint: Use the parameterizat ion of (7.87). Note that the minimizing k is (9.19). 
Note also that (9.15) is applicable to arbitrary criteria (9.12). 

9G.6 Consider the result (9.42). Show that 

Pp > A 0 [ £ ^ ( O ^ J ( O ] - 1 

and that equality is obtained for F(q) = 1, i.e.. H(q. r/*) = H0(q). 
Hint: Use £ l = i lM rWj(0 = * r * . for a suitably defined matrix * , and 

similarly for *P. Note that V = F4> for a suitably defined matrix F . Then appl> 
Lemma II.2. 
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9G.7 The result (9.61) can be extended as follows. Let 

2tt J-„ 

with W„ defined by (9.60), and similarly for R„(B). Then 

1 
lim -Wf(e-i0,)RH(A)RH(B)Wn(e"») = A(co)B(co) (9.93) 

(see Ljung and Yuan, 1985). Use this result together with (9.55) to prove that (9.63a) 
still holds if an output error model is applied, despite the fact that a noise model is 
not estimated. (This shows that asymptotically, as the model order tends to infinity, 
estimating a correct noise model gives no gain in the accuracy of G. This may be 
counterintuitive, and is not true for finite n. The reason is. however, that the asymptotic 
results refer to the case where the estimates at different frequencies are decoupled. Then 
there is nothing to gain by using information at different frequencies, weighted together 
according to the true noise model , to form the estimate of G.) 

9E.1 Consider the case with a 0 -parametrized criterion function 

t(e,9) 

Assume that 5 € M, and derive an expression for the asymptotic covariance matrix 
using (9.9) to (9.14). Apply this expression to 

A A' 

6 = 

9.X 

e 
k 

I 

N 
r = l 

l £ 2 ( f , 0 ) 

2 
= arg min — ^ - *" 4- - log X 

Assume that s(t. So) = e 0 ( r ) . where <?o(0 is white noise with Ee\(t) = Ao, Ee\(i) — 0 . 
and EeUt) = £io- Show that 

1 

COVAAT ~ — ( f i a - AJ) 

[We know from Problem 7E.7 that the minimization gives 

(9.94) 

1 . 

A AT = -J]£ 2(/i,v) N 
r - i 

so (9.94) gives the variance of the estimate in (9.19). Compare also (11.73).] 

9E.2 Consider a signal given by 

y(r) - aoy(t - 1) = e0(t) 

where {eo(t)} is white noise with variance A.0. The ̂ -s tep-ahead predictor model struc
ture 

y(r|f - k,a) = aky(t - k) 

is used (0 = a). De te rmine the asymptotic variance of Which k minimizes this 
variance? (Try k = 1, k — 2 if the general case seems too difficult.) 
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9 E 3 Consider Example 9.1, and assume that the following A R M A X model structure is used: 

M : y(t) + ay(t - 1) = u(t - 1) + e(t) + ce(t - 1) 

e = \a cf 

Let 9 be estimated by a quadrat ic prediction-error method. Show that 

„ Ao 1 ~ Cll 
Co\aN ~ — -—-

N n + A 0 « 5 
What is the variance if instead the PLR method (7.113) is used? 

9E.4 Apply the multivariable expression (9.47) to the quadratic criterion (7.27) i(e) ~ 
\ET A _ i £ , assuming A N = Ee0(t)er](t). Let P ^ ( A ) denote the resulting covariance 
matrix, and show that 

P(,(A) = [ £ ^ A " 1 ^ 7 " ] - 1 [ £ ^ A - 1 A 0 A " V r ] [ £ : V f A " V 7 ' ] " 1 

Use Problem 7D.8 to show that 

/ M A ) > Pft(Ao). for all symmetric positive definite A 

9E.5 Let 

1 i V 

VN{9,ZN) = det — y % ( ? , 0 ) £ r ( f , 0 ) N 
t=i 

and define #,v = arg minV/df?, Z ' v ) . Apply the formulas (9.9) and (9.11) to determine 
the asymptotic covariance of assuming S € M and EeAt)e^(t) = Ao- Compare 
with Problem 9E.4. 

9T.1 Suppose that we are using time-varying norms l(e.t) in/the criterion function [as in 
(7.18): assume no 0-dependence, though). Show that if 5 € M and E££(eo(t). t) = n 
for all t, then (9.29) and (9.30) still hold with 

[££;f (€><>(/). op 
= l i m * - . * jr Elti f[£'F(x. OffAx. t)dx 

[ l i m , v _ ^ 1 E;li / ^ U . 0 / , U , 

where fe(x. t) is the possibly time varying P D F of e0(t). 

9D.1 Let {e{t)} be a sequence of independent random variables with zero means, and let :(t > 
depend on e(s). s < t - 1. Thus z(f) is independent of e(s). s > r. Show that 

EzU)z(s)e(t)e(s) = Ez(t)z{s) • Ee(t)e(s) 

9D.2 Suppose that, in Theorem 9.1, the condition *JND.\ —* 0 does not hold. Define a 
nonrandom parameter value Ot- suitably, and show that the result of Theorem 9.1 then 
holds when applied to y/N (0.v — 0 y ) . 
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and that 

Let 

Then 

N 

lim E\xw(k)f+S - 0 some 8 > 0 (9A.5) 
k=\ 

Q = lim EZNZl (9A.6) 

ZN € AsN(Q, Q) (9A.7) 

Proof. See Orey (1958)or Rosen (1967). Here we note that (9A.5) (Lyapunov's 
condition) implies Lindeberg's condition, which is used in the quoted references. 
A sequence {.rjvM} subject to (9A.3) is said to be M -dependent. ~ 

Lemma 9A.2 (Diananda, 1953; Anderson, 1959). Let 

SN = ZM(N) + XM(N). M, N = 1. 2 • • • 

such that 

EXlfiN) < CM, lim C M = 0 (9A.8) 
M —*oo 

P{ZM{N) < z \ = FHMZ) (9A.9) 

lim FM.N{Z) = FM(z) (9A.10) 

lim FM(z) = F(z) (9A.11) 

APPENDIX 9A: PROOF OF T H E O R E M 9.1 

In this appendix we shall employ a technique for proving asymptotic normality that is 
quite useful when dealing with signals related to identification experiments. The idea 
is to split the sum (9.8) into one part that satisfies a certain independence condition 
(M-dependence) among its terms and one part that is small. When studying these 
parts, the following two lemmas are instrumental. 

Lemma 9 .A1. (Orey, 1958; Rosen. 1967). Consider the sum of doubly indexed 
random variables x\>(k): 

.v 
Zs = (9A.1) 

r=l 

where 
ExN{t) = 0 (9A.2) 

Suppose that 

{jc.v(l). • • • . * * ( * ) } and [xN(t),xs(t + 1), ••• .**•(«)} (9A.3) 

are independent if t — s > M, where M is an integer, that 

N 

IimsupY]£| .r l v(*) | 2 < oo (9A.4) 
A'—•oo T~f 
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Then 

lim P[SN < z} = F(z) (9A.12) 

Proof See Diananda (1953)or Anderson (1959). -

We now turn to the proof of Theorem 9.1. Write for short \j/(t) = \p{i.H*)^ 
e(f) = £ ( / . 0 * ) a n d l e t 

1 A ' 

S * = - 7 = y ] ( ^ ^ c ( / ) - E1r{t)e(t)) (9A.13) 

Then, according to (9.6) and (9.7), 

- 1 ^ ( 0 * . Z ' v ) = J = • 5at + Z)A. (9A.14) 

From (8.19). 

DC OC 

e(t) = £ < / , , S ) ( * ) r ( r - *) + X> ( 6 ) (*)e 0 ( f - k) 
*=1 k=Q 

Similarly, 

oc oc t 

M) = £<*, l 7 )(*)r(f - *> + £ 4 ( V ) e o ( f " * ) 

Here 

oc 
\d}l\k)\ < ft. a l l / . i , and £ f t < oc (9A.15) 

t 

according to the assumptions of uniform stability. Now let 

oc M 

£

M(t) = £ r f ; 5 \ * ) r ( r -k) + £ « / r

, 6 ) ( A ) e 0 ( f - k) (9A.16) 
k=\ k=0 

oo 
= e(t) - sM(t) = £ <*,(<V)*0(f - *) (9A.17) 

*=Af+l 
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1 :(\}rM(t)£M(t) ~ EfM(t)eM(t)) 
2+6 

< I . A T * ' 2 ( E | * " ( / ) | 4 + 2 « • E\sM(t)\4+2S)1''2 

N 

< — • N~s/2 • C (9A.21) 
N 

where the last inequality follows from the fact that and eM are finite sums of 
random variables with bounded (4 + S) moments. The expression (9A.21) proves 
both (9A.4) and (9A.5). With 

QM = lim EZM(N)ZT

M(N) (9A.22) 
.V—»>oc 

it thus follows from Lemma 9A.1 that 

ZM(N) € AsN(0,QM) (9A.23) 

Consider now the term XM in (9A.20). Let 

M 

Define i/rv/ and irM{t) analogously. Now 

SN = ZM(N) + Xu(N) (9A.18) 

where 

N / \ j \ 
ZM(N) = J^^ — ^M(t)eM(t) - E—xJ/M(t)eM(t)j (9A.19) 

1 "V 

XM{N) = — + *M{t)eM(t)) 

- E (irM(t)e(t) + rffMU)eM(t)^ (9A.20) 

We shall apply Lemma 9A.2 to (9A. 18). First we show that ZM (A7) is asymptot
ically normal according to Lemma 9A.1. The terms of ZM{N) are clearly zero mean 
and M -dependent by construction. Thus conditions (9A.1) to (9A.3) of Lemma 9A.1 
are satisfied. For (9A.4) and (9A.5), we find that 
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From t h e corollary to Lemma 2B.1, we have 

E\VNX(£(N)\2 < C . C\U C ) N 

where 

and 

t > = £ sup|4 < 8 )(*)l < £ ft 

ce = Y > P j < / ; 6 ) ( * ) i < f > < c 
*=1 ' 1 

A similar bound applies to the other terms in XM(N). Hence 

E\XM(N)\2 < C 

Lk=M+l 

which tends to zero as M tends to infinity, since the sum over ft is convergent. 
Lemma 9A.2 now tells us that the asymptotic distribution of S,\ is given by (9A.23) 
in the limit M —• oc . Hence 

SN € AsN(0, Q) 

Q = lim QM 

A1-+OC 

Since </NDx —>> 0, the asymptotic distribution of <J~NV'N(0*. ZN) coincides with 
that of 5.v; that is, / 

JNVN(0\ Zn) € AsN(0, Q) (9A.25) 

Also. \fN Ds< —• 0 together with 

implies that 

lim Urn E\XM(N)\2 = 0 
M-*oc N—KX 

Q = lim lim EZM(N)ZT

M{N) 
M-*oo A'—coc 

r> //)* 7N\ r T / ' (a* ^N^T = lim N • EV'N(0\ Z") • [V'N{6\ Z")]' (9A.26) 
A'—>-oo 

We have now completed the proof of (9.8) and (9.9). It remains only to verify (9.4). 
We have 

1 N 

Vjj(0. ZN) = - 0)fT(t. 0) - ir'{t. 0)e(t. 0)) (9A.27) 
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Since the model set and the system are uniformly stable, we find, as in (8.19) and 
(8.20). that e. \f/. and are obtained by uniformly stable filtering of white noise. 
Hence, as in Lemma 8.2. Theorem 2B.1 implies that 

sup \V^(6,ZN) - V'\9)\ 0 . w.p. l a s A/ -> oc (9A.28) 

Consequently, since 0,v —>• 0*, 

v ; : (£v ,Z' v ) V"(9*), w.p. l a s A/ oo (9A.29) 

if %x belongs to a neighborhood of 6* with radius |6\v — 9*\. [Technical note: The 
application of the Taylor expansion in (9.3) actually may give "different £,v " in dif
ferent rows of this vector expression. The result (9A.29) is, however, not affected by 
this.] 

Now 

<//V(0. v - $*) = [VUG*, ZN)]'l>/NVN(e*. ZN) 

and (9A.29) together with (9A.25) complete the proof of Theorem 9.1. 

Remark. If #,v is on the boundary of Z)-M, (9.3) does not apply. However, it 
follows from (9B.11) that this event has a probability that decays sufficiently fast not 
to affect the asymptotic distribution. 

APPENDIX 9B: THE A S Y M P T O T I C PARAMETER VARIANCE 

The asymptotic distribution result of Theorem 9.1 does not necessarily imply that 

Cov(VMV) = N • E{9N - E9N)(9N - E9N)T -+ P0 as/V oc (9B.1) 

with Po given by (9.11) and (9.9), or that the left side of (9B.1) even exists. In this 
appendix we shall deal with this question. 

We introduce the following notation: 

VjV(6>, ZA'), 9N and 9* as in (9.1) to (9.3) 

VN{9) = EVN(0,ZN) 

0J = arg min 7 ^ ( 0 ) 

9\ — E9\ 

We then have, as in (9.3), 

% - 0*N = - [ V ^ v , Z " ) ] " 1 V;.(0J, ZN) (9B.2) 
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The assumption of Theorem 9.1 that V"(0*) > 0 together with the continuity of 
V"(d) implies that there exists a 8 > 0 such that 

V"(0) > SI, V0. \e - 0*| < 8 (9B.3) 

Similarly, the assumption that 0* is the unique minimizing point implies that there 
exist 8 > 0. 8* > 0 such that 

|0i - 0*1 
8 

< -
2 

V(0,) < V(0) - 8" V0. \9 - 0*! > 8 (9B.4) 

(The deltas in (9B.3) and (9B.4) are as such unrelated: for convenience they are taken 
to be the same, without loss of generality.) Introduce the following subsets of the 
event space: 

8 
< -

2 
C > ; v = j a > j | £ j V _ 0* 

' 8 8 1 
co | V£$N. Z ' v ) > - • / all £ v , | f J V - 0*| < - J 

Let f2j. be the complement events. Clearly, in view of (9B.4). 

s u p | V v ( 0 , Z ' v ) - V ( 0 ) | > — 
* 2 

C ft :J' = |a> s u p | | V ( ; ( 0 , Z j V ) - V"(0)| | > ^ J 

(9B.5) 

(9B.6) 

(9B.7) 

(9B.8) 

(co here is the elementary event variable, of which the random variables Z A and 0y 
are functions.) Let P(S2i) denote the probability of the eve^it ft,. ThenP(ft^ '") —*• 1 
as N oc since 0 ;y —• 0*. w.p.l. and PiQ* ) -> 1 as A7 —• oo since (9B.3) holds 
and Vv(0 . Z ' v ) converges uniformly to V"(0 ) . w.p.l [see (9A.28)]. Let us compute 
bounds for the probabilities. First note the following strengthening of Lemma 2B.2: 
Under the assumption of Theorem 2B.1, strengthened so that the eighth moments 
of {e{t)\ are bounded, we have 

E(R?)4 < C(N - r)2 (9B.9) 

See Ljung (1984). Corollary 2, with y(n) = \/n for a proof. Applying Chebyshev's 
inequality to the fourth moments then gives 

16 C 
(8*)A N2 

and 

Let 

. 16 C 
4 (sy N2 

s r = Q * n n ; v 

(9B.10a) 

(9B.10bi 
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Then, for the complement event, we have from (9B.10) 

P(QN) < £ (9B.11) 

Now consider for (9B.2) 

E\yfN(6N - 0 V ) I 4 < £Jj|K:(̂ ,ZA")] ' | 4 • |v^v;,(^.Z,v) | 4 j 

The right side is an integration over co. Splitting the integration into the subsets fil'v 

and £2' , we find that on QN 

v ^ 

(this is indeed the rationale behind defining the set Hence, with symbolic 
notat ion. 

E\VN(Bn - 9N)\4 < ( ^ • \VNV^{0^ ZN)\4dco 

+ I N2\0v - 9*N\4dco 

< C • E\VNVN(9*N, ZN)\4 + N1 C • P(flN) < C 

The second inequality follows since 9N and 9^, belong to a bounded set DM . The last 
inequality follows from (9B.11) and from Lemma 2B.2 applied in its strengthened 
version (9B.9) to the sum of zero mean variables N • V'N{0N, ZN). 

Theorem 4.5.2 of Chung (1974)now implies that 

N • E(9N - 9*N)(9S - 9*N)T P„, as N - > oc (9B.12) 

with Pe> being the variance of the asymptotic distribution. 
Finally, rewrite (9B.2) as 

VS{0N, Z ' v ) = -V"(9n)(9N - BN) - \VN($N. ZN) - V"($N)]{0S - 9N) 

Taking expectation gives 

o = v"(o;,)(9N - 9N) + £ {[V^N, zs) - v"{$;,)] • ($N - J 

or. using Schwartz's inequality, 

\0N - 0Z\ < \\[V"(9N)]-l\\ • [EW^N.Z") - V " ( £ v ) | 2 

+ E\v"QN) - v"(o;,)!2],/2 • [E\On - e N \ 2 ] m 
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For the middle factor, we apply Lemma 2B.2 to the first term, showing it decays like 
C/N, and we use (assuming V" to be differentiable) 

|V"(£v) - V"(0:w)\ < C | £ V - 0JI < C\8S - 0 J | 

for the second term, showing that it decays like E\0\< — 9S\2 [i.e., C/N according 
to (9B.12)]. Collecting this gives 

E\0N - 0 J I 2 < J f (9B.13) 

Clearly, (9B.12) and (9B.13) imply (9B.1). We can thus sum up the discussion in this 
appendix as follows: 

Consider the estimate 0\ under the conditions of Theorem 9.1. strength
ened so that the eighth moments of {eo(t)} in (8.4) are bounded, and that 
V (0) is three times continuously differentiable. Dispense with the assump
tion that s/NDN -> 0 as N oc. Then (9B.1) and (9B.13) hold. 

Remark. The assumption in Theorem 9.1 that \/~N Ds tends to zero implies that 
0y —» 0* sufficiently fast so as to allow 0* to be used in the asymptotic expressions 
instead of 0N. 

I 
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COMPUTING T H E ESTIMATE 

In Chapter 7 we gave three basic procedures for parameter estimation: 

1. The prediction-error approach in which a certain function V\{8. Z* v) is mini
mized with respect to 0. 

2. The correlation approach, in which a certain equat ion f,\(Q, 2 j V ) = 0 is solved 
f o r 0 . 

3. The subspace approach to estimating state space models. 

In this chapter we shall discuss how these problems are best solved numerically. 
At time N, when the data set Z : V is known, the functions V,\ and fx are 

just ordinary' functions of a finite-dimensional real parameter vector 0. Solving the 
problems therefore amounts to standard questions of nonlinear programming and 
numerical analysis. Nevertheless, it is worthwhile to consider the problems in our 
parameter estimation setting, since this adds a certain amount of structure to the 
functions involved. 

The subspace methods (7.66) can be implemented in several different ways, 
and contain many options. In Section 10.6 we give the details of this, together with 
an independent derivation of the techniques. 

10.1 L INEAR REGRESSIONS A N D LEAST S Q U A R E S 

The Normal Equations 

For linear regressions, the prediction is given as 

y(f\6) = <pT(t)S (10.1) 

317 
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The prediction-error approach with a quadratic norm applied t o (10.1) gives the least-
squares method described in Section 7.3. The minimizing element Olf can then be 
written as in (7.34): 

0™ = R-l(N)f{N) do.2) 

with 

1 V 

R(N) = - £ < p ( f ) < / ( 0 (10.3) 

i 
/(AO = ^ O y C ) (10.4) 

An alternative is to view 8\f as the solution of 

R{N)6tf = / ( A O (10.5) 

These equations are known as the normal equations. Note that the basic equation 
(7.118) for the IV method is quite analogous to (10.5). and most of what is said in this 
section about the LS method also applies to the IV method with obvious adaptation. 

The coefficient matrix R(N) in (10.5) may be ill conditioned, in particular if its 
dimension is high. There exist methods to find 9s that are much better numerically 
behaved, which do not have the normal equations as a starting point. This has 
been discussed in an extensive literature on numerical studies of linear least-squares 
problems. Lawson and Hanson (1974)can be mentioned as a basic reference for 
the problems under consideration. The underlying idea in these methods is that the 
matrix R(N) should not be formed, since it contains products of the original data. 
Instead, a matrix R is constructed with the property 

RRT = R(N) 

Therefore, this class of methods is commonly known as "square-root algorithms" in 
the engineering literature. The term is not quite adequate, since no square roots are 
ever taken. It would be more appropriate to use the term "quadratic methods" when 
solving (10.5). 

Solving for the LS Estimate by QR Factorization 

There are some different approaches to the construction of R. such as Householder 
transformations, Householder (1964), the Gram-Schmidt procedure, Bjorck (1967). 
and Cholesky decomposition. We shall here describe an efficient way using QR-
factorizations. See, e.g., Golub and van Loan (1996)for a thorough description of 
the method. The Q -factorization of an n x d matrix A is defined as 

A = QR. QQT = /, R upper triangular (10.6) 

Here Q is n x n and R is n x d. 
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To apply this to the LS parameter estimation case, we rewrite the general mul
tivariable case (4.59) in matrix terms, by introducing 

Y7" = |V(1) . . . v r ( ^ ) ] . YhNp x 1 

c p r = [<p(l) . . . <p(N) ] , QisNpxd 
( 1 0 . 7 ) 

(Here p = dim y ) . Then the LS criterion can be written (cf. (11.13)) 

vN($tzN) = IY - <t>e\2 = £ | v ( o - <pT(t)$\2 (10.8) 

The norm is obviously not affected by any or thonormal transformation applied to 
the vector Y — <t>6. Therefore if Q (pN x pN) is or thonormal, that is QQT = I. 
then 

VN(0,ZN) = |0(Y - 4>f9)|2 

Now, introduce the Q /?-factorization 

[<D Y ] = QR. R = 
fin 

0 

(10.9) 

Here Ro is an upper triangular (d + 1) x (d + 1 ) matrix, which we decompose as 

R0 = ^ ^ , /?! i s d x R2 \sd x 1, / ? 3 is scalar (10.10) 

This means that 

VN{$.ZN) = \QT(Y- <D0)|2 = |[**J - [**]| = | * 2 - Rtfl2 + |/?3|2 

which clearly is minimized for 

R,0X = Rly giving VN0N.ZN) = \Ry\2 (10.11) 

There are three important advantages with this way of solving for the LS estimate: 

1. With R(N) as in (10.3), R(N) = <t>T<i> = R*/?, so the conditioning number 
(the ratio between the largest and smallest singular value) of R\ is the square 
root of that of R(N). Therefore (10.11) is much better conditioned than its 
counterpart (10.5). 

2. Ri is a triangular matrix, so the equation is easy to solve. 

3. If the QR-factorization is performed for a regressor size J* , then the solutions 
and loss functions for all models with fewer parameters—obtained by setting 
trailing parameters in 0 to zero—are easily obtained from RQ. 
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Note that the big matrix Q is never required to find 0.y and the loss function. All 
information is contained in the "small" matrix R$. I N MATLAB considerable compu
tational saving is obtained by taking R = t r i u ( q r ( A ) ) to compute (10.6) if Q j s 0 f 
no interest, and A has many more rows than columns. 

Initial Conditions: "•Windowed"' Data 

A typical structure of the regression vector <p(t) is that it consists of shifted data 
(possibly after some trivial reordering): 

Here z(t — \ ) is an r-dimensional vector. For example, the A R X model (4.11) with 
nct = rib = n gives (10.12) with 

while an AR-model for a p-dimensional process {y(0} [cf. (4.57), = 0] obevs 
(10.12) with z(t) = -v ( f ) . 

With the structure (10.12). the matrix R(N) in (10.3) will be an n x n block 
matrix, whose ij block is the r x r matrix 

If we have knowledge only of z(t) for 1 < t < N. the question arises of how to deal 
with the unknown initial conditions for / < 0 in (10.13). Two approaches can be 
taken: 

1. Start the summation in (10.3) and (10.4) at t = n + 1 rather than at t = 1. Then 
all sums (10.13) will involve only known data. [After a suitable redefinition of 
N and the time origin, we can of course stick to our usual expressions, assuming 
z(t) to be known for t > —n.] 

2. Replace the unknown initial values by zeros ("prewindowing"). For symmetry. 
the trailing values z{t).t = N + 1 N + n, could also be replaced by zeros 
C'postwindowing") and the summation in (10.3) is extended to N + n. In this 
case (10.5) are also known as the Yule-Walker equations. Often additional 
data windows ("tapering": cf. Problem 6G.5) are applied to both ends of the 
data record to soften the effects of the appended zeros. 

<p(t) = 

lz(t - n) J 

(10.13) 
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In speech processing these approaches are known as the covariance method and 
autocorrelation method, respectively (Makhoul and Wolf. 1972). No doubt, from 
a logical point of view, approach 1 seems the most natural. Approach 2. however, 
gives the special feature that the blocks (10.13) will depend only on the difference 
between the indexes: 

Rij(N) = RAN), T = i - j 

j N (10.14) 
RT(N) = — - r)zT{t) x > 0, analogously for r < 0 

This makes R(N) a block Toeplitz matrix, which gives distinct advantages when 
solving (10.5). as we shall demonstrate shortly. 

Clearly, when N n. the difference between the two approaches becomes 
insignificant. 

Levinson Algorithm (*) 

The shift structure (10.12) gives a specific structure for the matrix R(N). There is 
an extensive literature on fast algorithms that utilize such structures. The simplest, 
but generic, example of these methods is the Levinson algorithm (Levinson, 1947), 
which we shall now derive. 

Consider the case of an A R model of a signal 

yn(t\0) = - f l Jy(f - 1) an

ny(t - n) (10.15) 

(the upper index n indicates that we are fitting an n th-order model) . This corresponds 
to a linear regression with <p(t) subject to (10.12) with z(t) = —y(t). If we apply the 
autocorrelation method, we should solve (10.5); that is. 

Ri 

/ ? , . . . 

Rn-2 -Ri 

_ Rn-\ Rn-2 • .. Ro -<- --R*-

f o r a f . Here 

1 A ' 
RT = R*'(z) = - £ v ( f - r)y(r), r > 0 (10.17) 

l — Z 
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and we have dropped the argument N. Equat ion (10.16) can be rewritten as 

/ ? , . . . Rn 

Ri Ro-- Rn-\ 
Rz / ? , . . . Rn-2 

-Rn Rn-l • ..Ro 

vn 

0 
0 

0 

( 1 0 . 1 8 ) 

Here the n last rows are identical to (10.16), while the first row is a definition of V„. 
Suppose now that we have solved (10.18) for a" and seek a solution for a 

higher-order model (10.15) with order n + 1 . The estimates a{ 

analogously to (10.18). To find these, we first note that 
n+1 will then be defined 

Ro 
Rl 

Rn+l 

Ro... 

Rn-l 
Rn.-

Rn 

Rn-l 

.Ro 
Ri 

Rn+] 
Rn 

Rl 

Ro 

l 

L o 

v„ 

0 

(10.19) 

Here the first n + l rows are identical to (10.18). while the last row is a definition 
of a„. The definition of a"+l looks quite like (10.19), the only difference being that 
all but the first row of the right side should be zero. We thus seek to remove an. A 
moment ' s reflection on (10.19) shows that it can also be written as 

Ro 
Ri 

Rn 

-Rn+1 

Ro-.-

Rn-l 

Rn--

Rn 
Rn-l 

.Ro 
Ri 

Rn+l 
Rn 

Rl 
Ro 

• 0 

a: 

J L l J 

0 

0 

(10.20) 

since the coefficient matrix is a symmetric Toeplitz matrix. We can also view the last 
n + l rows of (10.20) as the normal equations for the regression 

y{t - n - \\0) = - < y ( r - n) - c£y(t - n + l ) an

ny(t - 1) (10.21) 

This is a reversed time model for the signal y(t). Since the second order properties 
of a scalar stationary signal are symmetric with respect to the direction of time, the 
coefficients in (10.21) coincide with those of (10.15). This is a signal theoretic reason 
for the equality between (10.19) and (10.20). See also the Remark at the end of this 
subsection. 
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Now multiply (10.20) by p„ = —a„/Vn and add it to (10.19). This gives 

Ro Rn Rn+\ 

R] Ro... Rn-i Rn 

Rn 

_ Rn+\ 

Rn-) 

Rn--
Ro 
Ri 

R\ 

Ro J 

1 

an

n + pna\ 

Pn 

Vn + Pn • <*n 
0 

0 

0 

(10.22) 

This is the defining relationship for a"+1. Hence 

ar1 
= a"k + pnan„_k+v k = l f . . . , n 

= Pn 

Vn+l = Vn + PnCtn (10.23) 

Pn 
-cx„ 

vn 

n 

it=i 

(The hat here indicates the actual estimate, based on AT data, as opposed to the 
general model parameters a".) This expression allows us to easily compute 
from ak . With the initial conditions 

Vi = Ro ~ 
Ro 

(10.24) 

a: = 
Rn 

we have a scheme for computing estimates of arbitrary orders. We note that going 
from a% to a"+l in (10.23) requires An -f 2 additions and multiplications and one 
division. The computation of ak thus requires proportional to 2n2 operations, which 
is of an order of magnitude (in n) less than the general procedures (10.8) to (10.11). 
Hence the term "fast algorithms." 

The Levinson algorithm (10.23) has been widely applied and extended to the 
case of vector-valued z, as well as to "the covariance method." See, for example, 
Whittle (1963), Wiggins and Robinson (1965), and Morf et.al. (1977). 
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the expressions (10.27) to (10.29) can be summarized as 

en+i(t) = en(t) + PnhU - 1) (10.30a) 

r»+i(t) = ra(t - 1) + pne„(t) (10.30b) 

eoit) = r0(t) = yit) (10.30c) 

Remark. The most important change when dealing with vector-valued - is 
that the corresponding reversed-time model (10.21) 

Z ( t - n - 1|0) = -b1z(t -n) b"nz(t - 1) (10.25) 

gives b\ estimates that differ from a,. The scheme (10.23) must then be comple
mented with an analogous scheme for updating the b[. See Problem 10G.1. 

Lattice Filters (*) 

Consider the predictors (10.15) for orders n and n + 1 evaluated at 

0 = 0 = $N 

yn(t\en) = -an

iy(t - 1) a"ny(t - n) 
(10.26) 

= -«r + I
 v(f - i) %+ly« - n) 

- an

nX\y(t - n - 1) 
Subtracting these expressions from each other gives, using (10.23), 

y B + i ( r | § " + ! ) = %{jt\Bn) - Pnhit - 1) (10.27) 

where 

rn(t - 1) = y(t - n - 1) + a^yit - „ ) + . . . + an

ny(t - 1) (10.28) 

We recognize in (10.28) the error in the reversed-time predictor (10.21). Let us. with 
the definition (10.28), consider 

r„+i(0 = y(t - n - 1) + a^yd - , , ) + ...+ &n

n

+xy(t - 1) + an

nX\y(t) 
Subtracting (10.28) from this gives, again using (10.23), 

r„+i(0 - fn(t - 1) = pn [yit) + aty(t - 1) + • • • + an

ny(t - n)] (10.29) 

With the prediction error 

end) = >•(/) - yn(t\en) 
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This simple representation of the prediction errors [and the predictions y„(f \9") — 
y(t)—e„ (t) ] can be graphically represented as in Figure 10.1. Because of the structure 
of this representation. (10.30) is usually called a lattice filter (sometimes a ladder 
filter). 

An important feature of the representation (10.30) is that the variables e„ and 
r„ obey the following orthogonality relationships: 

1 v^* , ^ / i s \Vn. if it = 0 ~ X > ( / K _ * ( / - - A ' ) = j Q . n ^ Q 

,v 

(see Problem lOD.l). Hence the reflection coefficients pn can easily be computed as 

A' 

- j y „ ( r ) r „ ( t - l) 

A, = — ^ — ; (10.32) 

/ = i 

The scheme (10.30) together with (10.32) also forms an efficient way of es
timating the reflection coefficients p n , as well as the predictions, as an alternative 
to the Levinson algorithm. An important aspect is that the scheme produces all 
lower-order predictors as a by-product. Lattice filters have been used extensively in 
signal-processing applications. See. for example. Makhoul (1977). Griffiths (1977), 
and Lee. Morf. and Friedlander (1981). See also Section 11.7 for recursive versions. 

Figure 10.1 A lattice filter representation. 
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10.2 N U M E R I C A L S O L U T I O N BY ITERATIVE SEARCH M E T H O D S 

In general, the function 

1 
(10.33) 

r=l 

cannot be minimized by analytical methods. Neither can the equation 

1 
0 = fN{0.ZN) = - £ c < ' . 0 ) a ( e ( ' . 0 ) ) (10.34) 

be solved by direct means in general. The solution then has to be found by iterative, 
numerical techniques. There is an extensive literature on such numerical problems. 
See. for example, Luenberger (1973), Bertsekas (1982), or Dennis and Schnabel 
(1983)for general treatments. 

Numerical Minimization 
Methods for numerical minimization of a function V(0) update the estimate of the 
minimizing point iteratively. This is usually done according to 

where fU) is a search direction based on information about V(0) acquired at previ
ous iterations, and or is a positive constant determined so that an appropriate decrease 
in the value of V(0) is obtained. Depending on the information supplied by the user 
to determine / u ) , numerical minimization methods can be divided into three groups: 

1. Methods using function values only. / 

2. Methods using values of the function V as well as of its gradient. 

3. Methods using values of the function, of its gradient, and of its Hessian (the 
second derivative matrix). 

The typical member of group 3 corresponds to Newton algorithms, where the cor
rection in (10.35) is chosen in the "Newton 1* direction: 

The most important subclass of group 2 consists of quasi-Newton methods, 
which somehow form an estimate of the Hessian and then use (10.36). Algorithms 
of group 1 either form gradient estimates by difference approximations and proceed 
as quasi-Newton methods or have other specific search patterns. See Powell (1964). 

Many standard programs implementing these ideas are available. The easiest 
way for the identification user could be to supply such a program with necessary 
information and leave the search for the minimum to the program. In any case, it 
will be necessary to compute the function values of (10.33) for any required value 

§<M-1> = §<i> (10.35) 

(10.36) 
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of 9. The major burden for this lies in the calculation of the sequence of predic
tion errors sit. 9). t = 1 N. This itself could be a simple or complicated task. 
Compare, for example, the model structures of Section 4.2 with the one in Exam
ple 4.1. 

The gradient of (10.33) is 

1 N 

VS{9.ZN) = - - £ { * ( / . W ; ( e ( / . 0 ) . 0 ) - * ; < * c . ( 1 0 - 3 7 ) 

Here, as usual. \J/(t. 9) is the d x p gradient matrix of y(t\9) (p = d i m y ) with 
respect to 9. The major computational burden in (10.37) lies in the calculation of 
the sequence \f/(t,9).t — 1.2 N. We discuss in Section 10.3 how this gradient 
is computed for some common model structures. However, for some models, direct 
calculation of \J/ could be forbidding, and then one has to resort to the minimization 
methods of the group 1 or to form estimates of \j/ by difference approximations. 

Some Explicit Search Schemes 

Consider the special case of scalar output and quadratic criterion 

1 l V 

VN(9, ZN) = - Y h2(t, 9) (10.38) 

This problem is known as *"the nonlinear least-squares problem" in numerical anal
ysis. An excellent and authoritative account of this problem is given in Chapter 10 
of Dennis and Schnabel (1983). The criterion (10.38) has the gradient 

1 ' V 

V'N{9. ZN) = - - *C 0) <1039) 
t-i 

A general family of search routines is then given by 

= $«> - / u^[4 ) ] - , \A v (0 A ; ) , ZN) (10.40) 

where 0 Y ' denotes the / th iterate. is a d x d matrix that modifies the search 

direction (it will be discussed later), and the step size / / v ' is chosen so that 

K v ( 0 j j + ' \ Z l V ) < Vl\(9y\ZN) (10.41) 

We should also keep in mind that the minimization problem normally is a constrained 
one: 9 € D^\. Often, however. dDM- the boundary of DM- corresponds to the 
stability boundary of the predictor (cf. Definition 4.1) so that VV(0. Z v ) increases 
rapidly as 9 approaches 3DM- Then the constraint can easily be obeyed by proper 
selection of p. 
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The simplest choice of / ? v / is to take it as the identity matrix, 

*!v = ' (10.42) 

which makes (10.40) the gradient or steepest-descent method. This method is fairlv 
inefficient close to the minimum. Newton methods typically perform much better 
there. For (10.38). the Hessian is 

1 N 1 , v 

v£(e.zN) = - Y > ( / . 0 W r ( / . 0 ) - -Yxff'{t.d)£{t.e) < 1 0 . 4 3 j 
N L—' N ' 

where iff'it. 0) is the d x d Hessian of eit. 9). 
Choosing 

fljj> = ZN) (10.44) 

makes (10.40) a Newton method. It may. however, be quite costly to compute all 
the terms of . Suppose now that there is a value 0o such that the prediction errors 
e(t.9o) = eoit) are independent. Then this value yields the global minimum of 
EV\-(0. ZN). Close to 0a the second sum of (10.43) will then be close to zero since 
E\lf'(t, 9u)e0(t) = 0. We thus have 

1 N 

V £ ( 0 , Z A ' ) % -Y^f{t,0)V(t.O) = HS(B) (10.45) 
l 

If we apply a Newton method to the minimization problem, we need a good estimate 
of the Hessian only in the vicinity of the minimum. The reason for this is that 
Newton methods are designed to give one-step convergence for quadratic functions. 
When the function values between the current iterate and the minimum cannot be 
approximated very well by a quadratic function, the effect of the Hessian in (10.36) 
is not so important. Moreover, by omitting the last sum in (10.43) the estimate of 
the Hessian is always assured to be positive semidefinite. This makes the numerical 
procedure a descent algorithm and guarantees convergence to a stationary point. 
The conclusion is consequently that 

Rl» = HN(0$) (10.46) 

is a quite suitable choice for our problem. This is also known as the Gauss-Newton 
method. In the statistical literature the technique is called " the method of scoring." 
(Rao, 1973). In the control literature the terms modified Newton-Raphson and 
quasi-linearization have also been used. Dennis and Schnabel (1983)reserve the 
term Gauss-Newton for (10.40) and (10.46) with the particular choice p^ = 1, and 
suggest the term damped Gauss-Newton when an adjusted step size p is applied. 

Even though the expression (10.45) is assured to be positive semidefinite, it may 
be singular or close to singular. This is the case, for example, if the model is over-
parametrized or the data not informative enough. Then some numerical problems 
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arise in (10.40). Various ways to overcome this problem exist and are known as reg
ularization techniques. One common way is the Lexenberg-Marquardt procedure 
(Levenberg. 1944: Marquardt . 1963). Then an approximation 

1 N 

R N ( K ) = ]y £ * < ' - O * r ( ' . 0 J v ) ) + >1 (10-47) 
t=i 

is used for the Hessian. Here A. is a positive scalar that is used to control the con
vergence in the iterative scheme rather than the step size parameter. We thus have 
fji{^ = 1 in (10.40). With A = 0 we have the Gauss-Newton case. Increasing A 
means that the step size is decreased and the search direction is turned towards the 
gradient. Several schemes for manipulating A. based on the test (10.41) have been 
suggested, see, e.g.. Scales (1985). 

If the minimum does not give independent prediction errors, the second sum 
of (10.43) then need not be negligible close to the minimum, and (10.45) need not 
be a good approximation of the Hessian. A typical method then is to make use of 
the known first sum of the Hessian and estimate the second sum with some secant 
technique (see Dennis. Gay, and Welsch, 1981). 

Correlation Equation 

Solving the equation (10.34) is quite analogous to the minimization of (10.33) (see, 
e.g.. Dennis and Schnabel. 1983). Standard numerical procedures are the substitution 
method (corresponding to (10.40) and (10.42)): 

3«> = - i$M%-,>, Z») (10.48) 

and the Newton-Raphson method [corresponding to (10.40) and (10.44)]: 

o«> = e«-» - [fN(o^\ z*)]~l m8<>-1\ z») (io.49) 

10.3 C O M P U T I N G G R A D I E N T S 

To use the formulas in the previous section, we need expressions for \f/{t.O), the 
gradient of the prediction. The amount of work required to compute \f/(t,9) is 
highly dependent on the model structure, and sometimes one may have to resort 
to numerical differentiation. In this section we shall provide expressions for some 
common model structures. 

Example 10.1 The ARM A X Model Structure 

Consider the A R M A X model (4.14). The predictor is given by (4.18): 

C(q)y(t\0) = B(q)u(t) + [C(q) - A(q)]y(t) (10.50) 

Differentiating this expression with respect to ak gives 

C(q)^-y(t\0) = -q-'y(t) (10.51) 
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Similarly, 

and 

C(g)^-yU\0) = -q~ku{t) 
dbk 

q-kHt\0) + C(q)—y('W) = -q'ky(t) 
dck 

With the vector (pit. 0) defined by (4.20), these expressions can be rewritten con\e-
niently as 

C{q)i/(t,B) = <p(ty9) (10.52) 

The gradient is thus obtained by filtering the "regression vector" <p(t,6) through 
the filter \/C(q). This filter is stable for all $ for which the predictor (10.50) is 
stable. z 

S1SO Black-box Model (*) 

Most formulas for S1SO black-box models will be contained in a t reatment of the 
general model (4.33). The predictor for this model is given by (4.35): 

E>(q)B(q) f, D(q)A(q) 
Ciq)F{q) [ C(q) 

from which we find, as in Example 10.1, that 

v ( 0 (10.53) 

^-Ht\0) = -^~>(t - k) (10.54a) 
dak C(q) 

& m = -c$k>«'-» 1 (10-54b| 

±H,m = - D ^ u(t -k)+ _ k) 
d c k

K ' ' C(q)C(q)F(q) C(q)C(qyK 

e(f-k.6) (10.54c) 
C(q) 

ddk C(q)F(q) C(q) 

1 . 
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where we used e, i \ and w as defined by (4.37) to (4.39). The gradient fit, 9) is thus 
also in this case obtained by filtering the regression vector (p(t. 0) [defined in (4.40)] 
through linear filters, although different parts of cp are associated with different filters 
in the general case. It is clear that the filters involved here are all stable for 0 € DM, 
defined in Lemma 4.1. which are also the 9 for which the predictors are stable. 

In the special case of an output error model, A{q) = C{q) = D(q) = 1. [see 
also (4.25)], we obtain from (10.54b, e) 

F(q)f(t,9) = (f(t.9) (10.55) 

General Finite-dimensional Linear Time-invariant Models (*) 

A linear time-invariant finite-dimensional model can always be represented as 

(pit + 1,0) = J(0)<pU,9) + Q{0) 
y(t) 

H i t ) (10.56) 

with proper choices of the matrices J, and J-f and with dim <p — n. This is true 
for the general SISO model (4.35) for which <p(t. 9) can be chosen as (4.40). as well 
as for the general state-space model (4.86) for which 

J ( 0 ) = A(0) - K(9)C{9) (10.57a) 

Q(B) = [K(9) B(9)] (10.57b) 

J{(9) = Ci9), x(t.9) = <pit,9) (10.57c) 

Stability of the predictor (10.56) requires 0 to belong to 

DM = {01^(0) has all eigenvalues inside the unit circle} (10.58) 

The equation (10.56) can now be differentiated with respect to 0. Introducing 

£ ( r . 0 ) = [<pr(t.9) ^<pTit,9) ... £j<PT(t.9)]T (10.59) 

we may. for some matrices J ^ ( 0 ) , 2?(0), and C ( 0 ) , write 

"v(f) 
£(/ + 1,0) = M9)H(t.9) + 2 ( 0 ) 

r 
w(0 

y(t\9) 

fit.9) 

(10.60) 

= C ( 0 ) | ( r . 0 ) 

It can readily be verified that the (d + \)n x (d + l)n matrix S\(9) will contain 
the matrix JF (0) in each of its d + 1 block-diagonal entries and has all zeros above 
the block diagonal. Hence the stability properties of J^.(0) coincide with those of 

J ( 0 ) . 
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We will find (10.60) useful for developing general algorithms. Clearly, however, 
these equations, as given, will not be suited for practical calculations of the gradient, 
since the filter is of order d(n + 1). It has been shown, though, by Gupta and 
Mehra (1974)that the dimension of the controllability subspace of (10.60) does not 
exceed An regardless of the parametrization and regardless of the value of h. Bv 
proper transformations, the necessary calculations involved in (10.60) can thus be 
substantially reduced. 

Finally, we note that when the methods of Section 10.2 are used the expressions 
of the present section have to be used between each iteration to compute \l/(t, 6 \ ' ) . 
This means that we have to run the data from t = 1 to N through filters like (10.54) 
or (10.60) for each iteration in (10.40). 

Nonlinear Black-Box Models and Back-Propagation 

In connection with neural networks, the celebrated Back-Propagation (BP) algo
rithm is used to compute the gradients of the predictor. Back-propagation has been 
described in several contexts, see e.g., Werbos (1974), Rumelhart , Hinton. and Cv-
benko (1986). Sometimes in the neural network literature the entire search algorithm 
is called Back-Propagation. It is. however, more consistent to keep this notation just 
for the algorithm used to calculate the gradient. 

Consider the general nonlinear black-box structure (5.43): 

g(<p,9) = ^ctkK{fa(.<p - yk)) (10.61 
* = i 

To find the gradient \j/{ts 9) — (d/d9)g{<p. 9) for this one hidden layer network is 
quite simple. We just need to compute 

d 
—ciKiptp - y) = ic(P<p - y) : 
da i 
d 

—Q!K(P<p - y) = -OK (fitp - y) 
dy 

d 
—ctK(P<p - y) = UK (0<p - y)(p 

The BP algorithm in this case means that the factor onc'(P(p — y) from the derivath e 
with respect to y is re-used in the calculation of the derivative with respect to /3. 

The Back-Propagation algorithm is however very general and not limited to 
one-hidden-layer sigmoid neural network models. Instead, it applies to all network 
models and it can be described as the chain rule for differentiation applied to the 
expression (5.47) with a smart re-use of intermediate results which are needed at 
several places in the algorithm. For ridge construction models (5.42) where is a 
parameter vector, the only complicated thing with the algorithm is actually to keep 
track of all indexes. When is a parameter matrix, like in the radial approach (5.401. 
then the calculation becomes somewhat more complicated, but the basic procedure 
remains the same. See Saarinen, Bramley, and Cybenko (1993) for an illuminating 
description of these general aspects. 



Sec. 10.4 Two-Stage and Multistage Methods 3 3 3 

When shifting to multi-layer network models, the possibilities of re-using in
termediate result increase and so does the importance of the BP algorithm. 

For recurrent models the calculation of the gradient becomes more compli
cated. The gradient \{/ (t. 0) at one time instant does not only depend on the regressor 
<p(t, 0) but also on the gradient at the previous time instant \//(t — 1, 9). See Nerrand 
et.al. (1993)for a discussion on this topic. The additional problem to calculate the 
gradient does, however, not change anything essential in the minimization algorithm. 
In the neural network literature this is often referred to as Back-propagation through 
time. 

Recursive Techniques for Off-line Problems 

An idea to save work in the minimization procedure could be to combine the methods 
of Sections 10.2 and 10.3 so as to modify the estimate 0^] in (10.40) at the same 
time as the prediction error gradients are computed in (10.60) [i.e., to "link the 
index (/) to N"]. We shall develop such recursive algorithms in Chapter 11 for 
on-line applications. These are. however, quite useful also for off-line problems as 
alternatives to (10.40). Then typically the data record is run through the recursive 
algorithm a couple of times, and it can be shown that such a procedure will have the 
same convergence properties as (10.40). See Ljung and Soderstrom (1983), Section 
7.2, and Solbrand, Ahlen, and Ljung (1985)for further details. 

10.4 T W O - S T A G E A N D MULTISTAGE M E T H O D S 

The techniques described in Sections 10.2 and 10.3 should be regarded as the basic 
numerical methods for parameter estimation. They have the advantages of guar
anteed convergence (to a local minimum), efficiency, and applicability to general 
model structures. Nevertheless, the literature is abundant with alternative tech
niques, mostly related to special cases of the general linear model structure (4.33): 

B(o) C(q) 
Mq)y{t) = TT^MO + ~ e ( t ) (10.62) 

F{q) D(q) 

(or multivariable counterparts) , and to the general nonlinear black-box structure 
(10.61). A basic idea is to rephrase the problem as a linear regression problem or 
a sequence of such problems, so that the efficient methods of Section 10.1 can be 
applied. For (10.61) it may involve fixing the parameters that enter nonlinearly (i.e. 
{5 and y) and estimate the or.s as a linear regression. 

The algorithms typically involve two or several LS stages (or IV stages) ap
plied to different substructures, and we therefore call them two-stage or multi-stage 
methods. 

In this section we shall give a short description of the building blocks of such pro
cedures. Mixing techniques (IV, LS. PEM. PLR) and models (FIR. A R X , A R M A X , 
etc.) into procedures involving several stages leads to a myriad of "identification 
methods." There will be no need to list all these. They can, however, be understood 
and analyzed by our techniques, applied to the different stages (see Problems 10G.2 
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and 10E.1). Our interest in this topic is twofold: it helps us to understand the iden
tification literature, and the techniques may be useful for providing initial estimates 
for the basic schemes of Section 10.2. 

The subspace method (7.66) can also be regarded as a two-stage method, being 
built up from two LS-steps. Due to the rather complex nature of this algorithm, we 
will treat it separately in Section 10.6. For the rich possibilities offered for nonlinear 
black-box models, we refer to Sjoberg et.al. (1995). 

Bootstrap Methods 

Consider the correlation formulation (7.110): Solve 

N 

fN(B, ZN) = i 0)e(t. B) = 0 ( 1 0 . 6 3 a ) 

in the special case where the prediction error can be written 

e(t.B) = y(t) - <pT(t,9)9 

This formulation contains a number of common situations: 

(10.63b) 

• IV methods with <(r, 0) as in (7.127) and (pit. B) = <p(t) as in (7.114). 

• PLR methods with B) - (pit, 0) as in (7.113). 

• Minimizing the quadratic criterion (10.38) for models that can be written as 
(7.112), taking £(f, 0) = fit, B). 

With a nominal iterate §JJ~!) at hand, it is then natural to .determine the next one by 
solving ' 

^ f;«». [>•(»)- f

r(r.««-")«] - o 

for B. This is a linear problem and can be solved as 

el! 1 = 
L / = ! J L t=\ 

( 1 0 . 6 4 ] 

Solving (10.64) is essentially a least-squares problem (10.2) with proper definitions 
of R(N) and / ( A 7 ) . The techniques described in Section 10.1 thus apply also to 
(10.64). 

The algorithm (10.64) is known as a bootstrap method, since it alternates be
tween computing 9 and forming new vectors (p and £. It should be noted that it does 
not necessarily converge to a solution of (10.63). A convergence analysis is given by 
Stoica and Soderstrom (1981b), and Stoica et.al. (1985). 
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such that 
v( / |0 ) = y ( f | p , n ) (10-65) 

is linear in p for fixed n and linear in n for fixed p . A typical such situation is the 
A R A R X structure (4.22): 

y(t\9) = B(q)D(q)u(t) + [1 - A(q)D(q)]y(t) (10.66) 

Clearly, by associating p with the A - and B -parameters and n with the D -parameters 
the preceding bilinear situation is at hand. 

With this situation, a natural way of minimizing 

1 N 

V. v (0 , ZN) = VN(p, n, ZN) = - £ (y(r ) - y{t\p, I J ) ) 2 (10.67) 

would be to treat it as a sequence of least-squares problems. Let 

p$ = arg min VN(p, f ) ^ , ZN) (10.68a) 
p 

^ ? = arg min VN(p{^\ n, Z i V ) (10.68b) 
n 

Each of these problems is a pure least-squares problem and can be solved efficiently. 
Although this procedure bears some resemblance to the bootstrap methods, it is 
indeed a minimization method that will lead to a local minimum (cf. Problems 10T.3 
and 10E.9). 

Separable Least Squares 

A more general situation than the bilinear case is when one set of parameters enter 
linearly and another set nonlinearly in the predictor: 

y(t\9,n) = 0T<p(t,n) (10.69) 

The identification criterion then becomes 

N 
VN(6. IJ. ZN) = £ |y ( r ) - 9T<p(t. n)\2 = |Y - <D(^)^|2 (10.70) 

/=i 

where we introduced matrix notation, analogously to (10.7). Forgiven n this criterion 
is an LS criterion and minimized w.r.t. 9 by 

9 = [0 7 "(n)<t>(n)]" ! <Dr(n)Y (10.71) 

Bilinear Parametrizations 
For some model structures, the predictor is bilinear in the parameters. That is. the 
parameter vector 9 can be split up into two parts. 
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We can thus insert this into (10.70) and define the problem as 

m i n | Y - P(n)\\2 = | ( / - />(/?)) Y | 2 , 

Pin) = [<s>T(n)<s>(n)]~] <t>T(n) < 1 0 . 7 2 ) 

The estimate 6 is then obtained by inserting the minimizing r) into (10.71). Note 
that the matrix P is a projection matrix: P2 = P. The method is called separable 
least squares since the LS-part has been separated out. and the problem reduced to a 
minimization problem of lower dimension. See Golub and Pereyra (1973)for a thor
ough treatment of this approach. It is known to give numerically well-conditioned 
calculations, but does not necessary give faster convergence than applying a damped 
Gauss-Newton method to (10.70) without utilizing the particular structure. 

High-Order AR(X) Models 

Suppose the true system is given as 

v(f) = G0(q)u(t) + Hoiq)eo(t) 

and an A R X structure 

AM(q)y(t) = BM{q)u{t) + e{t) 

of order M is used. Then it can be shown (e.g.. Hannan and Kavalieris. 1984. and 
Ljung and Wahlberg, 1992) that as the number of data N tends to infinity7, as well 
as the model M (N "faster than" A/) , the model A^f, B^ will converge to the true 
system in the following sense: 

-A • G 0 ( O , uniformly in co as N » M oc 

> Ha(ela>). uniformly in co as N » M —• oc 

This means that a high-order A R X model is capable of approximating any linear 
system arbitrarily well. It is of course desirable to reduce this high-order model to 
more tractable versions within the structure (10.62), and for that purpose a number 
of different possibilities are at hand: 

1. Find G = B/A as a rational structure by eliminating common factors in .4 y 

and B% (Soderstrom. 1975b). 

2. Apply model reduction techniques based on balanced realizations to / A [• 
(Wahlberg, 1986, Zhu and Backx. 1993). 

3. Let zU) be the output of the model By /Ay driven by the actual input u and 
apply an A R X model to the input-output pair (z, u) (Pandaya, 1974; Hsia. 
1977, Chapter 7). 
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4. Let e~M(t) be the residuals associated with the model Ay , By . Use a model 
structure 

A{q)y(t) = B(q)u(t) + [C(q) - \]e„{t) + *(f) (10.73) 

to estimate A. B, and C . Since £*/(/) is a known sequence, this structure is an 
A R X structure with two inputs, and the estimates are thus determined by the 
LS method (Mayne and Firoozan. 1982). 

5 . The subspace method (7.66) (which is described in detail in Section 10.6) should 
rightly be included in this family too: The A:-step ahead predictors computed 
from (7.62) are the high order ARX-models , while (7.60) corresponds to the 
model reduction step, and (7.56) is the second LS-stage. 

Separating Dynamics and Noise Models 

In the general linear model (10.62). we can always determine the dynamic part from 
u to v using the IV method. Splitting the denominator estimate thus obtained into 
one factor A (q) that is supposed to be in common with the noise description and one 
factor F{q) that is particular to the dynamics (typically one would postulate one of 
A and F to be unity), we can then determine 

0(f) = A(q)y(t) - l ^ « ( f ) (10.74) 
F(q) 

as an estimate of the equation noise [cf. (4.38)]. This noise can then be regarded as 
a measured signal, and an A R M A model 

£>(<?) 

can be constructed as a separate step. Young has developed this technique in a 
number of papers (see, e.g.. Young and Jakeman, 1979). 

Determining A R M A Models 

The parameters of the A R M A model (10.75) can of course be estimated using the 
prediction-error approach. Two alternatives that avoid iterative search procedures 
are as follows: 

1. Apply a high-order A R model to v(t) in (10.75) to form estimates of the inno
vations e. Then form the A R X model 

D(q)Ht) = \C(q) - l]e(t) + e(t) (10.76) 

with v(t) as output and <?(r) as input, and estimate D and C with the LS method 
[cf. (10.73)]. 

2. Estimate the A R parameters D(q) using the IV method as explained in Prob
lem 7E.1. Then model w(t) = D(q)v(t) as an M A model. See Durbin 
(1959)and Walker (1961)for related techniques, and Broersen (1997)for a dis
cussion of order selection. 
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10.5 LOCAL SOLUTIONS AND INITIAL VALUES 

Local Minima 

The general numerical schemes for minimization and equation solution that we dis
cussed in Section 10.2 typically have the property that, with suitably chosen step 
length fx. they will converge to a solution of the posed problem. This means that 
(10.48) and (10.49) will converge to a point 0J such that 

/ v ( 0 . v . Z ' v ) = 0 (10.77) 

while (10.40), with positive definite R, converges to a local minimum of V.y (0, Z A ). 
For the minimization problem, it is the global minimum that interests us. 

The theoretical results of Chapters 8 and 9 dealt with properties of the globally 
minimizing estimate 0,v. Similarly, the equation (10.77) may have several solutions. 
It is obviously an inherent feature of the iterative search routines of Section 10.2 that 
only convergence to a local solution of the problem can be guaranteed. To find the 
global solution, there is usually no other way than to start the iterative minimization 
routine at different feasible initial values and compare the results. A n important 
possibility is to use some preliminary estimation procedure to produce a good initial 
value for the minimization. See the following discussion. 

When validating the model as we shall discuss in Sections 16.5 and 16.6. the 
model is judged according to its performance, though. Therefore, local minima do 
not necessarily create problems in practice. If a model passes the validation tests, it 
should be an acceptable model, even if it does not give the global minimum of the 
criterion function. 

The problem of "false" local solutions has two aspects. Let us concentrate on 
the problem of local minima. It may be that the limit pf the criterion function as 
N tends to infinity, V(0) , has such local minima. Then also V,v(0, Z , v ) will ha \e 
such minima for large N, according to Lemma 8.2. The existence of local minima of 
V(0) can be analyzed, but only few results are available as yet. Some of them will 
be given later. The other aspect is that, even if V(0) has only one local minimum 
( = the global one) , the function V,v (0, Z v ) may have other local minima due to the 
randomness in data. This is a much harder problem to treat analytically. The one 
exception is the linear regression least-squares method, where by construction the 
criterion function has no nonglobal local minima regardless of the properties of the 
data. 

Results for SISO Black-box Models 

The only analytical results available on local solutions are for black-box models under 
the assumption that the system can be described within the model set: S € M. We 
list these results here with references for proofs. They all concern the general SISO 
model set (10.62), and refer to 

V(0) = E\s2(t,0) 
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For simplicity we call a nonglobal. local minimum a "false minimum." 

• For A R M A models (B = 0. D = F = 1) all stationary points of V(0) are 
global minima (Astrom and Soderstrom, 1974). 

• For A R A R X models (C = F = 1) there are no false local minima if the 
signal-to-noise ratio is large enough. If it is very small, false local minima do 
exist (Soderstrom, 1974). 

• If A = 1, there are no false local minima if n / = 1 (Soderstrom. 1975c). 

• I fA = C = D = l , there are no false local minima if the input is white noise. 
For other inputs, however, false local minima can exist (Soderstrom, 1975c). 

For the A R M A X model (F = D = l ) , i t i s not known whether false local 
minima exist. For the pseudolinear regression approach (7.113), it can. however, be 
shown that 

E<p(t,9)e(t.O) = 0 => 0 = 00 (10.78) 

in the case of an A R M A X model, with 0n denoting the true parameters (Ljung, 
Soderstrom. and Gustavsson, 1975). 

The practical experience with different model structures is that the global min
imum is usually found without too much problem for A R M A X models. See, for 
example, Bohlin (1971 )for a discussion of these points. For output error structures, 
on the other hand, convergence to false local minima is not uncommon. 

Initial Parameter Values 

Due to the possible occurrence of undesired local minima in the criterion function, it 
is worthwhile to spend some effort on producing good initial values for the iterative 
search procedures. Also, since the Newton-type methods described in Section 10.2 
have good local convergence rates, but not necessarily fast convergence far from the 
minimum, these efforts usually pay off in fewer iterations and shorter total computing 
time. 

For a physically parametrized model structure, it is most natural to use our 
physical insight to provide reasonable initial values. Also, it allows us to monitor 
and interact with the iterative search scheme. 

For a linear black-box model structure several possibilities exist. It is our 
experience that the following is a good start-up procedure for the general model 
structure (10.62): 

1. Apply the IV method to estimate the dynamic transfer function B/AF. Most 
often one of A and F is unity. For a system that has operated in open loop, 
first a LS estimate of an A R X model can be determined, to be used in the 
generation of instruments as in (7.123). (10.79a) 

2. Determine an estimate of the equation noise as in (10.74). (10.79b) 
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3. Determine C and/or D in (10.75) by (10.76) after a first high-order AR step to 
find e (which is unnecessary if C — 1). The order of the A R model can be cho
sen as the sum of all model orders in (10.62) so as to balance the computational 

In case 5 e M this will bring the initial parameter estimate arbitrarily close 
to the true values as N increases. From there, the methods of Section 10.2 will 
efficiently bring us to the global minimum of the criterion. In this case we thus have 
a procedure that is globally convergent to the global minimum for large enough A'. 

For a nonlinear black-box structure (10.61) several techniques exist. A simple 
one is to "seed" a large number of fixed values of the non-linear parameters fa and 
Yk, and estimate the corresponding a:s by linear least squares. The estimates c .̂ 
that are most significant (relative to their estimated standard deviations) are then 
selected and the corresponding yk and fa a r e used as initial values for the ensuing 
Gauss-Newton iterative search. 

Initial Filter Conditions 

The filters (10.53)-( 10.54) as well as (10.56) require initial values <p(0, 9) to be ini
tialized. In case the filters have finite impulse response, which happens only for 
the A R X special case, we can wait to initialize the filters until enough past data are 
known. This is what we called approach 1 following (10.13) in Section 10.1. In the 
general case we need a strategy to deal with the unknown initial conditions. This has 
not been extensively discussed in the literature, but we can point to the following 
approaches: 

1. Take <p(0,9) = 0. 

2 . Select <p(0,9) so that the first y(t\9). t = 1 dim<p match y(f) exactly. 

3. Introduce <p(0,9) = r} as a parameter , and estimate it along with 9. 

4. Est imate or "backforecast" <p(0, 9) from the data by running suitable filters 
backwards in time, Knudsen (1994). 

For a model where the predictor filter transient is short compared to the data record, 
it does not matter so much which approach is taken. However, with slowly decaying 
transients, the two first methods may have a very negative influence on the model 
quality. This is particularily pronounced for O E models, where no noise model will 
pick up the residuals from bad transient behaviour. 

10.6 SUBSPACE M E T H O D S FOR EST IMAT ING STATE SPACE M O D E L S 

Let us now consider how to estimate the system matrices A. B.C. and D in a state 
space model 

effort. (10.79c) 

xU + 1) = Ax{t) + Bu(t) + w(t) 

y(t) = Cx{t) + Du(t) + V(t) 
(10.80) 
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(10 .84) 

is known, then it is easy to determine C and A. Use the first block row of Or 

and the shift property, respectively. This is really the key step. 

• The extended observability matrix can be consistently estimated from input-
output data by direct least-squares like (projection) steps. 

• Once the observability matrix has been estimated, the states .v(r) can be con
structed and the statistical propert ies of the noise contributions wit) and vit) 
can be established. 

Or = 

r c i 
CA 

We shall now deal with each of these steps in somewhat more detail. 

We assume that the output yit) is a /?-dimensiona! column vector, while the input 
u(t) is an m-dimensional column vector. The order of the system, i.e., the dimension 
of xit). is n. We also assume that this state-space representation is a minimal realiza
tion. It is well known that the same input-output relationship can also be described 
by 

x(t + 1) = T~lATx(t) + T~]Bu{t) + wit) 
(10.81) 

yit) = CTxit) + Du(t) + vit) 

for any invertible matrix T. This corresponds to the change of basis x(t) = T~]xit) 
in the state space. 

In Section 7.3, algorithm (7.66). we presented an archetypical algorithm for this. 
We shall here describe a family of related algorithms which all address this problem. 
The discussion will be quite technical and a reader who primarily is interested in the 
result could go directly to (10.125). In summary the algorithms are based on the 
following observations: 

• If A and C are known, it is an easy linear least squares problem to estimate B 
and D from 

y(t) = Ciql - A)~lBuit) + Du(t) + vit) (10.82) 

using the predictor 

yit\B,D) = Ciql - A)-]Buit) + Duit) (10.83) 

(The initial state x(0) can also be estimated; see (10.86) below.) 

• If the (extended) observability matrix for the system 
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Estimating B and D 

For given and fixed A and C the model structure (10.83): 

y(t\Bt D) = C(ql - A)^Bu(t) + Du(t) (10.85a) 

is clearly linear in B and D. The predictor is also formed entirely from past inputs, so 
it is an output error model structure. If the system operates in open loop, we can thus 
consistently estimate B and D according to Theorem 8.4. even if the noise sequence 

v{t) = dql - A)~L wit) + vit) 

in (10.82) is non-white. 
Let us write the predictor (10.83) in the standard linear regression form 

y(0 = <p(t)0 = <p(t) 
V e c ( £ ) 

Vec(£>) 
(10.85b) 

with a p x imn +mp) matrix (pit). Here "Vec : ' is the operation that builds a vector 
from a matrix, by stacking its columns on top of each other. Let r = ik — 1 )n + j . 
To find the r : th ( r < mn) column of (pit), which corresponds to the r : th element of 
9, i.e., the element Bj^, we differentiate (10.85b) w.r.t. this element and obtain 

(pr(t) = C(ql - A)~lEjUkit) 

where Ej is the column vector with the j :th element equal to 1 and the others equal 
to 0. The rows for r > nm are handled in a similar way. 

If desired, also the initial state JCO = *(0) can be estimated in an analogous 
way, since the predictor with initial values taken into account is 

yit\B, D , . r 0 ) = C(ql - A)-1JC05(0 + Ciql - A)^Bu(t) + Du(t) (10.86) 

which is linear also in *o- Here 8(t) is the unit pulse at time 0. Moreover, the 
estimates can be improved by estimating the color of i; in (10.82) and prefiltering the 
data accordingly. 

Remark: If A and C are the correct values, the least squares estimates of B 
and D will also converge to their true values, according to Theorem 8.4. If consistent 
estimates A N and C\v are used instead, convergence of BN and £><v to their true val
ues still holds. This follows by fairly straightforward calculations. See Vandersteen. 
Van hamme. and Pintelon (1996) for a general t reatment of such issues. 

Finding A and C from the Extended Observability Matrix 

Suppose that a pr xn* dimensional matrix G is given, that is related to the extended 
observability matrix of the system. (10.84). We have to determine A and C from G. 
and we shall here consider cases of increased complexity. 

Known System Order. Suppose first we know that 

G = Or 
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so that n* = n. To find C is then immediate: 

C = O f ( l pA i n ) (10.87) 

Here we used MATLAB notation, meaning that M(s : t, j : k) is the matrix obtained 
by extracting the rows s, s + 1 . . . . , i and the columns j , j + 1 k from the 
matrix M. 

Similarly we can find A from the equation 

Or{p + 1 : pr, 1 : n) = 0 , ( 1 : p(r - 1), 1 : n)A (10.88) 

which is easily seen from the definition (10.84). Under the assumption of observ
ability, Or-] has rank n. so A can be determined uniquely. Normally (10.88) is an 
overdetermined set of equations (n2 unknowns in A and npr — np equations: recall 
that r > n + 1). This is of no consequence if Or is exactly of the form (10.84). since 
any full rank subset of equations will give the same A. 

Role of State-Space Basis. The extended observability matrix depends on the choice 
of basis in the state-space representation. For the representation (10.81) it is easy to 
verify that the observability matrix would be 

Or = OrT (10.89) 

Applying (10.87) and (10.88) to Or would thus give the system matrices associated 
with (10.81). Consequently, multiplying the extended observability matrix from the 
right by any invertible matrix before applying (10.87) and (10.88) will not change the 
system estimate—just the basis of representation. 

Unknown System Order. Suppose now that the true order of the system is unknown, 
and that n*—the number of columns of G—is just an upper bound for the order. 
This means that we have 

G — Orf (10.90) 

for some unknown, but full rank, n x n* matrix 7 \ where also n is unknown to us. 
The rank of G is n. A straightforward way to deal with this would be to determine 
this rank, delete the last n* — n columns of G and then proceed as above. A more 
general and numerically sound way of reducing the column space is to use singular 
value decomposition (SVD): 

G = USVT = U 

0 0 . 0 ~ 

0 0 . . 0 

0 0 . 0 

0 0 0 . • On* 

0 0 0 . . 0 

0 0 0 . . . 0 

(10.91) 
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Here U and V are orthonormal matrices (Ul U — /, V1 V = I) of dimensions 
pr x pr and n* x «*, respectively. S is a pr x n* matrix with the singular values of 
G along the diagonal and zeros elsewhere. If G has rank n, only the first n singular 
values CTjt will be non-zero. This means that we can rewrite 

G = USVT = UXSXVJ (10.92) 

where U\ is a pr x n matrix containing the first n columns of U. while 5] is the 
n x n upper left part of S, and V\ consists of the first n columns of V. (We still have 
Vf V\= 1.) From (10.90) we find Orf -Ux Sx V,7". Multiplying this by V, from the 
right gives 

OrTVi = OrT = U]Sl (10.93) 

for some invertible matrix T = TV\. We are now in the situation (10.89) that we 
know the observability matrix up to an invertible matrix T—or equivalently. we 
know the observability matrix in some state-space basis. Consequently we can use 
Or = U\ S\ or Or = U\ or any matrix that can be written as 

Or = U\R (10.94) 

for some invertible R in (10.87) and (10.88) to determine the p x n matrix C and 
the n x n matrix A. 

Using a Noisy Estimate of the Extended Observability Matrix. Let us now assume 
that the given pr x n* matrix G is a noisy estimate of the true observability matrix 

G - Orf + EN (10.95) 

where EN is small and tends to zero as N oc . The rank of Or is not known, 
while the k 7noise matrix" E^ is likely to be of full rank. It is reasonable to proceed 
as above and perform an SVD on G: / 

G = USVT (10.96) 

Due to the noise, S will typically have all singular values cfy; k = 1 min(n*. pr) 
non-zero. The first n will be supported by O r . while the remaining ones will stem 
from EH* If the noise is small, one should expect that the latter are significantly 
smaller than the former. Therefore determine n as the number of singular values 
that are significantly larger than 0. Then keep those and replace the others in S by 
zeros, and proceed as in (10.92) to determine U\ and Si . Then use Or in (10.94) to 
determine A and C as before. However, in this noisy case, Or will not be exactly 
subject to the shift structure (10.88), so this system of equations should be solved in 
a least-squares sense. 

The consistency of this process as —> oc and EN —> 0 is rather easy to 
establish by a continuity argument: As EN tends to zero, the corresponding estimates 
of A and C will tend to the values that are obtained from (10.90) with E,v = 0. 

It is more difficult to analyze how the variance of EN will influence the variance 
of A and C . Some results about this are given in Viberg et.al. (1993), based on work 
by T.W. Anderson. 



Sec. 10.6 Subspace Methods for Estimating State Space Models 345 

Using Weighting Matrices in the SVD. For more flexibility we could pre- and post-
multiply G as G — W\GW2 before performing the SVD 

G = WXGW2 = USVT ^ UySiVf 

and then instead of (10.94) use 

Or = wrlUiR 

(10.97) 

(10.98) 

to determine C and A in (10.87) and (10.88). Here R is an arbitrary matrix, 
that will determine the coordinate basis for the state representation. The post-
multiplication by W2 just corresponds to a change of basis in the state-space and 
the pre-multiplication by W\ is eliminated in (10.98). so in the noiseless case E = 0, 
these weightings are without consequence. However, when noise is present, they 
have an important influence on the space spanned by U\. and hence on the quality of 
the estimates C and A. We may remark that post-multiplying W2 by an orthonormal 
matrix does not effect the U\ -matrix in the decomposition. See Problem 10E.10. We 
shall return to these questions below. 

Estimating the Extended Observability Matrix 

The Basic Expression. From (10.80) we find that 

y(t + k) = Cx(t + k) + Du(t + k) + v(t + k) 

= CAx{t + k - 1) + CBu(t + k - 1) + Cw(t + k - 1) 

+ Du(t + k) + v(f + k) 

= CAkx(t) + CAk~xBu{t) + CAk~2Bu(t + 1) + . 

+ CBu(t + k - 1) + Du(t + k) 

+ CAk~xw{t) + C A ^ u K / + 1) + 

+ Cw(t + k - 1) + v(t + it) 

Now, form the vectors 

* - 2 . 

v(r + 1) U(t + 1) 

_u(t + r - 1 ) _ Ly(/ + r - 1) J 
and collect (10.99) as 

Yr(t) = O-Jr(r) + S r l / r < / ) + V(r) 

(10.99) 

(10.100) 

(10.101) 
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with 

SR = 

r D 
CB 

0 

D 

0 1 

0 

CB DJ LCAr~2B CAr~*B • 

and the A':th block component of V(t) 

Vk(t) = CAk~2w(t) + CAk-*w(t + 1) + . 

+ Cw(t + k - 2) + v(t + k - 1) (10.102) 

We shall use (10.101) to estimate Or. or rather a matrix OrT for some (unknown) 
T. The idea is to correlate both sides of (10.101) with quantities that eliminate the 
term with Ur(t) and make the noise influence from V disappear asymptotically For 
this, we have the measurements y(t).u(t). t = 1 /V + r — 1 available. It will 
be easier to describe the correlation operations as matrix multiplications, and we 
therefore introduce 

Y = 

X = 

U = 

V = 

These quantities depend on 

Yr{l) Yr(2) 

x{\) x{2) . 

UriX) Ur(2) 

V ( l ) V ( 2 ) 

Yr(N)] 

r(A0] 

Ur(N)] 

V{N)] 

(10.103) 

and N, but this dependence is suppressed. We can 
now rewrite (10.101) as the basic expression 

Y = Or\ + 5 r U + V (10.104) 

Remark. Define as in (7.59) the vector Y of true fc-step ahead predictors. 
Then it follows from (10.104) that 

Y = OrX (10.105) 

where X is made up from the predicted (Kalman-filter) states x(t\t — 1). i.e. the best 
estimate of x(t) based on past input-output data. 

Removing the U-term. Form the N x N matrix 

= I - l ? , ( U U ' ) " , U (10.106) 

(if U U T is singular, use pseudoinverse instead). This matrix performs projection, 
orthogonal to the matrix U, i.e.. 

U U T ( U U T ) _ 1 U = 0 

Multiplying (10.104) from the right by f l ^ will thus eliminate the term with U: 

Y n ^ T = orxn^ + v n f r (10.107) 
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- v r ^ * ' = - £ v(O,F(») --Y,vmJ(t) 

t=l t=] 

1 N 1~1
 1 * 

-Y.Urit)VjU) jjJ2UA0(pJ(t) (10.112) 
Under mild conditions, the law of large numbers states that the sample sums converge 
to their respective expected values 

lim ^ V n ^ c D 7 " = EV(t)<pJ(t) - EV{t)Uj{t)R^EUr{t)tp]{t) (10.113) 
A—•oc N 

where 
Ru = ~EUAt)Uj(t) 

Removing the Noise Term. The next problem is to eliminate the last term. Since 
this term is made up of noise contributions, the idea is to correlate it away with a 
suitable matrix. Define the s x N matrix (s > n) 

<t> = [(PsO) <Ps(2) ... (px(N)] (10.108) 

where (ps(t) is a yet undefined vector. Multiply (10.107) from the right by <frT and 
normalize by N: 

1 1 1 

g = - Y n ^ f c 7 " = cv-xn^cD 7 " + - \ n ^ T = OrfN + v s (10.109) 

Here T\ is an n x s matrix. Suppose now that we can find (ps(t) so that 

lim VN = Hm — \n±r<bT = 0 (10.110a) 
N-*oc A'-^-oc N 

lim fN = lim - ^ n ^ O 7 " = f has full rank n (10.110b) 

Then (10.109) would read 

G = ^ Y n ; T 4 > r = Orf + £,v 

N u (10.111) 
EN = OATN - f) + V]v -+ 0 as N oo 

The pr x s matrix G can thus be seen as a noisy estimate (10.95) and we can subject 
it to the treatment (10.96)-( 10.98) to obtain estimates of A and C . 

Finding Good Instruments. The only remaining question is how to achieve (10.110). 
Notice that these requirements are just like (7.119) and (7.120) for the instrumental 
variable method. Using the expression (10.106) for Yl^T and writing out the matrix 
multiplications as sums gives 

.V AT 

1 t _ T 1 X—% . . . . T . . 1 
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is the r x r covariance matrix of the input. Now, assume that the input u is generated 
in open loop, so that it is independent of the noise terms in V (see (10.102)). Then 
EV(t)Ur

T(t) = 0. Assume also that Ru is invertible. (This means that the input is 
persistently exciting of order r—see Section 13.2.) Then the second term of (10. ] 13) 
will be zero. (If the pseudo-inverse is used in (10.106). this is still true, even if Ru j s 

not invertible.) For the first term to be zero, we must require V(t) and (ps[t) to be 
uncorrelated. Since V(t) according to (10.102) is made up of white noise terms from 
time t and onwards, any choice <ps(t) built up from data prior to time / will satisfy 
(10.110a). A typical choice would be 

y(t - l) 

(fsU) = 
y(t - 5 , ) 

u(t - 1) 
(10.114) 

_u(t - s2)_ 

Now, turning to (10.110b) w?e find by a similar argument that 

f = Ex(t)<pJ(t) - 1x{t)Uj{t)R-llUr{t)(p]{t) (10.115) 

A formal proof that f has full rank is not immediate and will involve properties of 
the input. See Problem 10G.6 and Van Overschee and DeMoor (1996). 

Summing up, forming G = ^ Y n ^ O 7 " with <P defined by (10.114) and (10.108) 
gives the properties (10.111), which allows us to consistently determine A and C. via 
(10.97), (10.98). and (10.88). (10.87). We shall sum up all the steps in the algorithm 
later. / 

Finding the States and Estimating the Noise Statistics 

In (10.104) we constructed a direct relationship between future outputs and the states. 
Let us now shift the perspective somewhat and return to the prediction approach of 
Section 7.3. This will give an expression which is closely related to (10.104) and shows 
the links between states and predictors. 

Let us estimate the &-step ahead predictors. Recall (7.63). 

Yr(t) = e<ps(t) + ruAt) + E(t) 

Collecting all t as in (10.104) gives 

Y = e<D + r u + E 

The Least Squares estimate of the parameters is 

[ 0 f ] = [ Y 4 > r YU 
J | _U<D r 

C P U 7 " " ! " 1 

uu 7 " 

(10.116) 

(10.117] 

(10.118) 
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Using the expression for inverting block matrices gives (see Problem 10E.11) 

0 = Y n ^ T ^ O n ^ T ^ 7 ) - ' (10.119) 

This means that the matrix of predicted outputs can be written 

Y = [yr(D . . . Yr(N)] 

= Yn^T<l>7^4>n^T<!>7')"1<t> (10.120) 

which we recognize as G in (10.97). with G as in (10.109) and the weightings W\ = I 
and W2 — ( O n ^ T * 7 ) - 1 <J>. Performing the SVD and deleting small singular values 
thus gives 

Y % VxSxVj (10.121) 

Here Vf is an n x N matrix. We know from (10.98) that U\ is related to the 
observability matrix by some invertible matrix R as V\ = OrR~l. Introduce X = 
fl-'SiVi. Then (10.121) can be written as 

Y ^ OrR^SiVf = OrX (10.122) 

Comparing with (10.105) shows that X must be the matrix of the correct state esti
mates if Y is the matrix of true predicted outputs. The true predicted outputs are, 
however, normally obtained only when the orders in (10.114) tend to infinity. In 
such a case we have then found the true state estimates—in the state-space basis in 
question—from the SVD. Alternatively we can write 

X = LY = T x ( l ) . . . Jt(/V)l 
L J (10.123) 

L = R-]U? 

since UjU\ = I from the SVD-properties. With the states given, we can estimate 
the process and measurement noises as 

w(t) = i(f + 1) - Ax(t) - Bu(t) 
(10.124) 

v(f) = y ( 0 - Cx(t) - Du(t) 

and estimate their covariance matrices in a straightforward fashion. Here A, B,C, D 
are the estimates of the system matrices obtained as described above. Alternatively, 
these could be directly estimated by the least squares procedure (7.66), once the 
states are known. 

Putting It AU Together 

We have now described all the basic steps of the algorithm, although in somewhat 
reverse order. The complete subspace algorithm can be summarized as follows: 
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The Family of Subspace Algorithms (10.125) 

1. From the input-output data, form 

G = ^ Y U ^ T <10-I26) 

with the involved matrices defined by (10.103). (10.100). (10.106). (10.114). and 
(10.108). 

2. Select weighting matrices W] (rpxrp and invertible) and W2 ((psi+/??.v->) x a ) 
and perform SVD 

G = WXGW2 = USVT % t/ i5i V , r (10.1.27) 

where the last approximation is obtained by keeping the n most significant 
values of the singular values in S and setting the remaining ones to zero. (£/j is 
now rpxn. S\ is n x n and V, r is n x a.) As remarked above, post-multiplying 
W2 by any a x k or thonormal matrix (with k > rp) will not change U\ . (See 
Problem 10E.10.) 

3. Select a full rank matrix R and define the rp x n matrix Or = W~] U\ R. Solve 

C = 6 r ( l : p , 1 : n) (10.128a) 

Or(p + 1 : pr, 1 : n) - 0 , ( 1 : pir - 1). 1 : n)A (10.128b) 

for C and A. The latter equation should be solved in a least squares sense. 
A A 

4. Est imate B, D and i n from the linear regression problem: 

1 ' V ll 
i n - ^ j ( 0 - Ciql - A)-]Bu(0 - Du(t) 

arg min 

- Ciql - A)-\x{)8it) (10.129) 

5. If a noise model is sought, form X as in (10.123) and estimate the noise contri
butions as in (10.124). 

Numerical Implementation. It should be mentioned that the most efficient numeri
cal implementation of the above steps is to apply QR-factorization of the data matrix 
[ U T <t>T V T ]T = L Q. i L is here a lower triangular, pr + mr + s square matrix, 
while Q is an or thonormal (pr + mr + s) x N matrix.) Then the crucial SVD-factor 
IJ\ in (10.127) can be found entirely from the "L-par t : ' of this factorization, i.e.. the 
"small" matrix. See Problem 10G.5 as well as Van Overschee and DeMoor (1996) 
and Viberg, Wahlberg, and Ottersten (1997). 

The family of methods contains a number of design variables. Different algo
rithms described in the literature correspond to different choices of these variables. 
It is at present not fully understood how to choose them optimally. The choices are: 

• The choice of correlation vector tpsit) in (10.114). The requirement is thai 
(10.110) holds. Notice that this choice also determines the ARX-model that 
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is used to approximate the system when finding the A-step ahead predictors in 
(7.62). Most algorithms choose <ps(t) to consist of past inputs and outputs as 
in (10.114) with s\ = s2. The scalar s is then the only design variable. 

If S\ — 0 only past inputs are used, and an output-error variant of the 
algorithm is obtained. Then the noise is ignored when forming the predictors, 
which leads to models like (7.55) that do not at tempt to describe the noise 
properties, but therefore also may describe the input-output properties with 
fewer states. The O E - M O E S P algorithm of Verhaegen (1994)uses this choice 
of regressors. 

• The scalar r , which is the maximal prediction horizon used. Many algorithms 
use r = s. but there is no particular reason for such a choice. 

• The weighting matrices W] and W2. This is the perhaps most important choice. 
Existing algorithms employ the following choices: 

• MOESP, Verhaegen (1994): Wi = 7, W2 = ( ^ ^ U ^ ^ r ^ U ^ 

• N4SID, Van Overschee and DeMoor (1994): Wl = 7. 
W2 = ( ^ < b n ^ T < b r ) - , < * > (see also (10.120).) 

• IVM. Viberg(1995): Wx = ( ^ Y n ^ p Y ) - 1 ' ' 2 , W2 = (^cp* 7 " ) - !< ' 2 

• CVA,Lar imore(1990) : = ( £ Y n ^ T Y ) - 1 / 2 . W2 = ( ^ < J > n ^ T < t > 7 T 1 / 2 

(Note that W2 can be expressed in several ways, since post-multiplying with 
any or thonormal matrix does not change the resulting estimates.) The effects 
of the weightings are discussed in several papers. See the bibliography. 

• The matrix R in step 3. Typical choices are 7? = 7, 7? = S\ or 7? = 5 X \ 

10.7 S U M M A R Y 

Determining a parameter estimate from data has two aspects. First, one has to decide 
how to characterize the sought estimate: as the solution of a certain equation or as 
the minimizing argument of some function. Second, one has to devise a numerical 
method that calculates that estimate. It is important to keep these issues separate. 
The combination of several different approaches to characterize the desired estimate 
with many techniques to actually compute it has lead to a wide, and sometimes 
confusing, variety of identification methods. Our aim in this chapter, as well as in 
Chapter 7. has been to point to underlying basic ideas. 

For linear regression problems (LS and IV methods) , we have recommended 
Q R factorization-type methods (10.11) and also pointed to the possibilities of using 
Levinson and/or lattice methods [(10.23) and (10.30), (10.32) respectively] for special 
structures. 

For general PEM, we have recommended the damped Gauss-Newton iterative 
method (10.40), (10.41), and (10.46) as the basic choice, complemented with (10.79) 
to find initial values for linear black-box models. 

For subspace methods the essential parts of the numerical calculations consist 
of a QR-factorization step and an SVD. This allows very robust numerical methods 
for the calculation of the estimates. 
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10.8 BIBLIOGRAPHY 

The computation of estimates is of course a topic that is covered in many articles and 
books on system identification. The basic techniques are also the subject of manv 
studies in numerical analysis. 

For the linear least-squares problem of Section 10.1. an excellent overview is 
given in Lawson and Hanson (1974). An account of the Levinson algorithm and its 
ramifications is given, for example, in Kailath (1974). An early application of the 
Levinson algorithm for estimation problems was given by Durbin (1960). The algo
rithm with estimated R ( r ) is therefore sometimes referred to as the Levinson-Durbin 
algorithm. The multivariable Levinson algorithm was given in Whittle (1963 land 
Wiggins and Robinson (1965). A Levinson algorithm for the "covariance method" 
[for which R(N) is not a Toepliz matrix, but deviates "slightly" from this structure] 
was derived by Morf et.al. (1977). Levinson algorithm has been widely applied in 
geophysics (e.g.. Robinson, 1967; Burg, 1967) and speech processing (e.g.. Markel 
and Gray. 1976). while it has been less used in control applications. Its numerical 
properties are investigated in Cybenko (1980). 

Lattice filters are used extensively in Markel and Gray (1976). Honig and 
Messerschmitt (1984). and Rabiner and Schafer (1978), in addition to the references 
mentioned in the text. The numerical stability of the calculation of reflection coef
ficients in (10.30). and (10.32) has been analyzed by Cybenko (1984). Considerable 
attention has been paid to the recursive updating of the reflection coefficients, which 
we shall return to in Chapter 11. 

For the methods of Section 10.2, Dennis and Schnabel (1983)serves as a basic 
references. It contains many additional references and also pseudocode for typical 
algorithms. Variants of the Newton methods for system identification applications 
have been discussed in. for example, Astrom and Bohlin (1965), Gupta and Mehra 
(1974), Kashyap and Nasburg (1974). The gradients $f= (d/d0)y. (d/d0).x. and 
so on. are known as sensitivity functions or sensitivity derivatives. These hav e been 
studied also in connection with sensitivity analysis of control design. Simple meth
ods for calculating these gradients in state-space models have been discussed in. 
for example, Denery (1971 )and Neuman and Sood (1972), as well as in Gupta and 
Mehra (1974) and Hill (1985). The use of Lagrangian multipliers to reduce the com
putational burden is described in Kashyap (1970)and van Zee and Bosgra (1982). 
Another possibility is to apply Parseval's relationship to V ; V and Hy in (10.39) and 
(10.45) and evaluate these in the frequency-domain in terms of the Fourier trans
forms of the signals. See Hannan (1969)and Akaike (1973). The expressions follow 
easily from (7.25) and (9.53). A special technique for maximizing the likelihood 
functions, the E M algorithm, has been developed by Dempster . Laird, and Rubin 
(1977). See Problem 10G.3. 

Further results on the uniqueness of solutions are given in Chapter 12 of Soder
strom and Stoica (1989). 

Analysis of bootstrap methods is carried out in Stoica et.al. (1985). Two-
and multistage methods have been discussed in many variants. In addition to those 
described in Section 10.4, there are, for example, the well-known methods of Durbin 
(1959)and Walker (1961). Both start with a high-order A R model. The coefficients 
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of these models (the corresponding covariance functions in the Walker case) lead 
to a system of equations for solving for MA parameters. See also Anderson (1971), 
Section 5.7.2. Other techniques to build models by reduction of high order A R X -
models are described in Wahlberg (1989)and Zhu and Backx (1993). 

The Subspace methods really originate from classical realization theory as for
mulated in H o and Kalman (1966)and Kung (1978). These algorithms pointed to 
the essential relationships (10.88) and (10.87). The extended observability matrix 
can also be found by factorizing the Hankel matrix of impulse responses, and several 
identification methods based on this have been devised, like King, Desai. and Skel-
ton (1988). Liu and Skelton (1992). Larimore developed his algorithms in Larimore 
(1983), Larimore (1990)inspired by Akaike 's work on canonical correlation. Akaike 
(1974b)and Akaike (1976). Related algorithms were developed by Aoki in Aoki 
(1987)for the time-series case. 

The family of methods developed with the related approaches by Moonen 
et.al. (1989), Verhaegen (1991). lead to the basic presentations Verhaegen (1994)and 
Van Overschee and DeMoor (1994). The relationships between the approaches 
have been pointed out by Viberg (1995)and Van Overschee and DeMoor (1996), 
which can be recommended as general overviews. Statistical analysis is presented in 
Peternell. Scherrer, and Deistler (1996). Special techniques to handle closed loop 
data are described in Chou and Verhaegen (1997). The presentation in Section 10.6 is 
largely based on Viberg, Wahlberg. and Ottersten (1997), with a similar perspective 
described in Jansson and Wahlberg (1996). 

Subspace methods to fit frequency-domain data are treated in McKelvey. Ak-
cay, and Ljung (1996). 

10.9 PROBLEMS 

10G.1 Let zU) be a p-dimensional signal, and let a" and b? (p x p matrices) be the least-
squares estimates of the linear regression models 

znU\9) = -alzit - 1) a"nz(t - n) 
(10.130) 

zn(t - n - 1|0) = -blzit -n) b*nzit - 1) 

based on data z(t). 1 < t < N. Show, by arguments analogous to (10.15) to (10.24). 
that these estimates can be computed as 

ak = °k + A A - A + 1 - = Pn 

bk = bk + Pnan-k+\' bn+\ = Pn 

n n 

a„ = Rn+l + £ f l A

n / ? „ + 1 _ * . ft = /?_„_, + ( = orj) 

pn = - * « \ y i r \ ph„ = 
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He re 

* - 7 7 £ : ( ' + k ) ' J i , ) 

t—-n 

with z(t) = 0 outside the interval 1 < / < N. (This is the multivariable Levinson 
algorithm, as derived by Whittle, 1963.) 

10G.2 Steiglitz-McBride method: Steiglitzand McBride (1965)have suggested the following 
approach to identify a linear system subject to white measurement errors: Consider 
the O E model (4.25) 

B{q) 
>(0 = -=T4«(0 + e(t) 

F(q) 

Step 1. Apply the LS method to the A R X model 

F(q)y(t) = B(q)u(t) + e(t) 

This gives B^iq) and F^iq). 
Step 2. Filter the data through the prefilter 

yF(t) = ~ — v ( f ) . uF(t) = ^—uit) 
Fxiq) Fsiq) 

Step 3. Apply the LS method to the A R X model 

Fiq)yF(t) = B(q)uF(t) + eit) 

R e p e a t from step 2 with the new F estimate. Stop when F\ and BN have converged. 

(a) This method can be interpreted as a way of solvjnefor a correlation estimate as 
in (7.110) with a #-dependent prefilter. What is lhe correlation vector (it. «) 
and what is the prefilter L(q, 9)1 

(b) By what numerical technique (according to the classification of this chapter i is 
the estimate computed? 

(c) Suppose the numerical scheme converges to a unique solution J3,v, Fv of the 
correlation equation. Use Theorem 8.6 to discuss whether these estimates will 
be consistent if the true system is described by 

Boiq) 
yit) = - F T T M C O + voit) 

Fo(q) 

where (vo(r)} is white or colored, respectively, noise. In case {foO)} is white, 
what does Theorem 9.2 say about the asymptotic variance of the est imate? (Sec. 
also. Stoica and Soderstrom, 1981a. for the analysis.) 

10G.3 77ie EM algorithm: Consider Problem 7G.6 and the expression (7.161) for the neg
ative log likelihood function: 

V(9) = - log p(Y\6) = -\ogp(Y,X\9) + ]ogp(X\9.Y) 
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This expression holds for all X, and can thus be integrated over any measure 
for X . / ( X ) . without affecting the X- independent left side: 

V(9) = - f logp(Y,X\9)f(X)dX + f \ogp(X\9, Y)f(X)dX 
JXeR" JXeR" 

Let now in particular f(X) be the conditional P D F for X, given Y and assuming 
9 = a: 

/ ( X ) = p(X\Y.a) 

Then 

V($) = HAY.9,a) + H2{Y.B,a) 

HAY, 9,a) = - f \ogp{Y,X\9)p{X\Y,a)dX = E{-logp(Y, X\0)\Y,a) 

H2(Y,9.a) = J \ogp(X\Y,d) • p(X\Y,a)dX 

The EM-algori thm (Dempster , Laird, and Rubin, 1977) for minimizing V(9) consists 
of the following steps: 

1. Fix or* and determine the conditional mean of — log p(Y, X\9) with respect 
to X. given Y under the assumption that the true value of 9 is a*. This gives 
Hi(Y. 9. ak). (Note that the 9 in p ( 7 , X\6) is left as a free variable.) 

2. Minimize 

HdY.B.at) 

with respect to 9 giving 9k • 

3. Set = 9k and repeat from 1. 

(a) Now. show that 

H2(Y,9k,ak) < H2(Y,ak,ak) 

and that hence 

V(9k) < V(ak) 

The algorithm thus produces decreasing values of the negative log like
lihood function. 

(b) Write out the EM-algori thm applied to the case of Problem 7G.6. 

[Step 1 is the Estimation and step 2 the Minimization step in the EM-algori thm. 
The algorithm is useful when the likelihood function given Y is complicated and the ad
dition of some auxiliary measurements X would have given a much simpler likelihood 
function. We thus expand the problem with these fake measurements and average 
over them using their conditional density given the actual observations and that the 
system is described by the current ^-est imate. Note that H2(Y, 9, a) is never formed 
in the algorithm.] 
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10G.4 Let Y and U be defined by (10.103). Consider the following LQ-factorization 

where 

Show that 

Gl-GillSl 
[%]"•«• t::i 

Y F L Y J = Y { I - U T ( U U T ) - f U ) = L22Q\ 

Hint: Just plug in the factorized expressions for U and Y . 

10G.5 Let Y . U and * be defined by (10.103) and (10.108). Consider the LQ-factorization 

Ql 
-u- 0 0 -

* = = 1.21 0 

_ Y _ - L 3 i L32 £ 53 -

Show that 

(a) Y / u * = Y N ^ ^ N ^ * 7 " ) - 1 * = L32L£ [ L 2 i 

(b) Y / u * N - T =L32Ql 
•4i] 

Here the big 0-part of L and the corresponding rows of Q of the original LQ-
factorization have been thrown away. You may assume that indicated inverses exist. 

Hint: Compare with the previous exercise. 
(The notat ion Y / F * for (10.120) is due to Van Overschee and D e M o o r (1994 land 

is to be read: "The oblique projection of Y onto the space 4>. along the row space of 
I T . ) / 

Note that (a) corresponds to the N4SID choice of G according to (10.120). 
Moreover (b) corresponds to the matrix G used in MOESP. Finally note that according 
to Problem 10E.10. you can always post-multiply the matrices with an orthonormal 
matrix, without affecting the factor U\ in the SVD (10.127). Hence we can work 
entirely with the *'L-parts" of the factorizations above, and throw away the (big) Q-
parts, when performing the calculations in (10.125). 

10G.6 Show that (10.115) has full rank n provided 

1. E<ps(t)<pJ(r) is positive definite. 

2. E j l * 7 ^ ) UjU) ] 1S positive definite. This means that the r future 

inputs should not be linearly dependent on the current state. 

3. S\ and s2 are sufficiently large so that x{t) % Lx<ps(t) for some Lx. (Sec 
(10.123)). 

Hint: Use that Ex(t)<pJ(t) — Ex(t)<pJ{l)s where x(t) is that part of the state that can 
be reconstructed from past input-outputs. Similarly Ex(t)U?(t) = Ex{t)llJ(t). 
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10E.1 In Hsia (1977). Section 6.7. the following identification procedure is described. Let 

<pfu) = [ - > ( / - 1 ) . . . -y(t -#!„) itit - l)...u(t - nh)] 

pT = [a\...anjbx...bnb\ 

The model is then written as 

xit) = (p{it)p + £(t) 

The est imate p\ is computed as a "bias correct ion" 

* _ - L S - B I A S 
P.\ — p.\ ~ p . v 

where p\f and p v

, A S are computed iteratively as follows: 
Step 1. Let 

1 V 

and 

Step 2. Let 

Step 3. Let 

and define 

Let 

it? - [«*']" 5 £«»«)>'<» 

p » > « = o 

- _ C.LS - B I A S 
PN — P\ - PN 

B{t) - yit) - (pT

xit)ps 

<pUt) = [-€{t) -eit - nj)\ 

1 v 

Rf - ^ E ^ ( / ) ^ 7 ( / ) 

Compute 

(10.131) 

and repeat from step 2 until convergence. 
Now show that this procedure is the boots t rap algorithm (10.64) for the P L R 

method (7.113) using the A R A R X model (4.22). 



3 5 8 Chap. 10 Computing the Estimate 

10E.2 Consider the model structure of Problem 5E.1 . Give an expression for how to compute 
the gradient 

ad 
10E.3 Apply the Gauss-Newton method (10.40) and (10.46) to the linear regression problem 

(10.1) with quadrat ic criterion. Take p = I. 

10E.4 Introduce the approximation 

eit. 6) % e(t.0li-u) + ifT(tJu~1))(9 -

Use this approximation in 

1 V 

VN($.ZS) = ^J^£2U.O) ( 1 0 . 1 3 2 ) 

and solve for the minimizing 9. Show that this gives the (undamped) Gauss-Newton 
method (10.40) and (10.46). 

10E.5 Consider Problem 10E.4. Minimize (10.132) subject to the constraint 

0-0 {i-l) 

Discuss the relationship to the Levenberg-Marquardt method (10.47). 

10E.6 Let V„ be defined by (10.23) and (10.24). Show that 

/=i f=i 

with y" given by (10.15). j 

10E.7 Consider the A R X model 

yit) + aiy(t - 1) + • • • + any(t - n) = bxu(t - 1) + • • • + bnu(t - ri) + e{t) 

Introduce 

z(t) L «(oJ 
and show how the estimates of a, and bt can be computed using the multivariable 
Levinson algorithm of Problem 10G.1. 

10E.8 Show that, in the lattice filter, we have 

yn(t\0") = - p , r , ( f - 1) - pzhit - 1) hhit - 1) 

Compute the covariance matrix of p , , i = 1 n. 

10E.9 Apply the method (10.68) to the A R A R X model (10.66). Spell out the steps explicith 
and show that they consist of a sequence of LS problems mixed with simple filtering 
operations. [This is the generalized least squares (GLS) method, developed by Clarke 
(1967). See also Soderstrom (1974).] 
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10E.10 Let the p x N matrix G be given, with p < N. Let its SVD be 

G = USVT 

{U is p x p with UTU = / . and V is A/ x ,V with V r V = / , and S is a /? x A' 
matrix with the singular values along the diagonal, and zeros elsewhere.) Suppose 
p < r < N and W is a N x r matrix such that \VT W = / . Let 

be the SVD of GW. Show that U = Ux. (Hint: Note that, with MATLAB notat ion. 
S*V' =S (:, 1: r) *V(:, 1: r ) ' . Then use that W *V(:, 1: r > will be orthogonal.) 

10E.11 The block matrix inversion lemma says: 

Apply th i s to the matrix in (10.118); show that A becomes 4>n^T<P r and that (10.119) 
holds. 

10T.1 Householder transformations: A Householder transformation is a matrix 

Q = I - 2wwT 

where w is a column vector with norm 1. Show the following 

(a) Q is symmetric and orthogonal . 

(b) Let x be an arbitrary vector. Then there exists a Q as in part (a) such that 

GW = UtSiV? 

where 

A = A -

0 
Qx = \x\ 

0 

(c) Let A be an n x m matrix, n > m. Then there exists an orthogonal matrix 

Q -- QmQm-l • • • 

being a product of Householder transformations such that 

where R is a square (m x m) upper triangular matrix (see Lawson and Hanson. 
1974). 
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10T.2 Consider the system 

A(](q)yU) = Bu(q)uU) + Q>{q)e0(t) 

and an A R M A X model structure 

e = [a1...a„abl...b„bcl... c„r]T 

A(q)y(t) = B(q)u(t) + C{q)e{t) 

with polynomial orders larger or equal to those of the true system. Let 

C(e'"') 
DM •- I t f l R e — > OVw 

I C0(e"*) 

Show that the prediction-error criterion 

V(0) - E£2U.O) 

has n o false local minimum in 0 e DM: that is. 
B{q) B()(q) C(q) C0(q) 

V ($) = O a n d 0 € D 
Aiq) A0(q) A{q) A0(q) 

10T.3 Consider the method (10.68) to minimize (10.67) for a bilinear parametrizat ion. Write 

(10.68) as an update step (10.40) with a block-diagonal RN* matrix. It is thus indeed 

a descent method that will converge to a local minimum. 
1 0 D . 1 Verify the relationships (10.31). Hint: By definition. 

1 *V 

•jj'E'nOyit -k) = 0 1 < k < n 
t=i 

[the residuals are uncorrelated with the regressors: see Figure I I . l ] . 

1 0 D . 2 Use Problem 10G.1 to derive a lattice filter for a multivariable signal z{t). 
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RECURSIVE ESTIMATION 
METHODS 

11.1 I N T R O D U C T I O N 

In many cases it is necessary, or useful, to have a model of the system available on-line 
while the system is in operation. The model should then be based on observations 
up to the current time. The need for such an on-line model construction typically 
arises since a model is required in order to take some decision about the system. This 
could be 

• Which input should be applied at the next sampling instant? 
• How should the parameters of a matched filter be tuned? 
• What are the best predictions of the next few outputs? 
• Has a failure occurred and, if so. of what type? 

Methods coping with such problems using an on-line adjusted model of some sort 
are usually called adaptive (see Figure 1 1 . 1 ) . We thus talk about adaptive control, 
adaptive filtering, adaptive signal processing, and adaptive prediction. 

SYSTEM 

DECISION 

A 
MODEL 

Figure 11.1 Adaptive methods. 

361 
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The on-line computation of the model must also be done in such a way that the 
processing of the measurements from one sample can, with certainty, be completed 
during one sampling interval. Otherwise the model building cannot keep up with 
the information flow. 

Identification techniques that comply with this requirement will here be called 
recursive identification methods, since the measured input-output data are processed 
recursively (sequentially) as they become available. Other commonly used terms 
for such techniques are on-line or real-time identification, adaptive parameter es
timation, or sequential parameter estimation. Apar t from the use of recursive 
methods in adaptive schemes, they are of importance also for the following two 
reasons: 

1. Typically, as we shall see. they will carry their own estimate of the parameter 
variance. This means that data can be collected from the system and processed 
until a sufficient degree of model accuracy has been reached. 

2. The algorithms of this chapter will also turn out to be quite competitive alter
natives for parameter estimation in off-line situations. See Section 10.3. 

In this chapter we shall discuss how recursive identification algorithms can be con
structed, what their properties are. and how to deal with some practical issues. We 
start by formally describing the requirement of finite-time computability. 

Algorithm Format 

We defined a general identification method as a mapping from the data set Z f to the 
parameter space in (7.7): j 

0, = F ( * . Z r ) (11.1) 

where the function F may be implicitly defined (e.g., as the minimizing argument 
of some function). Such a general expression (11.1) cannot be used in a recursive 
algorithm, since the evaluation of F may involve an unforeseen amount of calcula
tions, which perhaps may not be terminated at the next sampling instant. Instead, a 
recursive algorithm must comply with the following format: 

X(t) = H{t,X(t - l ) , y ( r ) , M ( 0 ) 
(11.2) 

Or = h(X(t)) 

Here X(f) is a vector of fixed dimension that represents some "information state." 
The functions H and h are explicit expressions that can be evaluated with a fixed 
and a priori known amount of calculations. In that way it can be secured that 0,. can 
be evaluated during a sampling interval. 
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Since the information content in the latest pair of measurements. y ( r ) , « ( / ) , 
normally is small compared to the information already accumulated from previous 
measurements, the algorithm (11.2) typically takes a more specific form: 

9, = 0 r _ , + ytQe(X(t).y(t),u(r)) 
(11.3) 

X(t) = Xit - 1) + PtQxiXit - l).yU).u(t)) 

where y and ju are small numbers reflecting the relative information value in the 
latest measurement . 

11.2 THE RECURSIVE LEAST-SQUARES A L G O R I T H M 

In this section we shall consider the least-squares method as a simple but archetypal 
case. The obtained algorithms and insights will then also serve as a preview of the 
following sections. 

Weighted LS Criterion 

In Section 7.3 we computed the estimate that minimizes the weighted least-squares 
criterion: 

9t = a rgmin Y]p{t, k)[xik) - (pTik)0]2 (11.4) 

This is given by (7.41): 

0, = R~\t)f(t) (11.5a) 

R(r) = J^p(t.k)y(k)vT{k) (11.5b) 

/(/) = J2^U^)<pik)yik) (11.5c) 

To compute (11.5) as given, we would at time t form the indicated matrix and 
vector from Z f and then solve (11.5a). If we had computed previously, this 
would not be of any immediate help. However, it is clear from the expressions that 
Or and 9t-\ are closely related. Let us therefore try to utilize this relationship. 

Recursive Algorithm 

Suppose that the weighting sequence has the following property: 

B(t,k) = A ( f ) j 0 ( f - 1 ,J t) , 0 < k < t - 1 
(11.6) 

0</./) = 1 
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This means that we may write 

fiit.k) = ] ~ [ ^ 0 ' ) (11.7) 
k+\ 

We shall later discuss the significance of this assumption. We note, though, tha t it 
implies that 

Rit) = k{t)R{t ~ D + <pO)<PT(t) (11.8a) 

f(t) = k{t)fit - 1) + (p(t)y(t) (H.8b) 

Now 

0, = R~\t)fit) = R~\t)[Ut)f(t - 1) + (p(t)yit)) 

= R~\t) [kit)Rit - 1)§,_, + p(0y(0] 

= JTV) {[/?( /) - y ( r ) / ( / ) ] 0 , _ i + ?(f )>•(')} 

= + R~lit)<pit) [yit) - p r ( f ) 0 , - t ] 

We thus have 

(9, = 9t-i + R~\t)<pit)[yit) - ? r ( f ) 0 , _ i ] (11.9a) 

R(t) = MOW ~ 1 ) + ? ( 0 / ( 0 (H.9b) 

which is a recursive algorithm, complying with the requirement (11.2): A t time t — 1 
we store only the finite-dimensional information vector X(r — 1) = R(t — 1)]. 
Since R is symmetric, the dimension of X is d + d ( d + l ) / 2 . At time f this vector 
is updated using (11.9), which is done with a given, fixed amount of operations. 

Version with Efficient Matrix Inversion 

To avoid inverting R{t) at each step, it is convenient to introduce 

P(t) = R~\t) 

and apply the matrix inversion lemma 

[A + BCD]'1 = A - 1 - A-]B[DA~lB + C-]]-lDA~l (11.10) 

to (11.9b). Taking A = MOW - 1), B = DT = (pit), and C = 1 gives 

i R „ Pit - \)(pit)(pTit)Pit - \)~\ / 

= —\P(t - l ) V ( I I . I L ) 

MO L MO + ¥>r(OW - ltytt) J 

http://ii.il
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Moreover, we have 

— i , 1 1 Pit - \)<pit)<pT(t)P(t - l)(p(t) 
R (t)<p(t) = P(t - l)<p(t) —~ — 

Pit - i)<p(t) 
kit) + <pTit)PU - \)<p{t) 

We can thus summarize this version of the algorithm as 

Bit) 

Lit) 

Pit) 

Bit - 1) + Lit) [ y d ) - <pTit)6(t - 1)] 

Pit ~ l ) y ( f ) 
A ( / ) + <pTV)Pit - \)<p(t) 

1 
Mt) 

Pit - 1) -
Pjt - \)<pit)(pTit)Pjt - 1 ) ' 

kit) +(pTit)Pit - \)(p{t) , 

(11.12a) 

(11.12b) 

(11.12c) 

Here we switched to the notation Sit) rather than£ , to account for certain differences 
due to initial conditions (see the following). 

Normalized Gain Version 

The "s ize v of the matrix R{t) in (11.5b) and (11.9) will depend on the kit). To clearly 
bring out the amount of modification inflicted on 0t-\ in (11.9a). it is instructive to 
normalize R{t) so that 

R(t) = y(t)Rit). yit) = 

Notice that 
1 Ut) 

Yit) Yit - 1) 

LA = 1 

+ 1 

(11.13) 

(11.14) 

according to (11.6), and that /?(/) now is a weighted arithmetic mean of <pik)(pTik). 
From (11.9b) and (11.14). 

Pit) = yit) \k(t) 
1 

R(t - 1) + <pit)<pTit) 
Yit - 1) 

= Rit - 1) + yit)[<pit)<pT(t) - Rit - 1)] 

Then (11.9) can be rewritten as 

(11.15) 
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= y (0 - <pT{t)ht - i) 

0(0 = Ht -- 1) + yU)R~l(0<p(Oe(0 (11.16) 

R(0 = RU - 1) + yit)[<p(t)<pT(t) - R(t - 1)] 

Notice that e(t) is the prediction error according to the current model. Since Rit) 
is a normalized matrix, the variable y (t) can be viewed as an updating step si:e or 
gain in the algorithm (11.16). Compare also with (11.3). 

Initial Conditions 
To use the recursive algorithms, initial values for their start-up are required. The 
correct initial conditions in (11.9) at time / = 0 would be /?(0) = 0, 0 ( ) arbitrary, 
according to the definition of R. These cannot, however, be used. A possibility 
could then be to initialize only at a time instant when R(to) has become invertible 
(typically to > d) and then use 

P~l(to) = R(to) = £ ^ r 0 . * ) < p ( / : ) ^ r ( * ) 
k=l 

to 

K = Wo) £ 0fo>. *)?(*>>•(*) 

(11.17) 

(11.18) 

A simpler alternative is, however, to use P (0 ) = Po and 0(0) = 0/ in (11.12). This 
gives 

/ 

0(0 = 

- l 

w .o)p 0

_ 1 + ] £ w . 

t 

p(t,0)P0-{0! + J^p(t.k)<p(k)y(k) (11.19) 

where $ ( / , ( ) ) is defined by (11.7). Clearly, if PQ is large or t is large, then the 
difference between (11.19) and (11.5) is insignificant. 

Multivariable Case (*) 

Consider now the weighted multivariable case [cf. (7.42) and (7.43)] 

1 ' T 
0, = a r g m i n - Y > ( r , k ) [y(k) - <pT(k)9] AT/1 [>•(*) - <pT(k)0] (11.20) 

* 2ti 
where fi(t, k) is subject to (11.6). Entirely analogous calculations as before give the 
multivariable counterpart of (11.12), 



See. 11.2 The Recursive Least-Squares Algorithm 367 

Bit) = Bit - 1) + L{t) [y ( / ) - <pT{t)B{t - 1)] 

L(t) = Pit - l)<pit)[Mt)A( + <pT{t)P{t - 1 X O ] " 1 (11.21) 

Pit - 1) - />(? - \ )<p i t ) [k{t)As +(pTit)Pit - l t y ( / ) ] " ' </( / ) />(? - 1) 
= A(0 

and of (11.16): 

<r(» = v(f) - ¥> r (/)0(/ - 1) 

Bit) = (9(r - 1) + yit)R-l{t)<pit)A-leit) (11.22) 

y?(r) = /?(/ - l ) + y(t)[<pit)A;l<pT(t) - Rit - d] 

Notice that these expressions are useful also for a scalar system when a weighted 
norm with 

Pit.k) = akY\k(j) (11.23) 
k+l 

is used in (11.4). The scalar a* then corresponds to A ^ 1 . 

Asymptotic Properties of the Estimate 

Since Bit) computed using recursive least squares (RLS) differs from the off-line 
counterpart at most by the initial effects, as shown in (11.19), the asymptotic prop
erties will coincide with those discussed in Chapters 8 and 9. 

Kalman Filter Interpretation 

The Kalman filter for estimating the state of the system 

xit + I) = Fit)x{t) + wit) 

yit) = Hit)x(t) 4- v{t) 

is given by (4.94) and (4.95). The linear regression model 

yitW) = <pTit)B 

underlying our calculations can be cast into the form (11.24) by 

Bit + 1) = Bit). i= 0) 

yit) = <pTit)0it) + vit) 

Applying the Kalman filter to (11.25) with Fit) = /, Hit) = <pTit), Ri(t) = 0 
[= Ew{t)wTit)]. and Ev{t)vT(t) = R2it) now gives exactly (11.21). with kit) = 1 
and A, = R2it). 

(11.24) 

(11.25) 
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This gives important information, as well as some practical hints: 

1. If the noise v(t) in (11.25) is white and Gaussian, then the Kalman filter theory 
tells us that the posterior distribution of 0(t), given Z / _ 1 , is Gaussian with 
mean value 9(t) and covariance matrix P(t). given by (11.21), with / . i n = 1 
and A, = Rz(t). 

2. Moreover, the initial conditions can be interpreted so that 0(0) is the mean 
and P(0) is the covariance matrix of the prior distribution. In plain words, this 
means that 0(0) is what we guess the parameter vector to be before we have 
seen the data, and P(0) reflects our confidence in this guess. 

3. In addition, the natural choice of the norm A r in the multivariable case is to 
let it equal the equation error noise covariance matrix. If, in the scalar case. 
a , - 1 = Ev2(t) is time varying, we should use fi(k. k) = a* in the weighted 
criterion (11.4) [cf. (11.23)]'. 

Coping with Time-varying Systems 

An important reason for using adaptive methods and recursive identification in prac
tice is that the properties of the system may be time varying and that we want the 
identification algorithm to track the variations. This is handled in a natural wav in 
the weighted criterion (11.4) by assigning less weight to older measurements that 
are no longer representative for the system. This means, in terms of (11.6), th;ti we 
choose k(j) < 1. In particular, if k(j) = A , then 

fiit.k) = A ' " * (11.26) 
/ 

and old measurements in the criterion are exponentially discounted. In that case. >. 
is often called the forgetting factor. The corresponding y(t) will then, according to 
(11.14). be 

y(t) = y = 1 - X (11.27) 

These choices have the natural effect on the algorithm (11.12) or (11.16) that the step 
size or gain will not decrease to zero. This issue is discussed in more detail in Section 
11.6. 

Another and more formal alternative to deal with time-varying parameters is 
to postulate that the true parameter vector in (11.25) is not constant, but varies like 
a random walk: 

0(t + 1) = 0(t) + w(t). Ew(t)wT(t) = R:(t) (11.28) 

with w white Gaussian and Ev2(t) = /^(O- The Kalman filter then still gives the 
conditional expectation and covariance of 6(t) as 
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0(0 = Bit - 1) + L(t) [ v ( 0 - <pT(t)B(t - 1)] (11.29a) 

P{t - \)<p{t) 
L{t) = (11.29b) 

*,(/) + ipTit)Pit - \)tpit) 
Pit - l)<p{t)<pT(t)P(t - 1) 

Pit) = Pit - 1) - , r / : D / l x , ' + (H.29c) 
# 2 ( 0 + (pTU)Pit - l)<p{t) 

We see in this formulation that it is the additive R\i?) term in (11.29c) that prevents 
the gain Lit) from tending to zero. 

11.3 THE RECURSIVE IV M E T H O D 

The IV estimate for fixed (not model dependent) instruments is given by (7.118). 
Including weights as in (11.5) gives 

with 

<9, , v = R 1 it) fit) 

Rit) = J^fiit,k)Sik)<pTik) 

t 

fit) = £/*(*,*)<(*)>•(*) 

(11.30) 

(11 .31) 

This is closely related to the formulation (11.5), and the recursive computation of 
0 / v is quite analogous to that of Bt

LS. The counterpart of (11.12) is 

Bit) 

Lit) 

Pit) 

Bit - 1) + Lit) [yit) - <pTit)Bit - 1)] 

Pit - \)Sit) 
k{t) + <pTit)P{t - i)c(/) 

Mt) 
Pit - 1) -

Pit - \)sit)<pTit)Pjt - 1 ) 
kit) + <pTit)P{t - l)c(f) . 

(11.32a) 

(11.32b) 

(11.32c) 
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Asymptotic Properties 

Apart from possible initial-value effects. 9(t) computed as in (11.32) coincides with 
its off-line counterpart (11.30). Hence its asymptotic properties are given by the 
analysis in Chapters 8 and 9. 

11.4 RECURSIVE PREDICTION-ERROR M E T H O D S 

Analogous to the weighted LS case, let us consider a weighted quadratic prediction-
error criterion 

V , ( 0 , Z ' ) = K (O -X^(r , fc )£ 2 (* ,0) (11.33) 
k=\ 

with and y given by (11.6) and (11.13). Note that 

i 

J^y(t)P(t,k) = 1 
* = i 

and that the gradient w.r.t 9 obeys 

i 

V / ( 0 , Z ' ) = -y(t)y22fi{t,kWik,0)e{k.O) 
k=\ 

= r(/)JM0y(t
1_ ^Vt'-tf.Z'-1) - ^r(r,0)e(r^)J (11.34) 

= V / . ^ . Z ' " 1 ) + y(t)[-ij,(t,9)e(t.9) - V / _ l v 0 , Z ' " 1 ) ] 

just as in (11.15). / 
For the prediction-error approach, we developed the general search algorithm 

(10.40): 

§<'> = Q(rl) - M ! ° [R^Y V , W _ 1 ) . Z R ) (11.35) 

Here the subscript t denotes that the estimate is based on t data (i.e., Z'). The 
superscript (/) denotes the ith iteration of the minimization procedure. 

Suppose now that, for each iteration i, we also collect one more data point. 
This would give an algorithm 

§,<" = e?-l) - M ! ° v / C ^ , z') ( i i .36) 

For easier notation, we introduce 

$(t) = e l ' \ Rit) = /?, ( f ) (11.37) 

We now make the induction assumption that 0(f — 1) actually minimized V V i ^ . Z ' " 1 ) 
so that 

V/_,(§(/ - D . Z ' " 1 ) = 0 (11.38) 
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(this will of course be an approximation). Then, we have, from ( 1 1 . 3 4 ) . 

v;mt - N . Z ' ) = -yowuju - DwtJa - 1 » ( 1 1 . 3 9 ) 

With this approximation [and taking p(t) = 1]. we thus arrive at the algorithm 

B(t) = Bit - 1) + y(t)R-l(t)f(tJ(t - l))£(t.B(t - 1)) (11.40) 

We shall discuss the choice of R(t) shortly, but our main concern now is with the 
variables f{t. B(t — 1)) and £( / , B(t — 1)). These are derived from the prediction 
y(t\B(t — 1)). In general , the computation of y(t\B) for any given value of B 
requires the knowledge of all the data Z f _ 1 . For finite-dimensional linear models, 
this means that v(r|f?) is obtained as the output of a linear filter whose coefficients 
depend on B. See (10.56) and (10.60) for a conceptual expression. This means that 
fit, B(t — 1)) and y(t\B(t — 1)) cannot be computed k i recursively" (i.e.. with fixed-
size memory) . Instead we have to use some approximation of these variables. The 
following approach is natural: 

In the time recursions defining \f/(t,0) and y (t\B) from Z' for any given B, 
replace, at time k. the parameter 9 by the currently available estimate B(k). 
Denote the resulting approximation of \j/{t.B(t — 1)) and y(t\B(t — 1)) 
by fit) and y(t). ' (11.41) 

For a finite-dimensional, linear, and time-invariant model (10.60). the approximation 
( 1 1 . 4 1 ) takes the form 

f (/ + 1) = JA0(t))m + m(t))z(t) (11.42a) 

= C(B(t - l ) ) f (r) (H.42b) 

For the Gauss-Newton choice (10.45) and (10.46) of R(N), the rule (11.41) suggests 
the following approximation: 

R(t) 
t 

= K ( / ) £ / K / . W ( W r ( * ) 
k=\ 

(11.43) 

Using (11.41) and (11.43) in (11.40) now gives the recursive scheme 

e(t) = y(t) - y (0 (11.44a) 

B(t) = Bit - 1) + y(t)R-](t)xlr(t)e(t) (11.44b) 

R(t) = R(t - l ) + y(t)[f(t)V(t) - R{t - l ) ] (11.44c) 

y(t) 

fit) 
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The resulting scheme (11.44) together with (11.42) is a recursive Gauss-Newton 
prediction-error algorithm. 

Family of Recursive Prediction-error Methods 

Depending on the underlying model structure, as well as on the choice of Rit). 
the scheme (11.44b) corresponds to specific algorithms in a wide family of methods, 
which we shall call recursive prediction-error methods (RPEM) . For example, the 
linear regression 

,v</|0) = <pTU)9 

gives fit.9) = fit) = (pit), and (11.44) is indeed the recursive least-squares 
method (11.16). A gradient variant [Rit) = / ] applied to the same structure gives 

9(t) = 9(t - 1) + y{t)<p(t)e(t) (11.45) 

where the gain yit) could be a given sequence or normalized as 

yit) = (11.46) 

This scheme has been widely used, in particular for various adaptive signal-processing 
problems, under the name LMS (least mean squares) by Widrow and co-workers. 
See Widrow and Stearns (1985). For A R M A X models, we have the following exam
ple: 

Example 11.1 Recursive Maximum Likelihood 

Consider the A R M A X model (4.15). Introduce <p{t. 9) a£ in (4.20). Then 

x(t\9) = <pT(t,9)9; sit, 9) = yit) - y(f|0) 

fit,9) + dirif - 1 . 0 ) + ••• + cn^(t - nc.9) = (pit,9) 

[see (10.52)]. The rule (11.41) then gives the following approximations: 

Bit) = yit) - <pTit)0it) ( 1 1 . 4 7 ) 

(pit) = [ - > * ( / - ! ) • • • -yit-na) uit -\)...u{t -nb) e{t - 1 ) . . . ? ( r - nc) ]' 

yit) = <pTit)9it - 1); eit) = y{t) - yit) 
(11.48 • 

fit) + exit - \)f{t - 1) + . . . + cncit - \)fit - ne) = (pit) 

and the algorithm becomes 

0(f) = 0(r - 1) + y{t)R-lit)fit)eit) (11.49) 

This scheme is known as recursive maximum likelihood (RML) . 
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Notice the difference between (the "prediction error") eit) and (the Tes id -
u a r ) eit). The latter enters the vector cp(t + 1) and is not required until after Bit) 
is computed. Hence it is natural to distinguish between the quantities as indicated 
(cf. Section 5.11, Ljung and Soderstrom. 1983). • 

Similarly, the Gauss-Newton R P E M applied to the A R A R X structure (4.22) 
gives another recursive ML method derived by Gertler and Banyasz (1974). while the 
same algorithm with an enforced block diagonal structure of Rit) is called recursive 
generalized least squares (RGLS) and was introduced by Hasting-James and Sage 
(1969). See also Table 11.1 in Section 11.5. 

Applied to state-space models, the R P E M is closely related to the well-known 
extended Kalman filter (EKF) . as pointed out in Ljung (1979a). The algorithm 
(11.44b) thus contains a rich collection of specific, "named." methods as special cases. 
One of its main advantages is also its general applicability. The only requirement on 
the model structure is the computability of the gradient \J/. 

Projection into D-M 

The model structure is well defined only for 0 € D^t, giving stable predictors [cor
responding to the set of 0 , for which the matrix SA in (11.42) is stable]. In off-line 
minimization of the criterion function, this must be kept in mind as a constraint. The 
same is true for the recursive minimization (11.44). The simplest way of handling 
this problem is to project the estimates into D$t. for example, by 

B\t) = 0(t - 1) + Y(t)R-\t)yjj(t)e(t) 

Bit) = P'<R> IF^' ( / ) E D M ( 1 L 5 0 ) 

[B(t - 1) i f0 ' ( / ) i DM 

The extra computational burden involved in (11.50) is the stability test of 
whether B'(t) € D%j. It turns out that for successful operation of (11.44) a test 
of the kind (11.50) is necessary. However, experience also shows that the projection 
typically takes place at only a few samples in the beginning of the data record. The 
information loss by ignoring certain samples, as in (11.50), is therefore moderate . 

Asymptotic Properties 

The recursive prediction-error method (11.44) is designed to make updates of 0 in a 
direction that "on the average" is a modified negative gradient of 

7 ( 0 ) = {Ee2(t.B) 

i.e. 

^ 7 ( 0 ) = -Ef(t.B)e(t,B) 

It is thus reasonable to expect that 0(f) would converge to a local minimum of V(0) . 
This is in fact the case (Ljung, 1981) under certain regularity conditions. Moreover, 
for a Gauss-Newton R P E M . with y(t) = l/t. it can be shown that Bit) has an 
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11.5 RECURSIVE PSEUDOLINEAR REGRESSIONS 

Consider the pseudolinear representation of the prediction (7.112): 

y{t\B) = <pT{t,$)B (11.531 

and recall that this model structure contains, among other models, the general linear 
SISO model (4.33). A bootstrap method for estimating 0 in (11.53) was given by 
(10.64): 

0<'> = 0 , ( ' - n + [ R f Y MB{rl\ Z') (11.54a) 

t 

< _ 1 > = W 0 S ^ W . 8 , , , * " , , ) / ( * . e f " n ) (11.54b» 

*=1 

r 
/ , ( 0 , Z ' ) = y«)J2p{t.k)<p(k,0)e(k<0) (11.55) 

asymptotically normal distribution, which coincides with that of the corresponding 
off-line estimate [see (9.17)]. We thus have 

• If R(t) > <5/, 8 > 0, and y(t) -* 0 as t o c : then, w.p. 1, 9{t) converges to 
a local minimum of V(0) = \Es2(t, 9). [Measures to ensure R{t) > 51 are 
called regularization and are discussed in Section 11.7.] 

• Suppose that S e M [see (8.10)] and that 9{t) converges to the true parameter 
#o- Suppose that the Gauss-Newton R P E M (11.44b and c) is used with y ( n = 
1/f. Then 

yTtiht) - 0 o ) € AsN(Q.PB) 

_ _ { U - 5 U 

Pe = X0[Ef(t,e0)xl/\t.e0)] 1 

See Appendix 11A for techniques of proof and more insights and results. 

General Norms, Multivariable Case (*) 

Starting with a general criterion 

V , ( 0 . Z ' ) = x ( r ) £ 0 ( f , 
k=i 

where dim s = dim y = p , leads to a Gauss-Newton R P E M 

0(f) = B(t - 1) + y(t)R-\t)i/(t)i'£{e{t).t) 
(11.52) 

R(t) = R(t - 1) + y(t)[if(t)t;e(e{t).t)i,T(t) - R(t - 1)] 

Here l'€ is a p x 1 column vector, fit) is ad x p matrix, and ̂  is a p x p matrix. 
The case with explicit 9-dependence in I is analogous. / 
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Here we replaced the equally weighted sums in (10.64) by generally weighted ones, 
analogous to (11.33). 

With the same approach as for the recursive prediction-error method (making 
one new iteration at the same time a new measurement is brought in, and assuming 
the previous estimate was a solution [ft-i(9(t — 1). Z ; _ 1 ) = 0]), we obtain from 
(11.54) 

6(t) = ht - I ) + y(t)R-\t)<p(t,0(t - l))s{tJ(t - 1)) (11.56a) 

R(t) = R{t - 1) 

+ y(t)[<p(tj(t - l))<pT(tJ(t - 1)) - Rit - 1)] (11.56b) 

This algorithm suffers from the same problem as (11.40): The computations of 
(p{t, 9 it — 1)) and e(t. 0(t — 1)) cannot usually be performed recursively. This prob
lem can, however, be solved in the same way as for RPEMs, see (11.41). We thus 
form as an approximation of <p(t. Sit — 1)) a vector (pit) in which all 0-dependent 
entries are replaced by recursively computed quantities, analogous to (11.47). We 
then have the recursive pseudolinear regression (RPLR) : 

y ( 0 = (pT(t)0(t - 1) 

e(t) = v(f) - >•(/) 
(11.57) 

Ht) = 9(t - 1) + y(t)R-\t)(p{t)sit) 

R(t) = R(t - 1) + y(t) [(p(t)(pT(t) - R(t - 1)] 

This algorithm looks exactly like the RLS algorithm (11.16). The same software can 
thus be used for R P L R as for RLS. The operational difference lies in the fact that 
(p(t) in (11.57) contains entries that are constructed from data using past models. 
This also affects the convergence properties of the scheme (see the following). 

Notice that the only difference between R P L R compared to a R P E M for the 
model structure (11.53) is that \f/ in (11.44b and c) has been replaced by (p. For the 
general SISO structure (4.33), the relationship between \j/ and (p is given by (10.54). 

Family of RPLRs 

The R P L R scheme (11.57) represents a family of well-known algorithms when ap
plied to different special cases of (11.53). The A R M A X case is perhaps the best 
known of these. With (p(t) defined by (11.47). the algorithm (11.57) constitutes a 
scheme for estimating the parameters of an A R M A X model. This scheme is known 
as extended least squares (ELS). Other special cases are displayed in Table 11.1. 
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TABLE 11.1 Classification of Some Recursive Identification Schemes * 

Model Structure R P E M R P L R 

A R X 
A R M A X 
A R A R X 

RLS RLS 
ELS (Young. 1968: Panuska. 1%,si 
Bethoux. 1976 

R M L (Soderstrom. 1973) 
R G L S (Hasting-James and 

Sage. 1969);Gert ler and 
Banyasz. 1974) 

A R A R M A X 

O E 
BJ 

White. 1975 
Young and Jakeman. 1979 

E M M (Talmon and 
van den Boom, 1973) 

Landau, 1976 

* Compare with Table 4.1. 

Asymptotic Properties 

Convergence results for the RPLR scheme (11.57) have been given only for some of 
the special cases in Table 11.1. Since it differs from R P E M in that t/r is replaced by 
<p, one might guess that the convergence properties will depend on the relationship 
between these two vectors. 

For A R M A X structures, we have (11.48) 

C(q) 

In fact, it turns out that a sufficient condition for the ELS estimate to converge to 
the true parameter values ( 5 e M) is that 

1 1 
R e — — r — > VOJ f (11.58) 

where Co(q) is the C-polynomial of the true system description. The condition 
(11.58) is often expressed as "the filter (1/C<>(#)) — \ is positive r e a p and can be 
seen as a condition that Coiq) is close to unity (see Problem 11E.4). When R P L R is 
applied to the O E structure (4.25) (Landau s scheme), the corresponding condition 
for convergence is 

1 1 
Re : > 0 

FQ(e'«>) 2 ~ 
See Appendix 11A for references and further insights and results. 

11.6 THE CHOICE O F UPDATING STEP 

The recursive identification algorithms (11.44) and (11.57) are largely given by their 
off-line counterparts. The calculation of the prediction is derived from the corre
sponding model structure and the selection of <p(t) or r/r(f) has its roots in the choice 
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between the prediction-error or correlation approaches. What remains is the quan
tity y(t)R~](t) that modifies the update direction and determines the length of 
the update step. In this section we shall discuss some aspects of how to determine 
y(t) and /?( / ) . [For notational convenience, we give the expressions for the R P E M 
(11.44b). R P L R is analogous with <p(t) replacing fit).] 

Update Direction 

There are two basic choices of update directions: 

1. The "Gauss-Newton" direction, corresponding to R(t) being an approximation 
of the Hessian of the underlying identification criterion: 

R(t) = R(t - 1) + VU) [f(.Of\t) - R(t - 1)] (11.59) 

2, The "gradient" direction, corresponding to R{t) being a scaled version of the 
identity matrix: 

R(t) = \f(t)\2 • / (11.60) 

or 

R(t) = R(t - 1) + / ( / ) [\f(t)\2 . / - / ? ( / - 1)] (11.61) 

The choice between the two directions can be characterized as a trade-off between 
convergence rate and algorithm complexity. Clearly, the Gauss-Newton direction 
requires more computations. Updating y{t)R~l{t) as in (11.12c) (see also Section 
11.7) requires proportional to d2 operations, which will typically constitute the dom
inating part of the computational burden in (11.44). The gradient direction can be 
implemented with proportional to d operations per update. 

On the other hand, the convergence rate can often be drastically faster with the 
Gauss-Newton direction. For the constant-parameter case, analysis shows that this 
update direction will yield estimates whose asymptotic distribution has a variance 
equal to the Cramer-Rao lower bound [see (11.51)]. This is not true for other update 
directions. Notice, though, that this theoretical result holds for the time-invariant-
system case only. When the true system parameters are drifting, it will typically be 
better to use another update direction adapted to the parameter drift as in (11.67) 
(see Benveniste and Ruget, 1982). An interesting possibility to speed up convergence 
by averaging is described in Polyak and Juditsky (1992). 

Update Step: Adaptation Gain 

An important aspect of recursive algorithms is, as we noted in Section 11.2, their 
ability to cope with time-varying systems. There are two different ways of achieving 
this: 
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1. Selecting an appropriate forgetting profile Pit. k) in the criterion (11.33) or 
selecting a suitable gain yit) in (11.44) or (11.57). These two approaches are 
equivalent in view of the relationships (11.7). (11.13). or (11.14). which mav be 
summarized as 

y { t ' j=k+i 

yit - 1) 
kit) = , , (1 - yit)) (11.62b) 

Yi.0 

Y(') = \u)~ 0 U 2 c ) 

1 + — - — 
yit - 1) 

2. Introducing an assumed covariance matrix R\(t) for the parameter changes 
per sample as in (11.29c). This will increase the matrix Pit) and hence the gain 
vector L(t). 

In either case, the choice of update step or "gain" in the algorithm is a trade-off 
between tracking ability and noise sensitivity. A high gain means that the algorithm 
is alert in tracking parameter changes but at the same time sensitive to disturbances 
in the data, since these are erroneously interpreted as signs of parameter changes. 
This trade-off can be discussed more precisely in terms of the quantities kit). y i n . 
and /? , ( r ) . 

Choice of Forgetting Factors kit) 

The choice of forgetting profile pit, k) is conceptually simple: Select it so that the 
criterion essentially contains those measurements that are relevant for the current 
properties of the system. For a system that changes gradually and in a "stationary 
manner," the most common choice is to take a constant forgetting factor: 

0(t,k) = k(~k: le..k(t) = k (11.63) 

The constant k is always chosen slightly less than 1 so that 

fi{ttk) = e{'-k)k*}- * (H.64) 

This means that measurements that are older than 7n = 1/(1 — k) samples are 
included in the criterion with a weight that is e~] ~ 36% of that of the most recent 
measurement. We could call 

To = (11.65a) 
I — A 

the memory time constant of the criterion. If the system remains approximate 1\ 
constant over To samples, a suitable choice of A can then be made from (11.65a). 
Since the sampling interval typically reflects the natural time constants of the system 
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dynamics, we could thus select k so that 1/(1 — k) reflects the ratio between the 
time constants of variations in the dynamics and those of the dynamics itself. Typical 
choices of A. are in the range between 0.98 and 0.995. 

We can also consider the response to a sudden change in the true system. If 
the change occurred k samples ago, the ratio of relevant-to-obsolete entries in the 
criterion is 1 — kk. The response to a step change in the system is thus like that of 
a first-order system with time constant (11.65a). For a constant system belonging to 
the model set. it follows from Problem 11 A.6 that the deviation of the estimate from 
the true value behaves like 

E{0{t) -Oo)0(t) -60)T - l ^ A o [ £ ^ ( ^ ^ ) ^ R A ^ o ) ] _ 1 (H.65b) 

Here A 0 is the true innovations variance. The two expressions (11.65a and b) describe 
in formal terms the trade-off in k between tracking alertness and noise sensitivity. 

For a system that undergoes abrupt and sudden changes, rather than steady 
and slow ones, an adaptive choice of k could be conceived. When an abrupt system 
change has been detected, it is suitable to decrease k(t) to a small value for one 
sample, thereby "cutting off* past measurements from the criterion, and then to 
increase it to a value close to 1 again. Such adaptive choices of k are discussed, for 
example, in Fortesque. Kershenbaum, and Ydstie (1981)and Hagglund (1984). 

Choice of Gain yit) 

The choice of gain can be translated from the corresponding choice of forgetting 
factor using (11.62). A constant forgetting factor A gives, after a transient, a constant 
gain 

y = 1 - k 

Similarly, a sudden decrease at time to in kit) to a small value and then back to 1 
corresponds to a sudden increase in y (t) to a value close to 1 [see (11.62)], and then 
y{t)*\/{t-t0). 

It is. however, also instructive to discuss the choice of gain in direct terms. 
Intuitively, the gain should reflect the relative information contents in the current 
observations. An observation with important information (compared to what is 
already known) deserves a high gain, and vice versa. This is a useful principle that can 
be applied to a variety of situations: For a constant system the relative importance of 
a single observation decays like 1/t. After a substantial change in system dynamics, 
the relative information in the observation increases. A measurement with a large 
noise component has low information contents, and so on. See also Problem 11E.3. 

Including a Model of Parameter Changes 

Analogously to the Kalman filter version (11.29), we could introduce an assumption 
that the true parameters vary according to 

0{t) = 0{t - 1) + w(t) (11.66a) 

Ew{t)wTit) = /?,(') (11.66b) 
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If we assume that the innovations variance is R^tt) we get the following version of 
the general algorithm (11.44): 

G(t) = 0(t - 1) + L(t)e(t) 

eit) = y(t) - >•</) 

L(t) P(t - Wit) (11.67) 

Rl(t) + fT(t)P(t - l)tfr(f) 

P(t - W(W it)P(t - 1) 
Pit) = p(t - i) — ; y : } W + Ri(n 

R2(t) + fT(t)P{t - W{t) T 

In the case of a linear regression model, this algorithm does give the optimal 
trade-off between tracking ability and noise sensitivity, in terms of a minimal a pos
teriori parameter error covariance matrix. (This follows from the original derivation 
of the Kalman filter, Kalman and Bucy. 1961, as pointed out in Bohlin, 1970. and 
Astrdm and Wittenmark, 1971). However, for other models the algorithm (11.67) is 
somewhat ad hoc. See Problem 11T.2 for a heuristic derivation of it. Nevertheless, 
it is a very useful alternative, in particular if we have some insight into how the pa
rameters might vary (e.g.. if certain parameters vary more rapidly than others). A 
fringe benefit of the algorithm is that P(t) is an estimate of the variance of the pa
rameter error, also taking into account the variation of the true system. For a linear 
regression with normal disturbances and normal drift, P(t) is exactly the covariance 
matrix of the posterior distribution of 9(t). the mean being,f?(r). See (11.29). 

The case where the parameters are subject to variations that themselves are of 
a nonstationary nature [i.e., R\(t) in (11.66) varies substantially with t] can be dealt 
with in a parallel algorithm structure, as described in Andersson (1985). 

Constant Systems 

For a time-invariant system, the natural forgetting profile is kit) = 1 or y(t) = 1 / r. 
However, it turns out that for many recursive algorithms (not including RLS) the 
transient convergence rate is significantly improved with a forgetting factor that 
increases from. say. 0.95 to 1 over the first 500 data or so: 

k(t) = 1 - (0.05) • (0.98)' (11.68) 

The reason apparently is that early information is somewhat misused and should 
therefore carry a lower weight in the criterion compared to later measurements, 
whose information contents are processed in a better way (the filters corresponding 
to (11.42) are then more accurate). 
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Asymptotic Behavior in the Time-varying Case 

A heuristic analysis of the asymptotic behavior of (11.67) can be carried out as fol
lows. 

Suppose that the true parameters vary according to (11.66), and that we con
sider just the linear regression case: 

v(/) = fT(t)0(t - 1) -f- « ( / ) . Ee2(t) = Xo 

Let us also study a simplified algorithm 

0 ( 0 = Bit - 1 ) + Pf(t)s(t) 

= 0(t - 1) + PfiO ( v ( 0 - $TV)ht - 1)) (11.69) 

for some constant "small" matrix P. For the LMS-case (11,45) with constant gain, 
this corresponds to P — y. while the forgetting factor case, (11.19) or (11.59), with 
a constant forgetting factor X = 1 — y corresponds to 

Pit) = ^ A ' - V ( W r ( * ) j * M 1 - W 1 = P 

S = lf{t)fT(t) 

where the approximation holds for X close to 1 and large r, so that we can average 
over the many non-vanishing terms. Equation (11.69) gives 

${t) - Bit) - 0 ( 0 

0 ( 0 = (/ - Pf{t)fT{t))BU - 1) - Pfit)e(t) + w{t) 

If we square both sides and take expectation, disregarding any correlation between 
0 and iff and assuming stationarity. we obtain 

IT = ~EB{t)BT{t) 

n = n - PSU - USP + PSUSP + PSPX0 + / ? , . or 

psn + USP = pspx0 + Ri 
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where Ln the last step we ignored the term PSUSP (since P and IT. are "small"), if 
we insert the RLS-choice P = (1 — k)S~l we obtain from this the parameter error 
variance 

which is a generalization of (11.65b) to the time-varying case. Similarly, the LMS-
choice gives that the parameter error is the solution fl to 

These expressions clearly show how the choice of gain y = 1 — k is a trade-off 
between the tracking ability R]/y. which favors large y. and the noise sensitivity 
yk{), which favors small y. 

In Guo and Ljung (1995)it is formally verified that TI indeed is the actual 
covariance matrix of the parameter errors, up to terms that tend to zero in a well-
defined way as y tends to zero. In that paper the general algorithm (11.67) is treated 
in the linear regression case. See also Ljung and Gunnarsson (1990). which describes 
the extension to non-linear parameterizations. 

11.7 I M P L E M E N T A T I O N 

The basic, general Gauss-Newton algorithm was given in the form (11.44) or (11.57). 
It is clearly not suited for direct implementation as it stands, since ad xd matrix RI t) 
would have to be inverted at each time step. In this section we shall discuss some 
aspects on how to best implement recursive algorithms. A more thorough discussion 
is given in Chapter 6 of Ljung and Soderstrom (1983). 

Using the Matrix Inversion Lemma 

By applying the matrix inversion lemma (11.10) to (11.44). we obtain, analogously 
to (11.11), the algorithm (for the case of vector outputs) 

(11.70) 

sn + ns = yk()s + -/?, 
y 

(11.71) 

Bit) 9(t - 1 ) + Lit)s(t) (11.72a) 

sit) yit) - yit) (11.72b) 

Lit) Pit -\)nit)[A(/)A, + t)Tit)Pit - i )n( r ) ] 
- i 

(11.72c) 

Pit) 
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Here n(t) (a d x p matrix) represents either (p or \}/ depending on the approach. 
In this form the dimension of the matrix to be inverted is only p x p. so the saving 
in computations compared to (11.44) is substantial. Unfortunately, the P-recursion 
(11.72d) (which in fact is a Riccati equation) is not numerically sound: the equation 
is sensitive to round-off errors that can accumulate and make P{t) indefinite, since 
Pit) is essentially computed by successive subtractions. 

Using Factorization 

As we discussed in Section 10.1, it is useful to represent the data matrices in factorized 
form [see (10.11)] so as to work with better-conditioned matrices. For recursive iden
tification, this means that we represent P(t) as a product of matrices and rearrange 
(11.72d) so as to update these matrices instead of P itself. Useful representations 
are 

Pit) = Qit)QT(t) (11.73) 

which, for triangular Q, is the Cholesky decomposition and the VD-factorization: 

Pit) = Uit)D(t)UT(t) (11.74) 

with U(t) as an upper triangular matrix with all diagonal elements equal to 1 and 
D(t) as a diagonal matrix. Potter (1963)has given an algorithm for updating Q(t) in 
(11.73) and Bierman (1977)has developed numerically sound algorithms for U and 
D in (11.74). Here we shall give some details of a related algorithm, which is directly 
based on Householder transformation (see Problem 10T.1). It was given by Morf 
and Kailath (1975). 

Step 1. At time t—1. let Q (t—1) be the lower triangular square root of P {t—1) 
as in (11.73). Let p{t) be a square root of k(t)Kt. Form the (p + d) x (p + d) 
matrix 

QT(t-\)nit) QTit-\)_ 
(11.75) 

Step 2. Apply an orthogonal (p + d) x ip + d) transformation 

T ( T r T = / ) 

to L(t — 1) so that TZ(r — 1) becomes an upper triangular matrix. T can, for example, 
be found by QR-factorization. Let n(/). Lit), and Qit) be the p x p, d x p. and 
d x d matrices defined by 

™-»-[T%] 
(Clearly, n and Q are lower triangular.) 
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Step 3. Now with Lit) and P(t) as in (11.72c and d). we have 

Hence 

Lit) = L{t)Y\-\t) 

= Q ( , ) Q r ( „ 

Xit) 

n(f)nr(;) = MOA, + nT(t)P{t - \)n(t) (1177) 

Qit) 
G</) = - 7 = (11.78) 

Verification. Multiplying (11.76) by its transpose gives 

n(f) 0 

lit) Qit) 

n 7(o lT{t) 

o —T 
Q it) 

n(/)nr(r) n(r)Ir(r) 

l{t)UTit) Qit)QTit) + L ( R ) L 7 ' ( R : 

= £ R ( R - L ) T R T I : ( R - 1 ) = £T(t - l)£(t - 1 ) 

p.T(t)p(t) + nT(t)Q(t - l)QT(t - Dnit) nT{t')Q(t - \)QT{t - 1) 

Qit - l)QTit - l )n( r ) Qit - \)QTit - 1) 

Using the facts that Q(t - \ )QTit - 1) = Pit - 1) and pT{t)pit) = /.(OA,, it 
is now immediate to verify the equalities in (11.77) by a comparison with (11.72c 
and d). 

There are several advantages with this particular way of performing (11.72c and 
d). First, the only essential computation to perform is the triangularization step (or 
<2>?-factorization) (11.76). for which several good numerical procedures exist. This 
step both gives the new Q and the gain L after simple additional calculations. Note 
that F I (0 is a triangular p x p matrix, so it is a simple matter to invert it. Second, 
in the update (11.76) we only deal with square roots of P. Hence the conditioning 
number of the matrix fit — 1) is much better than that of P. Third, with the triangular 
square root Qit) it is easy to introduce regularization. that is, measures to ensure 
that the eigenvalues of P stay bounded, at the same time as P remains positive 
definite. 
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Lattice Algorithms (*) 

In (10.30) and (10.32). we gave a lattice filter scheme for computing predictions that 
can be applied to certain model structures (see also Problems 10E.8, 10D.2). This 
scheme is not recursive, since the variables p„ . en(t). and r„(t) rightly should carry 
also an index N, reflecting their dependence on the whole data record via (10.32). A 
tempting approach would be to approximate e% (t) and (/ — 1) in (10.32) by the 
past, already computed residuals e'n (/) and r'„~l(t — 1). Then p» could be recursively 
computed, and we obtain a scheme 

e„-\(t) = en(t) + p„(t - \)rn(t - 1) 

r « + i ( 0 = Kit ~ 1) + p„(t - \)e„U) 

Kr(0 = Kr(t - 1) + e„(t)r„(t - 1) 

K<0 = - 1) + e\{t) (11.79) 

A I M - ^ r ( / ) 

hit) = hit) = y ( r ) 

This algorithm was developed by Griffiths (1977)and Makhoul (1977) and has 
been called a gradient lattice algorithm. It involves approximation, as we pointed out, 
and consequently does not exactly implement the off-line estimate. It is interesting 
to note, though, that by slightly modifying the Rer and Re updates an exact version 
is obtained. This was proved by Lee. Morf, and Friedlander (1981). We here give 
the resulting algorithm for the case of a multivariate signal z(t) in (10.12) (which 
includes applications to dynamic systems; see Problem 10E.7). We also include an 
arbitrary constant forgetting factor /.. 

1. Initialize at / = 0: Let 

/?J(0) : = 81. Rr

n{-1) : = 61, Rr

n

e(0) : = 0, r„(0) : = 0, n = 0 M - 1 

2. At time t — 1. store 

Re

n(t - 1), BTn

e(t - 1), Rr

n(t - 21 rn(t - 1), n = 0 M - 1 

3. At time t — 1, compute for n = 0 , Af — 1: 

# ( / - 1) : = -R'/(t - \)T[R;,(t - 2 ) ] " 1 

ph

n(t - 1) : = -R?(t - ! ) [ * ; < / - 1)] 
(11.80) 



386 Chap. 11 Recursive Estimation Methods 

4. For n = 0 . . . . , M — 1, update 

en+](t) = e„(i 

r0(t) = z(t) 

en(t) + K(t - l)rn(t - 1) 

KU - 1) + ph

n(t - \)en{t) 

5. Update for n = 0. M-l: 

Rr

n(t - 1) = MTH(t - 2) + [1 - PM]r„(t - \)rj(t - 1) 

R'n(t) = kR<t« - 1 ) + [1 - p\{t)]e„(t)el(t) 

Ke«) = - 1) + [1 - Pnit)]r„(t - \)eT

n{t) 

PnMO = Pn«) + [1 - pn(t)frT

n{t - 1) [Rr„(t - l ) ] _ 1 / - „ ( r - 1) 

Po(0 = 0 

6. G o to step 2. 

The prediction of z(t) based on z(t — 1) z(t — n) is thus given by 

zn(t) = z(t) - e„(t) 

It can be computed before z(0 is received by rearranging (11.80b) as 

ZniO = 3 , - 1 (0 - %V - l)r„-i(t - 1). z0(t) = 0 

11.8 S U M M A R Y / 

Recursive identification algorithms are instrumental for most adaptation schemes. 
A recursive algorithm can be derived from an off-line counterpart using the philos
ophy of performing one iteration in the numerical search at the same time as a new 
observation is included in the criterion. In some special cases (e.g., the recursive least 
squares and the recursive instrumental variable cases) this leads to algorithms that 
exactly calculate the off-line estimates in a recursive fashion. In general, though, the 
recursive constraint means that the data record is not maximally utilized. 

With the described philosophy, three basic and common classes of recursive 
methods can be distinguished: 

1. Recursive prediction-error methods (RPEM) , (11.44) 
2. Recursive pseudolinear regressions (RPLR) , (11.57) 
3. Recursive instrumental-variable methods (R1V). (11.32) 

The asymptotic properties obtained by a R P E M for a constant system, using 
a Gauss-Newton update direction, coincide with those of the corresponding off
line prediction-error method. This is a very important result, which means that the 
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discussion and results of Chapters 8 and 9, as well as their consequences for user's 
choices in Part III. apply equally well to RPEMs. Convergence of PLRs is tied to 
positive realness of certain transfer functions associated with the true system. 

The identification problem includes a variety of design variables to be chosen 
by the user. Many of these are common to both off-line and recursive methods. 
Recursive algorithms include, in addition, two important quantities that may have a 
considerable effect on the quality of the estimates: the update direction and the gain. 
Apparently, the Gauss-Newton direction is a very good choice of update direction for 
constant systems, even though it may include more calculations than other choices. 
As a guiding principle for the choice of gain, it can be said that it should reflect the 
relative information contents in the current measurement . 

The principles of recursive identification as outlined in this chapter can be ap
plied to "stochastic"' and "deterministic" systems equally well. The distinction, which 
is partly semantic, shows up on two occasions: (1) when forming the prediction model 
one can apply some probabilistic machinery or simply "guess," and (2) when selecting 
the adaptation gain, the "relative information contents in the current measurement" 
can be interpreted as a formal signal-to-noise ratio or in a more intuitive manner. 
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nan (1980a)and Solo (1981). 
Section 11.5: Apparently, the first R P L R algorithm was the ELS scheme developed 
by Panuska (1968)and Young (1968). The term PLR is adopted from Solo (1978). 
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Benveniste and Ruget (1982). and Kulhavy and Kraus(1996). Relations to detection 
are treated in. e.g., Basseville and Nikiforov (1993)and Gustafsson (1996). 

Section 11.7: Chapter 6 of Ljung and Soderstrom (1983)gives more details of the 
implementation. The numerical properties of the schemes have been studied in L.jung 
and Ljung (1985), Graupe, Jain, and Salahi (1980). Mueller (1981). and Samson and 
Reddy (1983). Algorithms for fast calculation of the vector L{t) in (11.72) have been 
derived in Ljung, Morf. and Falconer (1978)and discussed in Carayannis. Manolakis, 
and Kalouptsidi rs (1983). Cioffi and Kailath (1984). and Lin (1984). The literature on 
lattice algorithms is extensive. See, for example, Lee, Morf. and Friedlander (1981), 
Friedlander (1982). Samson (1982). and the monograph by Honig and Messerschmitt 
(1984). 

Appendix 11A: In addition to the references in the text, the O D E approach to 
the convergence analysis of recursive algorithms has also been discussed in Ljung 
(1978b), Ljung (1984), Ljung. Pflug. and Walk (1992), Kushner and Clark (1978K 
and Benveniste, Metivier. and Priouret (1990). The link between simple recursive 
algorithms and an associated O D E was established by Khasminski (1966)for non-
decreasing gain algorithms. Related techniques to study the asymptotic distribution 
are described in Kushner and Huang (1979)and Benveniste and Ruget (1982). 

For RPLRs. a martingale-based convergence technique, Moore and Ledwich 
(1980), Solo (1979), has been quite successful. See Goodwin and Sin (1984) for 
numerous applications of this technique to adaptive control algorithms. 

11.10 PROBLEMS 

11E.1 Apply R P E M to a first-order A R M A model / 

y(t) -I- ay(t - 1) = e(t) + ce(t - 1) 

Derive an explicit expression for the difference 

y(t)-yU\9(t - D) 

Discuss when this difference will be small. 

Suppose that the algorithm (11.12) is used with k(t) = 1. Suppose also that S e M. 
Show that the variance of 9 (t) (neglecting initial-value effects) is then given by Xq P ( t ) . 
where k0 is the innovations variance. 

Formalize the notion that the gain y(t) should "reflect the relative information con
tents in the current observation." as follows: Decompose, for the RLS method, the 
prediction error s{t) = y(t) - 9r(t - \)<pU) = e0(t) + 9T(t - 1 ) ^ ( 0 , where Bit) i> 
the parameter error 0O ~ 9{t). Interpret the scalar <pT(t)L(t) in the algorithm (11.29) 
as the signal to signal + noise ratio for the "measured" quantity s(t). 

Prove that 

R e — ! — > - o |l - C0(eiu>)\ < 1 

UE2 

11E.4 
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11T.1 Convert the Newton-Raphson algorithm (10.49) for the correlation approach into a 
recursive algorithm, and compare with the R P L R algorithm (11.57). 

11T.2 Consider a general model structure and assume that the true parameter vector is 
varying according to (11.66). Suppose that it is known that 9(t) is close to a known 
value M O (like. e.g.. the previous estimate). With the true innovation e,-,{/). we thus 
have 

y( / ) = y{t\9(t)) -J- * „ ( / ) 

Now approximate 

y</!0U)> ^ y ( / | M O ) 4- ^ r ( / . M O ) [ 0 ( O - M O ] 

Introduce the variable 

v»(0 = y(f) - y U l M O ) fTU.0*(t))6*(t) 

whose value is known at time t, and write the model as 

ff(t) = 9(t — 1) — u ( 0 

y . ( 0 = W O ^ l f . M O ) + en(t) 

With \j/ ( r . M O ) = tMO a known vector, this is now of the linear regression type 
(11.25) and (11.28). Apply the optimal algorithm (11.29) to this approximate descrip
tion and show that (11.67) is obtained. 

11D.1 Let pit. k) be defined by (11.6) and let yd) be defined by (11.13). Show that 

H D . 2 Verify the expression (11.19). APPENDIX 11 A: T E C H N I Q U E S FOR A S Y M P T O T I C ANALYSIS OF 
RECURSIVE A L G O R I T H M S 

Methods to prove convergence and analytically assess the quality of recursively com
puted estimates tend to be technical. A comprehensive treatment is given in Chapter 
4 of Ljung and Soderstrom (1983), and we provide in this appendix some insights 
and guidelines. 

Most of the existing results deal with the convergence properties of 9 it) as t 
tends to infinity and the gain yit) tends to zero. There are also some results on the 
asymptotic distribution of 0 ( 0 under the same assumption. Results for the tracking 
case, when the true parameter changes and the gain y(t) does not tend to zero, have 
been studied by Benveniste and Ruget (1982). Kushner and Huang (1981), G u o and 
Ljung (1995), Solo and Kong (1995). and others. 
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An Algorithm Format 

The recursive algorithms can all conceptually be given in the form 

0 ( 0 = 0(t - 1) + y(t)R-l(t)r){t)s(t) 

sit) = yit) - y (0 

${t + 1) = M O ( t m i t ) + 

= C(0(O)£(f + 1) 

yit) 

nit) 

yit + 1 ) 

nit + l) 

( H A . l a ) 

( H A . l b ) 

( H A . l c ) 

( H A . l d ) 

The choice of R could be any positive definite matrix. Most common is, how ever, 
the Gauss-Newton choice 

Rit) = R(t - 1) + y(t) [r)it)r)Tit) - Rit - 1)] (11A.2) 

Here r\it) corresponds to fit), <p(t),oT £(0, depending on the particular algorithm 
used. 

In some special cases the recursive algorithm (11A.1) can be solved to yield 
an explicit expression for 6it). This happens for the RLS algorithm (11.16) [see 
(11.19)] and for the R1V algorithm (11.32) with given instruments [see (11.30)]. In 
these cases an analysis can be carried out based on the explicit expressions. This 
analysis will then coincide with the off-line analysis of Chapters 8 and 9. 

In most cases, however, no explicit expression for 0(f) 'can be obtained. Indeed, 
Bit) will be a fairly complicated function of the data set Z ' , partly as a result of the 
time-varying, est imate-dependent filtering in (11 A. led) . See (11.41). This means 
that it is a difficult problem to determine the asymptotic properties of the estimate 
Bit). In this appendix we shall give some insights into the behavior of (11A.1). and 
we shall also state some basic results on convergence and the asymptotic distribution 
of B{t). For a formal analysis, we refer to Ljung and Soderstrom (1983). 

Error Models 

Regarding y (f) and R~lit) as modifications of the basic update information r}(t)fit). 
it follows that the relationship between the crucial quantities 

B - t) - s (11A.3) 

will be a key to the convergence properties of (11A.1). Such a relationship is often 
called an error model (in particular in connection with adaptive control applica
tions). 
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We can write, symbolically. 

A 0 ( » ~ n(t)e(t) (HA.4) 

for (11A.la) . The right side is a random variable. If y(t) is small so that a noticeable 
change in 6 is the result of many steps like (11 A.4). then this change is likely to occur 
in the direction of the expected value: 

A 0 ~ Ene (11A.5) 

All asymptotic analysis of (11A.1) is based on the concept (11A.5). but there are 
several ways of formalizing the analysis. Here we shall briefly describe an approach 
based on an associated ordinary differential equation ( O D E ) . 

An Associated O D E 

Let y(f |0) and 0) be defined by 

| ( / + 1,0) = A($)$(t.B) + 2 ( 0 ) 

= C ( 0 ) £ ( f , 0 ) 

uit) 

y(t\B) 

Define 

f(B) = En(t.B)e(t,B) 

(11A.6) 

(11A.7) 

as the average update direction, associated with the parameter value 0 . Then (11 A . l ) 
is associated with the following O D E : 

--BD(T) = / T 7 ( 0 D ( r ) ) 
dx 

If R(t) is determined as in (11A.2). then define 

G(B) = ~EnU.B)7]T(t.B) 

and the associated O D E becomes 

(11A.8) 

(11A.9) 

d 
—0D(r) = 
dx 

R~D\T)f{BD(r)) 

(11A.10) 

— RD(T) = 
dr 

G(BD(T)) - RD{x) 

We shall shortly describe in what sense (11A.10) is "associated" 1 with (11A.1) and 
(11 A.2), but first let us discuss heuristically how it is obtained. 
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Suppose that /?(/) in ( H A . l a ) is fixed to be R, that 0 ( / o ) = 0 . and that t > /() 

is chosen so that 0 ( 0 and 9(h)) are close. Then 

0 ( 0 -0(t(]) = R~l ^ y(k)n(k)e(k) ^ / T 1 £ y(*)q(fc. 0 k U ' . 0 . 

= R^Er)(k.9)e{k.0) ^y(k) 

t 

+ / f - ^ y (*)[»?(*. 0 ) f i ( J t , 0 ) 

* A T R - } E n ( k J ) € ( k , 9 ) 
where 

r 
A r = ( H A . 1 2 ) 

Here the first approximation comes from 9{k) being close to 9 for < k < t and 
thus replacing 9(k) by 0 in (11 A . l c d) . yielding (11 A.6). The second approximation 
amounts to neglecting the second term, being a sum of zero-mean random variables, 
compared to the mean value. This is an application of a law of large numbers. Now 
changing the time scale from f to T so that 

(11A.13) 

we can write (11A.11) as 

ODM = <Mr,„) + (r, - Tt0)R-lf(9D(T,O)) (11A.14) 

This expression is Euler 's method for solving the O D E (11 A.8), and hence the link 
between (11 A . l ) and (11 A.8) is heuristically established. Including (11A.2) leads to 
(11 A. 10) in a similar way. 

The heuristic discussion suggests that the trajectories of (11 A.10) describe the 
behavior of (11A.1) and (11A.2) if y is small enough. With a certain amount of tech
nical work, the following links can be formally established (under certain regularity 
conditions): 

• If y(t) —• 0 as / —> oo and all trajectories of (11A.10) converge to a set 
Dc C £>;M, then the estimates 0 ( 0 converge to Dc with probability 1 as t —*• yz 
provided they are constrained to D-w. (11 A. 15) 

• If y ( 0 0 as t —• oo and 0(f) —> 9* with positive probability, then 9* must 
be a stable stationary point of (11A.10). (11 A.l6) 

(UA.11) 

- En(k,e)e(k.O)] 
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• If 0 ( / o ) = 0 and 0 D ( r ) denotes the solution to (11A.10) with 6d(TU)) = 0 . 
then 

sup 
t„<t<T 0(0 - M T » ) > £ < K(e,p)J^yp(k) (11A.17) 

where r , . is defined by (11 A. 13). 

For proofs of these statements, see Ljung (1977b). 

Convergence of RPEM 

For the R P E M familv. we have 

(11A.18) 

This defining relationship can indeed be seen as an error model (11 A.3) that holds 
regardless of the properties of the data. 

We also have 

/ ( 0 ) = Ef{t.O)e(t.O) = -~Es2(t.6) 
av 2 

Let 
V(0) = \Ee2(t.O) 

Then along trajectories of (11 A.8) (recall that R > 0) 

(11A.19) 

(11A.20) 

^ - V ( 0 z ) ( r ) ) = ^-V(0) R-lf(BD(T)) 

= - / ' (BD(x))R-lf($D(r)) 

which shows that V is decreasing outside the set 

DC = ( 0 | / ( 0 ) = 0} 

(11A.21) 

(11A.22) 

V(0) is thus a Lyapunov function for (11 A.8), showing that its trajectories (among 
those that stay in DM) will converge to DC as r —> oc . According to (11 A.15), this 
implies that 

0 (0 DC. w.p. l a s ? -± oc (11A.23) 

(or that 0 (0 tends to the boundary of D-^ , which cannot be excluded unless the par
ticular way 0(f) is projected into DM [see (11.50)] is specified). In view of (11 A.16), 
points that are not local minima of V(0) can be excluded from DC. We thus find 
that the R P E M estimate will converge w.p. 1 to a local minimum of V(0) , which is 
exactly the same result as for the off-line counterpart (10.40). We summarize this as 
follows: 
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Result ILL Consider the algorithm ( 11A . 1 ) with n(t) = \j/{t) and with a 
positive definite R(t). Assume that y(t) —>• Oas / —> oo and that 0(0 is constrained 
to a subset of DM- Then 0(0 converges w.p. 1 to a local minimum of V(0) (or to 
the boundary of DM) as t —• oo. 

Asymptotic Distribution of RPE Estimates 

Consider the Gauss-Newton R P E M (11.44), and assume that there exists a 0, such 
that e(t. 0 O) = e^U) is white noise. Let 

_ 1
 1 

RU) = —Rit) = Ypit.k)y};(k)i,T(k) (11A.24) 

[cf. (11.5b) and (11 .43)]. Then, analogous to (11.9b), 

RU) = XU)RU - 1) + i*U)V(t) (11A.25) 

Introduce 0(0 = Ht) — &o and rewrite (11.44b) as 

RU)$(t) = RU)0U - 1) 4- if(t)eit) 

= kit)RU - l)0(t - 1) + irU)i/TU)eu - 1) + ^(0<?(O 

This expression can be summed from f = 0 to / , giving 

RU)6U) = ^(r .O)J?(0)§(0) 

+ J2pit,k)xJ/(k) [ t f T ( * ) 0 ( * - 1) + *(*) ] (11A.26) 
k=i f 

Consider the sum 

5 r = * ) * ( * ) [ * r ( * ) 0 ( * - 1) + B(k) - s(k,0o)] 
k=l 

By definition, 

e(k) - e(k,90) * eik,9(k)) - £ ( * , 0 O ) * -V(k) \o(k) - 0 O ] (11A.27) 

where the first approximation follows since eik) is filtered using estimates approx
imately equal to 9(k) [see (11 A . l c d)] and the second approximation is the mean-
value theorem. This means that the sum St is likely to be negligible compared to 
other terms in (11A.26). Also, fi(t, O)/?(O)0(O) should be negligible. Hence 

0(0 ^ R~lU)^PU,k)T{f(k)e0ik) (11A.28) 
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Assuming that 0(k) is close to 0o "asymptotically most of the time." we can replace 
\f/(k) by f{k, $Q) in (11A.24) and (11A.28) without too much error. This gives 

( 0 ( 0 - 0 O ) * ~RQ{(t)^rp{t.k)it{k.e«)eQ{k) 
k=l 

= - [V; ' (0 ( ) < Z ' ) ] " ' V;W0. Z') (11A.29) 

where 

V,i0,Z() = -^0{t.k)e2(k.0) (11A.30) 

From Section 9.2 we know that (11 A.29) is exactly the same asymptotic expression 
as we would get for the off-line estimate 

0, = a r g m i n V,(0, Z ' ) (11A.31) 
e 

This discussion has been heuristic, neglecting terms without formal justification. 
However, with some technical labor, the approximations can be verified formally. 
This is done in Theorem 4.5 in Ljung and Soderstrom (1983). The result thus is that 

The asymptotic distribution of estimates obtained by a Gauss-Newton 
RPEM is the same as for the corresponding off-line estimate. (11A.32) 

In particular, for yit) = \jt, which implies that fi{t, k) = 1 / / Vfc. and we obtain 
from Theorem 9.1 and (9.17) the following result: 

Result 11.2. Consider the Gauss-Newton R P E M (11.44) with y(t) = 1/f. 
Assume that there exists a 0o such that s(t, 0o) = ?o(0 is white noise with variance 
A O . Then, if 0 ( 0 Oo, 

ft {bit) - 0 o ) € AsN (o./.o[Ef(t.0o)ifTit.0o)] l) (11A.33) 

Convergence of RPLRs 

First we postulate a certain error model ( 1 1 A.3): 

eit.O) = ^ ( r , 0 ) ( 0 o - 0 ) + <?o(O 

yit.O) = H()iq)<pit.O) (11A.34) 

e0{t) independent of <pis, 0) s < t 
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G(9) = E<p{t.6)<pT(t.9) (11A.37) 

the O D E thus is 

(IT 

•^-RD(T) = C ( M r ) ) - *z>(r) (11A.38) 
o r 

Trying the Lyapunov function 

V(0 . fl) = (0 - 0 o ) r f l ( 0 ~ 0o) (11A.39) 

for (11A.38) gives 

^V(9D(x).RD(x)) 
ax 

= - ( 0 - 0 o ) r [ (?(0) + GT(9) - G ( 0 ) + / / c ( r ) ] (0 - 0 O ) (11A.40) 

Suppose now that the matrix 

G ( 0 ) = G ( 0 ) + G 7 ( 0 ) - G ( 0 ) (11A.41) 

is positive semidefinite for all 0 . Then (11 A.40) shows that all trajectories of (11A.38) 
end up in 

Dc = {0 |G(0 ) (0 - 0 O) = 0} (11A.42) 

G(0 ) being positive semidefinite is thus a sufficient condition for convergence of 
0( r ) into Dc. In Problem 11A.5. the reader is asked to prove that 

R e t f „ < ^ ) > lv„ => ( g * > ( f \ > = 0 ^ e ( / i 9 ) = ft(0 ( H A . 4 3 , 

This condition as H$ is usually expressed as "'//o(<?) — \ is strictly positive real." We 
can summarize the result as follows: 

Let us investigate what the convergence properties of (11A.1) and (11 A.2). with 
r](t) = (p(t). might be under the assumption (11A.34). The right side of the associ
ated O D E (11 A. 10) becomes 

f(9) = E<p(t,O)q>T(t,O)(0o - 9) + E<p(t.9)e0(t) 

= G ( 0 ) ( 0 O " 0) (11A.35) 

G(9) = E(p{t.9)y7{t.9) (11A.36) 

since <p(t, 0) and e<>(0 are independent. With 
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Result 11.3. Consider the RPLR (11A.1) and (11A.2). with r\{t) = <p(t) and 
y(t) —> Oast oc. Assume that the relationship (11 A.34) holds between e(t, 9). 
9, and <p(t.9) and that the transfer function Ho(q) — \ is strictly positive real. Then 

9(t) Dc = {0\e(t,9) = e0(t)} 

with probability 1 as t —• oo. 
Notice that we had to assume that the true system belongs to the model set 

appears in (11 A.34)]. This was not the case for Result 11.1. 
For the A R M A X model, it can readily be shown that (11 A.34) holds with 

H0(q) = 1 

Cote) 

where Co(q) is the polynomial associated with the noise Co(q)eo(t) for the true 
system. See Ljung (1977a). The condition on positive realness will thus be 

1 1 
R e — — > 0Vo> (11A.44) 

C0(e"») 2 
Since the condition (11A.44) relates to the true system, it cannot be guaranteed a 
priori. With some prior knowledge about the properties of the noise, (11 A.44) can. 
however, be somewhat relaxed (see Problem 11 A . l ) . 

When the RPLR algorithm is applied to the output error model (4.25). the 
analysis is quite analogous. The condition for convergence is that 

1 1 
R e - — : > 0Vo> (11A.45) 

F0(et(°) 2 

where Fo(q) is the true denominator polynomial of the system (Problem 11A.2). 

Local Convergence of RPLR 

The O D E (11 A.38) can be linearized around the desired convergence point 9{). It can 
be verified (Problem 11A.3) that the stability properties of the linearized equation 
are entirely determined by the matrix — G ~1 G (9Q ). If this matrix has eigenvalues 
in the right half-plane, then, according to (11 A.16), 9{t) cannot converge to 9{). In 
some special cases, the eigenvalues of this matrix can be explicitly calculated, and 
cases can be constructed for which the R P L R estimate 9{t) cannot converge to its 
true value. See Ljung and Soderstrom (1983), Example 4.11 and Stoica. Hoist, and 
Soderstrom (1982). 

Conclusions 

In this appendix we have given three basic results relating to the asymptotic properties 
of recursive identification algorithms. We should point out that the results have not 
been phrased with full rigor and with all technical conditions. See, for example, Ljung 
and Soderstrom (1983)for such an account. 
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11A PROBLEMS 

11A.1 Consider an R P L R for an A R M A X model (the ELS algorithm). Suppose thai the 
vector <p(t) in (11.57) is replaced by tp*{t) = L{q)<p(t). Show that the convergence 
condition (11.58) is changed to 

11A.2 Carry- out the convergence analysis for the R P L R method applied to the output error 
model (4.25) and show that the condition is given by (11A.45). 

11A .3 Consider the O D E (11 A.38) and linearize it around 8 = 6Q. Show that the linearized 
equat ion is asymptotically stable if and only if the eigenvalues of the matrix 

are in the left half-plane. [G and G are defined by (11A.36) and (11 A.37).] 

11A.4 Linearize the O D E associated with an R P E M around a true parameter value and 
show that the linearized equation is always stable. 

11A.5 Verify (11 A.43). (Reference: Ljung. 1977a). 
11A.6 Consider the recursive Gauss-Newton prediction error algorithm (11.44) with a con

stant small gain y(t) = yo. Assume that the true system is constant and corresponds 
to the parameter vector #o- Let Eel ~ Ee2{t. Oo) = Ao- Use expression (11 A.29) to 
show that 

1 1 
- > O V W Re 

L(eia>)C0(eia>) 

- G - , ( ^ ) G ( ^ o ) 

- l 

[Hints: Recall (11.62), use the approximation 
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OPTIONS AND OBJECTIVES 

The goal of the identification procedure is. in loose terms, to obtain a good and 
reliable model with a reasonable amount of work. To this end a number of different 
techniques have been developed, as we saw in Part II. They also contain a number of 
design variables to be chosen by the user. In this part we shall discuss how to make 
these choices so as to achieve our goals. In the present chapter we start by pinpointing 
the options that are available to the user and by formalizing the objectives of the 
identification exercise. In the latter context we concentrate on linear time-invariant 
structures. 

12.1 O P T I O N S 

When confronted with a process with unknown dynamical properties, the user has 
to take a number of decisions as we discussed in Section 1.4: An experiment has to 
be designed, a model structure must be chosen, a criterion of fit must be selected, 
and a procedure for validating the obtained model has to be devised. As Figure 1.10 
indicates, these choices may also have to be revised a number of times during the 
identification procedure. 

The options include how to perform the identification experiment, what model 
structures to choose, what identification algorithms to apply, and how to validate the 
obtained model. We shall collectively refer to all these options or design variables 
as 

T) = {all design variables} 

Each of the many choices will have an influence on the quality of the resulting 
model. Using the asymptotic theory of Chapters 8 and 9, it is possible to evaluate 
the effects, and give advice about suitable choices of T>. Indeed, this is the objective 
of the theory. This sets the scenario for the chapters to follow. 

399 
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12.2 OBJECTIVES 

What do we mean by "a good and reliable m o d e l ' and what is "a reasonable amount 
of work"? Both issues have a certain amount of subjective flavor, and it is not possible 
and desirable to give a fully formalized discussion on this topic. We shall, how ever, in 
this section study the quality of a model as related to its intended use. Our discussion 
will be confined to the case of linear single-input, single-output systems and models. 

The True System and the Model 

To assess the quality of a certain model, it is unavoidable that some assumptions, 
implicit or explicit, about the true properties of the process have to be invoked. For 
the present purposes we shall suppose that the true system is subject to assumption 
SI of Chapter 8; that is, 

yit) = Goiq)u(t) + H0iq)e0it) (12.1) 

where {eoit)} is white noise with variance A n . 
Clearly, the realism of such an assumption can be questioned. However, let 

us reiterate the point we made in Section 8.1: Analysis pertains to assuming cer
tain properties of the true data-generation mechanism and subsequently calculating 
the resulting properties of the models. Such calculations turn out to be useful and 
suggestive, even when the underlying assumption may not be verifiable. 

For simpler notation, we shall use. as before, 

Toiq) = [Goto) Ht)iq)] (12.2) 

Suppose that we have decided on all the design variables T>. and as a result obtained 
the model / 

fiq, V) = [Giq. T>) Hiq, T» ] (12.3) 

Recall that D contains, among other things. A/, the number of data, and the model 
orders. 

Scalar Design Criterion 

It is desirable that the model Tiq, T>) be close to Toiq). The difference 

7 V * \ D) = 7 V * \ V) - Tu(eiw) (12.4) 

should, in other words, be small. Let us develop a formal measure of the size of 7 . 
Depending on the intended use of the model, a good fit in some frequency ranges 
may be more important than in others. To capture this fact, we introduce a frequency 
weighted scalar criterion 

T>)) = f fiei<0,V)Ciw)fTie-ia>,T))dcD (12.5) 
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where the 2 x 2 matrix function 

J(V) = / ET(e'u,.V)C(a>)T1(e-l<0

JV)da) 
J-7T (12.7) 

= j tr[Y\(co. V)C(a>)]dto 
J—7T 

where the 2 x 2 matrix TI is given by 

Tl(aj, T>) = £ f r ( r i w

( T>)t(eia>. T>) (12.8) 

The problem of choosing design variables can now be stated as 

min 7 ( 2 ) ) (12.9) 
T><zA 

(12.9) 

where A denotes the constraints associated with our desire to do at most *ka reason
able amount of work. 1 ' These will typically include a maximum number of samples, 
signal power constraints, not too complex numerical procedures, and so on. The con
straints A could also include that certain design variables simply are not available to 
the user in the particular application in question. 

The problem (12.9) will be discussed in Chapters 13 to 16. First, we give some 
examples of model applications that lead to different functions C(co) in (12.7). 

Model Applications 

In Chapter 3 we listed some typical uses of linear models. They all give rise to 
different weighting functions C(co) in the objective criterion (12.7). 

r ( , [Cn((o) Cu(o))~\ 
C M = (12.6) 

\_C2\(0)) C22{te) J 
describes the relative importance of a good fit at different frequencies, as well as the 
relative importance of the fit in G and H, respectively. We shall generally assume 
that C(a>) is Hermitian: that is. 

C2\(to) = C 12(a)) [= C\i(—io)) 

(The last equality follows when the dependence on co is via elC0.) We shall shortly 
give examples of how such weighting functions can be determined. 

The scalar Ji(f(-. T>)) is a random variable due to the randomness of t . To 
obtain a realization independent quality measure, it is natural to take the expectation 
of J\. and form the criterion 
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Example 12.1 Simulation 

Suppose that the transfer function G is used to simulate the input-output part of the 
system with input u*(t) as in (3.2). The model G{q, D) then produces the output 

yv(t) = G(q,V)u*(t) 

while the true system would give the correct output 

MO = GQ{q)u\t) 

The error signal 

v©(0 = >•©(/) - MO = V) - Co(^)]«*(0 

has the spectrum 

G{ei<0, V) - GQ(ei<v) (12.10) 

where 4>*(o>) is the spectrum of This, again, is a random function, and its 
expectation w.r.t C , 

* v ( a > , 2 > ) = £ G(eiw, T>) - G0(ei<a) (12.11) 

is a measure of the average performance degradation due to errors in the model G. 
Note that, with (12.8) and 

= r<p; (w) o" 
L o 0_ 

we can rewrite (12.11) as 

D ) = trn(<w, D)C(o) ) 

(12.12) 

(12.13) 

Finally, the average variance £ v 2 ( f ) (averaged over {u*{t)}, as well as over G) will 
be 

2jiEf(t) =• J(T>) = J *y((o,T>)da) (12.14) 

which is a special case of (12.7). This illustrates how the quadratic design criterion 
(12.7) may have an explicit physical interpretation. Z 

Example 12.2 Prediction 

The one-step-ahead prediction is given by (3.20): 

y(t\t - 1) = H-\q)G(q)u*(t) + [ l - H-\q)]y*(t) (12.15) 
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when applied to input-output data {u*(t), y*(t)} generated by the system. The 
discrepancy between the prediction yjy(t\t — 1) obtained by the model T(q, D) and 
the true prediction yoU\t — 1) thus is, suppressing arguments, 

(12.16) 

(12.17) 

e0(t) 

(12.18) 

>'v«\t - 1) = [h'1G - H-'G0]u* + [h~] - / 7 - 1 ] 

= H~\y* - GoU*) - H~l(y* - Gu*) 

The input-output data obey 

v*(r) = Go(q)u*(t) + Ho(q)e0(t) 

which gives 

yv(t\t - 1) = H~]Gu* + (1 - H-lH0)e0 

= H-1 [6II* + He0] = H~\q, V)t(q. D) 

This signal has the spectrum 

1 - • f <&*(a)) <$* (co)! - T 
<M*>. V) = jT(e'Q\ V) ' x

 U!K TT(e-U0. V) 

where 4>*(<w) is the spectrum of {u*(t)} and &*e(a>) the cross spectrum between 
{u*(t)} and {e<)(t)}. Due to the appearance of H in the denominator, this expression 
is not quadratic in the model error. However, assuming the error to be small so that 
higher-order terms of T are neglected, we can replace H by Ho. This gives the 
(approximate) average spectrum of the error signal 

with 

W-v(co, T>) - t r n ( f c ) , V)C(<D) 

| / 7 o ( 0 | 2 L4>«e(-^>) ^0 J 

(12.19) 

(12.20) 

The average variance of the error signal Ey^Ult — 1) is thus approximately given 
by the criterion (12.7) with (12.20) for small errors. • 

In this way different intended model uses lead to the criterion (12.7) and (12.8) 
with different weighting functions C(co). See Problem 12E.1 for a general interpreta
tion of (12.7) and Problem 12E.3 for its connection to the accuracy of the underlying 
parameter estimate. 
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12.3 BIAS A N D VARIANCE 

In this section we shall discuss the frequency-domain objective criterion (12.7) and 
(12.8) a bit more closely for parametric identification methods. As in (4.111). let 

T(q,B) = [G{q.O) H(q,B)] (12.21) 

and let B,\ (T>) be the estimate resulting from one of the methods described in Chapter 
7. Here we choose to show the Af-dependence explicitly. Thus the transfer function 
estimate (12.3) is 

fN(ei0\ T» = T V " , 6N(X>)) (12.22) 

Let us develop an expression for the mean-square error (MSE) Tl^ico. V) 
in (12.8). According to Chapter 8, Bs(27) converges w.p. 1 to a value B*(V). With 
Tie*", B) as the d x 2 derivative of T w.r.t B, defined in (4.125). the mean-value 
theorem gives 

T(eia,JN(V)) % T{ei0),B*(V)) 

+ [BN(V) - B*(T>)jT T(eil0,B*(T>)) (12.23) 

Introduce the notation 

B(eio>, V) = T{eiw.B*{V)) - T0(ei<o) 

for the model discrepancy in the limit N = oc . Then for (l2.8) we obtain 

UN(co, T>) % BT(e~ia>. D)B(eiw, V) + i p ( < y . T>) (12.24) 
N 

where 

P(co, D) - ^{e-^.OW)) [ t f • Cov <9*(2) ) ]TV" . £*(£>)) (12.25) 

In (12.24) we have neglected the term 

2Re BV*\ V) [EBN(V) - 0*(27)] T V " . 9*(T>)) 

which, in view of (9B.13) will be dominated by either of the terms of (12.24) for large 
N, under the assumptions of Theorem 9.1. Notice that this theorem also gives us 
an expression (9.15) for determining P(a>, 27) explicitly. With (12.24), the design 
criterion (12.7) and (12.8) takes the asymptotic form 
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J{T>) % 

Jp{T>) = 

J(T>) = Jp(T» + JB(T>) 

i j t r [ P ( w , T>)C(co)\ day (12.26) 

JB(T>) = j B(ei(°. V)C(co)BT(e-i(\ V) dco 

Notice that, using (12.25), 

JP(T>) = \-\xP$(V)Ce 

Ce = j T\eiw,9*(V))C(a))T'T(e-ta,.0*('D))dco (12.27) 

P0(T>) - N • Cov0A< 

The expression for J(T>) emphasizes the basic feature of a "variance contr ibution" 
Jp and a "bias contribution" Jg to the objective criterion. These two components are 
typically affected by the design variables in somewhat different ways. The bias term is 
mostly affected by the model set (a large, flexible, and/or well-adapted model set gives 
small bias) and is typically unaffected by data record length, signal powers, and so on. 
The variance term, on the other hand, typically decreases with increasing amounts 
of data and input signal power, while it increases with the number of estimated 
parameters. 

We shall discuss various aspects of the subproblem 

m i n i p ( D ) (12.28) 

in more detail in Chapters 13 and 15, while the subproblem 

min JB(V) (12.29) 

is dealt with in Section 14.5. where we shall also comment on how to combine the 
results on the subproblems to solve 

min 7 ( D ) (12.30) 
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Asymptotic Expression for Jp(T>) 

With the expression (9.92) we have, asymptotically in the model order n and the data 
record length N 

1

 Df T » I ~ ^ /h / ,\<*>ue(-co)Y} 

— P(a).D) % , 12.31) 

Here « . N , the input spectrum d>M. and the cross spectrum 4>Me are all variables 
contained in D. On the other hand, these design variables are the only ones that 
affect this asymptotic expression for the covariance matrix. There are many impor
tant design variables (such as prefilters, noise models, and prediction horizons} that 
do not affect P(co. T>) in this asymptotic form. 

Inserting (12.31) into (12.26) gives the explicit expression 

, „ n , n r { * o C n M ~ 2Re[C12(G>)Que(-<o)] + C 2 : M < t > „ ( ^ ) } * , ( w ) 
Jp(JJ) *z — I ^ 

N J-7T X()Q>u(co) - \Que(a>)\-
(12.32) 

using (12.6). 
We shall discuss this expression for the variance contribution in more detail in 

Section 13.6. 

12.4 S U M M A R Y 

The many identification methods potentially available for a particular application 
can be described as a list of choices and options ("design variables" D ) . 

An ideal route to determining these design variables would be to pose a cri
terion for what a "good model" (for the application in question) is and to list the 
constraints that are imposed on the design by limited time and cost, as well as the 
availability of the system. In that case the '"best" identification result can be secured. 
We have sketched such a route in this chapter [see (12.26) to (12.31)]. and we shall 
pursue the choice of design variables in more detail in the following chapters. In prac
tical application, a less formal attitude will of course be taken, but our formalization 
is useful to bring out the character of the considerations that have to be made. 

12.5 BIBLIOGRAPHY 

The particular way of describing the available design variables and the formalization 
of a mean-square identification objective are further described in Ljung (1985b). 
Ljung (1986). and Yuan and Ljung (1985). 

12.6 PROBLEMS 

12E.1 Let s(t) be a signal derived from a model application. It could, for example, be the 
output of a system when a minimum variance regulator, computed using the model. U 
applied. Conceptually, we may write 

s{t) = f(Tiq))wit) 
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to denote that the transfer function 7 \ as well as some additional signals w(t) (refer
ence signals and/or noises), are used to determine s(t). Assume that the difference 
T(q. T>) - To(q) is small so that effects higher than second order can be neglected. 
Then derive an expression for the expected spectrum of the "performance degradation 
signal" 

(see Ljung. 1985b). 

L2E.2 Assume that the obtained model is going to be used for prediction on input-output 
data with the same second-order properties as those used during the identification 
experiment (see Example 12.2). Assume also that the asymptotic variance expression 
(12.31) is approximately applicable and that the bias contribution can be neglected. 
Give an expression for the expected spectrum of the error between the ideal prediction 
and the one obtained using the model. 

12E.3 Suppose that S 6 M so that, for some 9Q, 

Then derive an expression for the criterion (12.7) and (12.8) in terms of the mean-
square parameter error 

T0(q) = nq.Bo) 

n e = E 0 N - e0xe» - e0f 
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EXPERIMENT DESIGN 

The design of an identification experiment includes several choices, such as which 
signals to measure and when to measure them and which signals to manipulate and 
how to manipulate them. It also includes some more practical aspects, such as how 
to condition the signals before sampling them (choice of presampling filters). 

In a sense, the design variables associated with the identification experiment 
are more crucial than many of the other variables described in Section 12.1. While 
several different design variables associated with models and methods can be tried 
out at the computer, the experimental data can be changed only by a new experiment, 
which could be a costly and time-consuming procedure. Therefore, it is worthwhile 
to design the experiment thoughtfully so as to generate data that are sufficiently 
informative. 

In this chapter we shall discuss the different choices/that concern experiment 
design. Some basic principles are discussed in Section 13.1, while the concept of 
informative experiments is treated in Section 13.2. Open loop input design is studied 
in Section 13.3. Identifiability issues for closed loop data are discussed in Section 
13.4 while a review of methods for identification of systems operating in a closed 
loop is given in Section 13.5. Experiment design based on the asymptotic expression 
(12.32) is treated in Section 13.6. The choice of sampling interval and sampling filters 
is discussed in Section 13.7. 

13.1 S O M E GENERAL C O N S I D E R A T I O N S 

Design Variables 

When confronted with a physical system whose dynamics is to be identified, there 
are a number of questions to be answered. First, the system definition may not be 
given: Which signals are to be considered as outputs and which are to be considered 
as inputs? This is the question of where in the process the sensors should be placed 
(outputs) and which signals should be manipulated (inputs) so as to "excite" the 
system during the experiment. It should also be stressed that there may be signals 
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associated with the process that rightly are to be considered as inputs (in the sense 
that they affect the system), even though it is not possible, feasible, or allowed to 
manipulate them. If they are measurable, it is then still highly desirable to include 
them among the measured input signals and treat them as such when building models, 
even though from an operational point of view they should rather be considered as 
(measurable) disturbances. See Figure 1.1. 

When it has been decided upon where and what to measure, the next question 
is when to measure. Most often the signals are sampled using a constant sampling 
interval 7", and then this quantity has to be chosen. 

The choice of input signals has a very substantial influence on the observed 
data. The input signals determine the operating point of the system and which parts 
and modes of the system are excited during the experiment. The user's freedom in 
choosing the input characteristics may vary considerably with the application. In 
process industry, it may not be allowed at all to manipulate a system in continuous 
production mode. For other systems, such as economic and ecological ones, it is sim
ply not possible to affect the system for the purpose of an identification experiment. 
In laboratory applications and during development phases of new equipment, on 
the other hand, the choice of inputs is perhaps not restricted other than by power 
limitations. 

Two different aspects are associated with the choice of input. One concerns 
the second-order properties of u, such as its spectrum Q>u(a)) and the cross spectrum 
<$>ue(co) between input and driving noise (realized by output feedback). The other 
concerns the "shape" of the signal. We can work with inputs being sums of sinusoids, 
or filtered white noise, or pseudorandom signals, or binary signals (assuming only 
two values), and so on. 

As a final choice for the identification experiment, let us list TV, the number of 
input-output measurements to be collected. 

Basic Guiding Principles 

Several of these listed choices will be dealt with in more detail in the ensuing sections. 
We shall here, however, point to some guiding principles. 

Let us denote all the design variables associated with the experiment by X. 
{X is thus a subset of T>, defined in Section 12.1.) The asymptotic properties of the 
resulting estimate can then be described by 

0*(X) (13.1) 

the limit to which 0,\ converges, and by 

PeiX) (13.2) 

the asymptotic covariance matrix of the parameter estimate (see Chapters 8 and 9) . 
These expressions can then be translated to other quantities of interest, such as the 
resulting transfer-function estimate (see Chapter 12). 
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Po(X) ~ A,, 

Stretching the formal results obtained in Chapters 8 and 9 to more suggestive 
formulations, we could say that, for PEMs 

The model M(9*(X)) is (he best approximation of the system under the 
chosen X. (Note that what is the "best approximation'' of a system nor
mally depends on the applied input, see Example 8.2). (13.3) 

M(9*(X)) = S if M is large enough to contain S and X is such that no 
other model is equivalent to the system under X. (13.4) 

- l 

(13.5) 

See Theorems 8.2,8.3, and 9.1 and (9.17). respectively. 

Bias 

The formulation (13.3) suggests that when the bias may be significant it is wise to let 
the experiment resemble the situation under which the model is to be used. This may 
of course be difficult to accomplish, since often the objective with identification is to 
find out suitable operating conditions. If the true system is suspected to be nonlinear 
and a linear model is sought, then the result (13.3) gives the reasonable advice that 
the experiment should be carried out around the nominal operating point for the 
plant. For a linear system, the issue of bias distribution and how it depends on the 
input will be further discussed in Section 14.4. 

Informative Experiments 

The issue (13.4) relates to the concept of informative data sets defined in Definitions 
8.1 and 8.2. Clearly, a primary goal is to design experiments that lead to data by 
which we can discriminate between different models in mtended model sets. This 
problem will be further discussed in Section 13.2. Notice that when 5 € CM then 
the issues (13.3) and (13.4) leave the choice of X open within the set of sufficiently 
informative ones. 

Minimizing Variances 

Once X is chosen so that the limiting model 9*(X) is acceptable, but only then, 
it becomes interesting to further select X so that the covariance matrix P#(X) is 
minimized. Formally, the problem of optimal input design could be stated as 

mm ct (P0{X)) (13.6) 
XeX 

where a(P) is a scalar measure of how large the matrix P is and X is a set of 
admissible designs subject also to the constraints that (13.3) and (13.4) might impose. 
We gave an explicit example of a(P) in (12.27), of the kind 

a(P) = XrCP 

The expression (13.5) gives a suggestive hint for the choice of X: 
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A small variance in a certain component of 0 results if the predictor is sen
sitive to that component . Hence choose the outputs y(t) and the inputs w(r) 
so that the predicted output becomes sensitive with respect to parameters that 
are important for the application in question. (13.7) 

This advice could be used as a general mental picture for experiment design. It 
applies to the sensor location problem, the selection of input variables as well as 
their characteristics, and to other design issues. The mathematical formalization of 
this observation is conceptually straightforward but may be technically involved. In 
Sections 13.3 and 13.6 we shall illustrate the formalization for the open-loop input 
design problem. 

Validation Power 

Another leading principle in experiment design is that the input—the "probing 
signal"—should be rich. It should excite the system and force it to show its properties, 
even the ones that may be unknown. This desired property may be in conflict with 
the bias and variance aspects, though. For example, if we seek a variance-optimal 
input to identify a second order system, the solution may be a signal consisting of 
two sinusoids. Such a signal will never reveal if the system would be of higher order: 
we cannot invalidate a second order model. Similarly, an optimal input for a linear 
system may be one that assumes only two values, and shifts between those is a certain 
fashion. With such an input we can never find out if there is a static nonlinearity at 
the input side, since this would simply shift the two levels. All this illustrates that the 
input should have validation (and invalidation) power to test possible properties of 
interest in the system. 

13.2 INFORMATIVE EXPERIMENTS 

In Section 8.2 we introduced the concept of data sets Z 0 0 that are '"informative 
enough" with respect to a model set 34*. meaning that the data allow discrimination 
between any two different models in the set. We shall transfer this terminology 
to identification experiments by calling an experiment "informative enough" if it 
generates a data set that is informative enough. 

Clearly, it is a very basic requirement on the design that the experiment should 
be informative enough with respect to all model sets that are likely to be used. In 
Theorem 8.1 we gave a general result on informative experiments. We shall develop 
more detailed and specific characterizations of such experiments in this section. 

Open-Loop Experiments 

Consider a yet unspecified model set of single-input, single-output linear models: 

M* = {G(q, 0). H(q, 0)\9 e DM) (13.8) 
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Suppose that B\ and 0? correspond to different models in M*. let £j(t) = sit. 0 , ) , 
G{(q) = G(q. 0j); AG(q) — G2(q) — G\(q). and //, analogously. Then 

As(t) = BX(t) - s2(t) = 
1 

[AGte)w( f ) + AH(q)s2(T)] 

Now 

^2(0 = 

/ / i t e ) 

[(Goto) - G2(q))u(t) + //Ote)e>o(0] 

where Go- Ho is the true description (8.7) of the system, which need not belong to 
(13.8). Suppose that the experiment is carried out in open loop so that {*/(/)) and 
{eo(t)} are independent. Then, using (2.65) and Theorem 2.2. 

E[As(t)Y = 
1 

2 * J_.T |//,(^ 

+ A / Y ( 0 

A G ( 0 + 

# 0 ( 0 
/ / 2 (*'•") 

Goje'n ~ G2(eiM) 

H2(eie») 

dto 

AH(e' ^ j i o j ) 

(13.9) 

where = £ V Q ( 0 - According to our standard assumptions on invertibility of the 

noise model, | / / 0 (£ , f t ' ) | i " > 0, V&>. Suppose now that the data are not informative 
with respect to M* so that 

E[As(t)]2 = 0 (13.10) 

even though AG(euo) and AH(e!<°) are not both identically zero. Equat ion (13.10) 
implies that both the terms within square brackets in (13.9) are identically zero, so 

AH(ei0J) == 0 

which means that the first term takes the form 

\AG{ei<!i)f$>u(co) = 0 (13.11) 

This is the crucial condition on the open-loop input spectrum dPH(<y), which we 
shall develop further. If (13.11) implies that AG{e,(°) = 0, then it follows that 
(13.10) implies that the two models are equal, and hence that the data are sufficiently 
informative with respect to !M*. 

Persistence of Excitation 
Inspired by (13.11), we introduce the following concept: 

Definition 13.1. A quasi-stationary signal [u(t)}, with spectrum d>w(a>), is said to 
be persistently exciting of order n if. for all filters of the form 

Mn(q) - mxq 1 + ... + mnq 

the relation 

\Mn(eh0)\2 ®u(co) = 0 implies that Mn(eUo) = 0 

(13.121 

(13.13) 



Sec. 13.2 Informative Experiments 4 1 3 

The concept can be given more explicit interpretations. Clearly, the function 
Mn(z)Mn(z~]) can have at most n — 1 different zeros on the unit circle (since one 
zero is always at the origin) taking symmetry into account. Hence uit) is persistently 
exciting of order n, if <^u(co) is different from zero on at least n points in the interval 
—it < a) < it. This is a direct consequence of the definition. Consider, for example, 
with u consisting of n different sinusoids: 

n 
uit) = ^nkca&(a>kt). o>k ^ Wj. k ± j , wk ^ 0. wk ^ TT (13.14) 

According to Example 2.4. each sinusoid gives rise to a spectral line at cok and — a)k. 
This signal is thus persistently exciting of order 2n. If one of the frequencies equals 
0. the order drops to 2n — 1. since this only gives one spectral line. Similarly, if one 
of the frequencies equals TT (the Nyquist frequency), the order drops by (another) 
1. 

We also notice that, according to Theorem 2.2, jM„ (*>"")] Q\(a>) is the spec
trum of the signal v(t) = Mn(q)u(t). Hence a signal that is persistently exciting 
of order n cannot be filtered to zero by an (n — \)th-order moving-average filter 
(13.12). 

Another characterization can be given in terms of the covariance function 
Ru(r): 

Lemma 13.1. Let u(t) be a quasi-stationary signal, and let the n x n matrix R„ 
be defined bv 

Rn = 

/?«(0) 

/Ml) Ru(0) 
Ruin - 1) 

Ruin - 2) 
(13.15) 

_Ru(n-l) Ru(n - 2 ) . . . /?„(()) 

Then uit) is persistently exciting of order n if and only if R„ is nonsingular. 

Proof. Let m = [ nt\ w?2 . . . m» ]T. Then Rn is nonsingular if and only if 

m Rnm = 0 m = 0 (13.16) 

It is easy to verify that 

ta> 

ml Rnm = E[M„iq)uit)Y 

with M„ defined by (13.12). Hence 

mr~Rnm = ^- j | A / „ ( 0 | 2 <t>u(a>)dt 

according to (2.65) and Theorem 2.2, so (13.16) can be rephrased as 

\Mnieia>)\2 <&«(«>) = 0 => M „ ( 0 = 0 

which is the definition of persistence of excitation. 
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It is useful to consider also a strengthened version of this concept. 

Definition 13.2. A quasi-stationary signal {u(t)} with spectrum <t>M(AI) is said to 
be persistently exciting if 

d>M(6>) > 0. for almost all co (13.17) 

"Almost all" means that the spectrum may be zero on a set of measure zero (like a 
countable number of points). Note that a persistently exciting signal cannot loose 
this property by standard linear filtering, since a filter that is an analytic function can 
have at most a finite number of zeros on the unit circle. 

Informative Open-Loop Experiments 

With these concepts, it is now easy to characterize sufficiently informative open-loop 
experiments. We have the following results. 

Theorem 13.1. Consider a set M* of SI SO models given by (13.8) such that the 
transfer functions G(z.O) are rational functions: 

= *<g«0> = +b2q-] + ... + VT"* + 1 ) 
Fiq.B) \ + fa-* + ... + fttfq-»f 

Then an open-loop experiment with an input that is persistently exciting of order 
nb 4- nf is sufficiently informative with respect to M*. 

Proof. For two different models, we have 

B](q)F2(q) - B2{q)Fl(q) 

F]{q)F2(q) ; 

Hence (13.11) implies that 

\B\(ei(0)F2{ei<o) - B2(eUo)Fi(ei<0)\2 d> M («) = 0 

Since this numerator is a polynomial of degree at most nt> + « / — 1 (we can always 
shift nk — 1 steps, so as to conform with (13.12)), it follows from Definition 13.1 that 
it is identically zero, and hence AG(q) = 0. The theorem now follows from the 
discussion following (13.11). Z 

Corollary. A n open-loop experiment is informative if the input is persistently 
exciting. 

Note that the necessary order of persistent excitation equals the number of 
parameters to be estimated in this case. If the numerator and denominator of the 
model have the same number of parameters n, then the input should be persistently 
exciting of order 2n. This means that <$„(&>) should be nonzero at 2n points, which 
is achieved for the input (13.14). It is thus sufficient to use n sinusoids to identify an 
nXh order system, a result that ties in nicely with the frequency analysis described in 
Section 6.2. 
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Theorem 13.1 covers, for example, the general model set (4.33) with its several 
special cases. It should also be clear that by analogous techniques other structures 
can be treated, including multivariable ones. See Problem 13E.2. 

Remark. Persistence of excitation of an m -dimensional signal is defined anal
ogously to Definition 13.1: Let M„(q) be defined by (13.12) with w, as 1 x m 
row-matrices. Then {u(t)} is said to be persistently exciting of order n if 

Mn{eia,)^„(co)M^(e-ioi) = 0 implies that Mn(ei(!)) = 0 (13.18) 

Lemma 13.1 has an immediate multivariable counterpart . 

13.3 I N P U T D E S I G N FOR O P E N LOOP E X P E R I M E N T S 

The requirement from the previous section that the data should be informative means 
for open loop operation that the input should be persistently exciting (p.e.) of a 
certain order: i.e.. that it contains sufficiently many distinct frequencies. This leaves 
a substantial amount of freedom for the actual choice, and we shall in this section 
discuss good and typical choices of input signals. 

For the identification of linear systems, there are three basic facts that govern 
the choices: 

1. The asymptotic properties of the estimate (bias and variance) depend only on 
the input spectrum—not the actual waveform of the input. 

2. The input must have limited amplitude: w < w(r) < u. 

3. Periodic inputs may have certain advantages. 

The first fact follows from (8.71) and (9.54). The second one is obvious from prac
tical considerations. The advantages and disadvantages of periodic inputs will be 
discussed later in this section. 

The Crest Factor 

The covariance matrix is typically inversely proportional to the input power. We 
would thus like to have as much input power as possible. In practice, the actual 
input limitation concerns amplitude constraints u and 17. The desired property of 
the waveform therefore is defined in terms of the crest factor C r , which for a zero 
mean signal is defined as 

-> max, u2(t) 
C; = V (13.19) 

(More sophisticated definitions only use the signal power in a certain frequency band 
of interest in the denominator.) A good signal waveform is consequently one that has 
a small crest factor. The theoretic lower bound of Cr clearly is 1, which is achieved 
for binary, symmetric signals: u(t) = ±i7. 



4 1 6 Chap. 13 Experiment Design 

This gives a theoretical advantage for binary signals, and indeed, several of the 
signals that we will discuss in this section will be binary. However, the following 
caution should be mentioned: A binary input will not allow validation against non-
linearities. For example, if the true system has a static non-linearity at the input (as 
in the Hammerstein model of Figure 5.1) and a binary input is used, the input is still 
binary after the non-linearity, and just corresponds to a scaling. There is consequently 
no way to detect that such a non-linearity is present from a binary input. 

The Frequency Contents of the Input 

Consider, as before, the general SISO model structure 

y(t) = G(q,0)u(t) + H(q.9)e{t) (13.20) 

The asymptotic covariance matrix that results when a prediction error method is 
applied to (13.20) was computed in (9.29) and (9.30): 

P¥iX) = K(C) • [Exlf{t,0o)fT(t.$o)]~] (13.21a) 

E[t(e0(t)))2 

K(i) = 1 0 J , (13.21b) 
[ECieoit))]2 

From (7.89) we can define the average information matrix per sample, M, as 

M(X) = \im±-MlW = -If(t.0o)f1(t,0o) (13.22) 

where 

K0 J-> 

J ^ 7 - T - r f . v ( 1 3 . 2 3 ) 
fe(x) 

and fe(x) is the P D F of the true innovations. The important consequence of the^e 
expressions is that the choice of norm t(s) and the distribution of the innovations 
act only as input-independent scaling of the covariance matrix and the information 
matrix. Optimization measures based on M in (13.22) thus cover the Cramer-Rao 
lower bound for P$(X) as well as all asymptotic expressions for PQ(X) obtained 
with prediction error methods, up to an X- independent scaling, that is immaterial 
for the experiment design. 

In (9.54) we gave an expression for the covariance matrix. This can be rewritten 
in terms of M (X) as 

M(X) = \Gf

e(eitt,,0o)[G'R(e-i(O,0o)]T <i>u{o^) 

+ H^e"\eu)[H;(e-iM,eo)]T kQ} /<&Ao))dco ( 1 3 . 2 4 ) 
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provided u and eo are independent. Here G'e and are the d x 1 gradients of G 
and H. Introduce 

kl)Gf

0(eireo)[G',(e-ir00)]T 

M(a>) = — — (13 .23a ) 
27TKQ<$>V{(X)) 

Then we have 

~M(X) = M ( O H ) = j M(o))^lf{co)dco + Me (13.26) 

This expression gives a good impression of how the input spectrum affects the infor
mation matrix in the open loop case. It ties nicely with the intuitive advice (13.7). To 
achieve a large information matrix, we should spend the input power at frequencies 
where M(co) is large, that is, where the Bode plot is sensitive to parameter variations 
(G'0 large). Put more leisurely, if a parameter is of special interest, then vary it and 
check where the Bode plot moves, and put the input power there. In many cases this 
may give sufficient guidance for good input design. In Section 13.6 we shall use a 
more formal approach for high order models, to obtain similar results. 

Notice also that (13.26) manifests the first fact listed in this section: The in
formation matrix/covariance matrix of the parameters depends only on the input 
spectrum—not the particular waveforms. 

Optimal Frequency Contents: It is quite clear that formal optimal design problems 
can be formulated from (13.26): Pick a scalar measure of the size of the matrix 

A/ ^dp,,), like its (weighted) trace, its determinant or its matrix norm and minimize 
this with respect to the input spectrum <PM . There is quite an extensive literature 
on this. e.g. Goodwin and Payne (1977) and Zar rop (1979). One important issue 
in this context is how to consider a restricted, finitely parameterized set of inputs 
that still covers the set of achievable information matrices. A typical result is that it 
is sufficient to consider inputs that are a finite sum of sinusoids, as in (13.14). The 
number of necessary sinusoids depends on the system/model order. See, e.g., Stoica 
and Soderstrom (1982a). An efficient algorithm for selecting the frequencies on the 
DFT-grid is given in Section 4.3.4 of Schoukens and Pintelon (1991). 

It should be noted that the optimal input design will depend on the (unknown) 
system, so this optimality approach is worthwhile, only when good prior knowledge is 
available about the system. The optimum number of sinusoids may also correspond 
to the minimum one for identifying a system of this order. To allow for validation 
against higher order models, it is thus wise to use an input with more frequencies. 
In practice, it is suitable to decide upon an important and interesting frequency 
band to identify the system in question, and then select a signal with a more or less 
flat spectrum over this band. We will discuss such designs in the remainder of this 
section. 
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Common Input Signals 

The basic issue for input signal design is now clear: For linear system identification. 
achieve a desired input spectrum for a signal with as small crest factor as possible. 
Unfortunately these properties are somewhat in conflict: If it is easy to manipulate 
a signal's spectrum, it tends to have a high crest factor and vice versa. We shall now 
describe typical choices of waveforms, and how to achieve desired spectra. 

A general comment is that it is always advisable to generate the signal and studv 
its properties, off-line, before using it as an input in an identification experiment. 

Filtered Gaussian White Noise. A simple choice is to let the signal be generated 
as white Gaussian noise, filtered through a linear filter. With this we can achieve 
virtually any signal spectrum (that does not have too narrow pass bands) by proper 
choice of filters. Since the signal is generated off-line, non-causal filters can be applied 
and transient effects can be eliminated, which gives even better spectral behavior. 
See any book on filter design, like Parks and Burrus (1987). The Gaussian signal is 
theoretically unbounded, so it has to be saturated ("clipped") at a certain amplitude. 
Picking that, e.g.. to be at 3 standard deviations gives a crest factor of 3, and at the 
same time, only an average of 1% of the time points are affected. This should lead 
to quite minor distortions of the spectrum. 

Random Binary Signal. A random binary signal is a random process which assumes 
only two values. It can be generated in a number of different ways. The telegraph 
signal is generated as a random process which at any given sample has a certain 
probability to change from the current level to the other one. Apparently, the most 
common way is to simply generate white, zero mean Gaussian noise, filter it by an 
appropriately chosen linear filter, and then just take the sign of the filtered signal. It 
can then be adjusted to any desired binary levels. The crest factor is thus the ideal 
1. The problem is that taking the sign of the filtered Gaussian signal will change its 
spectrum. We therefore do not have full control of shaping the spectrum. In the 
off-line situation we can however always check the spectrum of the signal before 
using it as input to the process to see if it is acceptable. 

Example 13.1 Band-limited Gaussian and Binary Signals 

Suppose we seek an input with power concentrated to the band 1 < w < 2 (rad.'s). 
Let e be generated as white Gaussian noise. Filter this signal through a 5th order 
Butterworth filter with the indicated pass band. This gives the signal in Figure 13.1. 
Its spectrum is shown in Figure 13.2. Taking the sign of this signal gives the random 
binary signal of Figure 13.1. Its spectrum is shown in Figure 13.2. The distortion of 
the desired spectrum is clear. 11 

Pseudo-Random Binary Signal, PRBS. A Pseudo-Random Binary Signal is a pe
riodic, deterministic signal with white-noise-like properties. It is generated by the 
difference equation 

u(t) = rem(A(<?)w(r), 2) = rem (<*!«(? - 1) + . . . + anu(t - n).2) (13.27) 
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0 20 40 60 80 100 

0 20 40 60 80 100 
Figure 13.1 Upper plot: Random Gaussian noise, filtered through a pass-band of 
1 < to < 2. Lower plot: Random binary noise obtained by taking the sign of the 
signal in the upper plot. Both signals are plotted as piecewise constant signals. 

Here r e m ( A \ 2) is the remainder as x is divided by 2, i.e., the calculations in (13.27) 
should be carried out modulo 2. u (t) thus only assumes the values 0 and 1. After u is 
generated, we can of course change that to any two levels. The vector of past inputs 
[u(t — 1) . . . u{t — n) ] can only assume 2" different values. The sequence u 
must thus be periodic with a period of at most 2". In fact, since n consecutive 
zeros would make further u's identically zero, we can eliminate that state, and the 
maximum period length is M = 2n — 1. Now the actual period of the signal will 

10 1 

1 0 - 4 I . . . . . . 1 
0 0.5 1 1.5 2 2.5 3 3.5 

Figure 13.2 Spectra of the signals in Figure 13.1. Solid line: The spectrum of the 
Gaussian signal. Dashed line; The spectrum of the binary signal. 
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TABLE 13.1 A -polynomials that generate maximum 
length (= M) PRBS for different orders n. 
ak — 1 for the indicated k and 0 otherwise. 
Several other choices may exist for each n. 

Order n M = 2" — 1 ak non-zero for k 

2 3 1.2 
3 7 2.3 
4 15 1.4 
5 31 2.5 
6 63 1.6 
7 127 3.7 
8 255 1,2.7.8 
9 511 4.9 
10 1023 7,10 
11 2047 9.11 

depend on the choice of A (q). but it can be shown that for each n there exists choices 
of A(q) that give this maximum length. Such choices are shown in Table 13.1 and 
the corresponding inputs are called Maximum length PRBS. See Davies (1970). The 
interest in maximum length PRBS follows from the following property: 

Any maximum length PRBS shifting between ±u has the first and second order 
properties 

1 M 

1 M 

u 

M 

u1 

- f i else 

I 
k = 0, ± M , ±2M 

(13.281 

Here M = 2" — 1 is the (maximum length) period, and the summation is performed 
with periodic continuation of the signal. Note that the signal does not have exactly 
zero mean. Its covariance function thus differs from the second moment function 
(13.28). To compute the spectrum, we proceed as in Example 2.3. In the notation of 
that example, we find that 

M-I r . A / - I 

d > j » = £ *„<*)*-'•*» = u2 1 - - £ 
k=0 L k=\ 

_ _ 2 f 1 e~iM - g - ' ^ l 

~ U \_ ~M 1 - e~'M J M 1 - e-

u2jj foro) = 0 
u2(\ + ±) for co = 27tk/M, k = 1. , M - 1 
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The expression (2.67) now gives the spectrum 

- _ T . V / - I 
Z7TU 

<i>u(co) = - ~ - ^ <5(&> - iTik/M). 0 < OJ < 2TZ (13.29) 
A = l 

where we ignored terms proportional to 1/A/ 2 . In the region —tt < co < tt there 
will be M — 1 frequency peaks (oj = 0 excluded). This shows that maximum length 
PRBS behaves like "periodic white noise " and is persistently exciting of order M — 1. 
Figure 13.3 shows one period of a P R B S and its spectrum. 

1 

0 

- 1 

- 2 

1 U 

TO n 

10 : 

10' 

10° • 

10"' 
20 4 0 6 0 8 0 100 120 0 0.5 1 1.5 2.5 3.5 

(a) A PRBS with n = 7 and hence M= 127 (b) The spectrum of the signal, computed 
by spectral analysis and FFT. respectively. 
There are 63 peaks in the FFT spectrum 
for positive frequencies. 

Figure 13.3 A maximum length PRBS signal. 

Notice that it is essential to perform these calculations over whole periods. 
Generating just a part of a period of a PRBS will not give a signal with properties 
(13.28). 

Like white random binary noise. PRBS has an optimal crest factor. The advan
tages and disadvantages of PBRS compared to binary random noise can be summa
rized as follows: 

• If the PRBS contains whole periods, its covariance matrix will have a very-
special pattern according to (13.28). It can be analytically inverted, which will 
facilitate certain computations. 

• As a deterministic signal, PRBS has its second order properties secured when 
evaluated over whole periods. For random signals, one must rely upon the law 
of large numbers to have good second order properties for finite samples. 
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• There is essentially only one PRBS for each choice of A{q). Different initial 
values when generating (13.27) only correspond to shifting the sequence. It 
is therefore not straightforward to generate mutually uncorrelated sequences 
with PRBS. A simple way would be to excite one input at a time, or variants 
thereof. See Problem 13E.7. 

• For PRBS one should work with an integer number of periods to enjoy its good 
properties, which limits the choice of experiment length. 

Low-Pass Filtering by Increasing the Clock Period. It is easy to generate binary 
signals with white noise second order properties, either as PRBS or by a random 
generator. To give the signal a more low-frequency character, we could filter it 
through a low pass filter. This would make the signal non-binary, though, with a 
worse crest factor. An alternative is to sample faster, i.e., from the given PRBS. 
create a new signal u by taking P samples over each sampling period of the original 
signal e. The new signal will thus always stay constant over at least P samples. We 
have thus increased the sampling frequency to be P times faster than the frequency 
at which the PRBS is generated. This is usually expressed as having a clock period 
of P. It can be shown (see Example 5.10 in Soderstrom and Stoica, 1989) that the 
new signal u has the same covariance function as 

obtained by simple moving average low pass filtering of e. 
A typical advice is to let the clock frequency in the PRBS be about 2.5 times the 

bandwidth to be covered by the signal. Schoukens. Guillaume. and Pintelon (1993). 
Another advice is to sample about 10 times faster than the bandwidth to be modeled 
(see Section 13,7). Together this shows that a good choice is to take the clock period 
P = 4. A spectrum for a PRBS with P = 4 is shown in Figure 13.4. We see that the 
frequencies up to about 1/5 of the Nyquist frequency are well covered. 

10 

0.1 

1 

0 1 2 3 

Figure 13.4 The spectrum of a PRBS signal with P = 4. 



Sec. 13.3 Input Design for Open Loop Experiments 423 

Multi-Sines. A natural choice of input is to form it as a sum of sinusoids: 

d 

u(t) = ^akcos(cokt + <pk) (13.30) 

Apart from transient effects this gives a spectrum according to Example 2.4: 

d 2 
d>H(o>) = 2jt £ J ~ <°k) + 8(a) + ojk)] (13.31) 

k=\ 
With cifc and cok we can thus place the signal power very precisely to desired 
frequencies. In addition, we mentioned in Section 13.2 that all possible information 
matrices can be obtained within the family (13.30) for large enough d. The only 
problem with this input is the crest factor. The power of the signal is E a * / 2 - If 
all sinusoids are in phase, the squared amplitude will be (^cik)2. The crest factor 
can thus be up to -j2d (if all ak are equal) . The way to control the crest factor is 
to choose the phases <pk so that the cosines are "as much out of phase" as possible. 
A simple solution is the so-called Schroeder phase choice. Schroeder (1970). which 
means that the phases are spread as follows when the amplitudes ak are equal: 

<p\ arbitrary 

k(k - 1) , < 1 3 - 3 2 ) 
<Pk = <h ~ . *: 2 < k < d. 

a 

Chirp Signals or Swept Sinusoids. A chirp signal is a sinusoid with a frequency 
that changes continuously over a certain band Q : co\ < co < 0J2 over a certain time 
period 0 < t < M: 

u(t) = A c o s ( ^ , r + (oh - a>i)/ 2 / (2Af)) (13.33) 

The "instantaneous frequency" cox in this signal is obtained by differentiating the 
argument w.r.t. time t: 

t 
co/ = ct»i + —(0J2 - coi) 

M 
and we see that it increases from co\ t0 6 h . This signal has the same crest factor as 
a pure sinusoid, i.e.. y/l. and it gives good control over the excited frequency band. 
Due to the sliding frequency, there will however also be power contributions outside 
the band Q . 

Example 13.2 Sinusoids and Swept Sinuoids 

In Figure 13.5 we show the signal which is obtained from (13.30) with 10 frequencies 
of equal amplitude ( = 1). equally spread over the frequency band 1 < co < 2 
rad/sec. The three cases correspond to <pk = 0. the Schroeder choice (13.32). and 
randomized phases, respectively. They all have the same spectrum, shown in Figure 
13.5d. Figure 13.6a shows the chirp signal (13.33) over the chosen band, while its 
spectrum is shown in Figure 13.6b. • 
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(a) Sum of 10 sinusoids of equal amplitude 
over the frequency band 1 < u> < 2 rad/sec. 
All phases equal to zero at the starting time. 
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(b) Same as (a), but with Shroeder phases 

200 220 240 2 6 0 2 8 0 3 0 0 

(c) Same as (a), but with random phases. (d) The spectrum of all the signals. 
Smooth line: estimated with spectral 
analysis. Rough line: Computed by FFT. 

Figure 13*5 Input signals that are sums of sinusoids. 

Periodic Inputs 

Some of the signals above are inherently periodic, like the PRBS, or the s u m of 
sinusoids. All of them can in any case be made periodic by simple repetition. To 
retain the nice frequency properties they have been designed for, the following facts 
must be taken into account when creating periodic signals: 

• The PRBS signal must be generated over one full period, M = 2" — 1. and ther 
be repeated. This follows from the discussion of its second order properties. 

• To create a multi-sine of period M. the frequencies a>k in (13.30) must be chosen 
from the DFT-grid cot = Inl/M, I = 0 , 1 . . . . , M - 1. 
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200 220 240 260 2 8 0 3 0 0 0 0.5 1 1.5 2 2.5 3 3.5 

(a) Portion of the signal (b) The spectrum of the signal, computed 
by spectral analysis and FFT. respectively. 

Figure 13.6 A chirp signal covering the frequency band 1 < a> < 2. 

• To make the chirp signal (13.33) nicely periodic with period M, co\ and a>2 must 
be chosen as lirkj/M for some integers k\ and k2. The signal generated by 
(13.33) can then be repeated an arbitrary number of times. 

• To display the spectrum of a periodic signal of length N with an even number of 
periods without any leakage, it should be computed for the (DFT) frequencies 
cok = 27rk/N. ("Leakage' 1 means that the Fourier transform is distorted by 
boundary effects. Note that the "ringing" in Figures 13.5d and 13.6b is due to 
leakage.) 

What are the advantages and disadvantages with periodic inputs? 

• A signal with period M can have at most M distinct frequencies in its spectrum. 
It is thus persistently exciting of. at most, order M. In this sense, non-periodic 
inputs inject more excitation into the system over a given time span. 

• When a periodic input has been applied, say K periods each of length M 
(N = KM),\X is usually advisable to average the output over the periods, and 
work only with one period of input-output data in the model building session. 
This gives less data to handle. The signal to noise ratio is improved by a factor 
of K by this operation, at the same time as the data record is reduced by the 
same factor. No difference in asymptotic properties should thus result from this 
(unless the noise model and the dynamics model share parameters) . However, 
several methods have a performance threshold for finite samples and poor 
signal-to-noise ratios, so in practice there might also be an accuracy benefit 
from averaging the measurement over the periods. 

• A periodic input allows both formal and informal estimates of the noise level 
in the system. After transient effects have disappeared, the differences in 
the output response over the different periods must be attributed to the noise 
sources. This could be quite helpful in the model validation process for the 
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important distinction between model errors and noise (cf. Chapter 16). More 
formally, let the output be 

y(t) = V«(0 + v(t) 

where yuU) is the noise-free part that originates from the input. It is thus 
periodic and a natural estimate is 

1 K ~ ] 

v«(0 = T r F v a + kM): 1 < t < M (13.34) 

and periodically continued for larger / . This gives the noise estimates v(t) = 
y(t) — yu(t) from which both noise levels and noise colors can be estimated. 
The noise variance A , , , e.g.. is estimated as 

1 ^ 

t—] 

• When the models are estimated in terms of Fourier transformed data (see Sec
tion 7.7), periodic signals give no leakage when forming the Fourier transforms. 

Intersample Behavior of the Input (*) 

So far we have just considered the discre(e-(ime properties of the input u(t). t = 
1.2. . . . , assuming a unit sampling interval. What will be applied to the actual process 
is of course a continuous-time signal u(t) defined for all real t in a certain interval. 
To stress this point, we shall in this subsection use the notation uk.k — 1. 2, . . . for 
the input sequence and use u(t) to denote the continuous time input. The spectrum 
<Pd

u of the sequence M*. k = 1, 2 , . . . is defined by (2.63): 

Q Y J O A ) = jr Rte-Ua> ( (13.35a) 
t = - o c 

Re - hm — > uk-tuk (13.35b) 
A'—DC N 

k=\ 
This is the spectrum we have designed in this chapter, and this is also the spectrum 
that determines the model quality as in (13.26). It is only relevant to consider this 
spectrum over \w\ < TT. since 4>f (w) by definition will be periodic with period 2 T T . 

The spectrum of the continuous time signal is defined analogously as 

/

OC 
Rc

u{r)e-ira,dx (13.36a) 

-oc 
1 fN 

RcJr) = lim — / u ( t - x)u(t)dt (13.36b» 
.V->oo Af J0 

If we choose a sampling interval T, it is natural to construct a continuous time signal 
w(r), such that u(kT) = uk. k = 1, 2, This can be done in several different 
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ways, depending on how we select the intersample behavior. The simplest case is to 
let the input be constant between the sampling instants 

u(t) = Uk if kT < t < (k + 1)7" (13.37) 

where T is the sampling interval. Such an input is called zero order hold. Z O H . If 
the continuous-time input is defined by linear interpolation between the sampling 
instants, we have the first order hold, F O H , case: 

it - kT)uk+i + (kT + T - t)uk 

u{t) = if kT < t < (k + \ )T (13.38) 

The third common choice is to let the continuous time signal be band-limited. This 
means that the continuous time signal has no power above the Nyquist frequency, 
and that its spectrum coincides with the spectrum of the discrete time signal, up to 
this frequency: 

<t>{

u(oj) = <bd

uia>T) for \co\ < TT/T, <&r

u(co) = 0 else (13.39) 

We may think of this signal as obtained as a sum of sinusoids (up to frequency TTT) 
u(t) adjusted so that u(kT) = uk. k = 1 , 2 This is trigonometric interpolation. 

Note the following aspects: 

• For first and zero order hold, the discrete signal spectrum T<t>c/4(coT) does not 
coincide with the continuous one ^(co) even for |a>| < JT/T. The reason 
is. loosely speaking, that the abrupt changes in the Z O H signal create new 
frequencies in the continuous signal. 

• Tn all cases where the continuous time input can be constructed exactly from 
its values at the sampling points, it will be possible to form an exact discrete 
time model for how u(kT). k = 1 . 2 . . . . affect y(kT). k — 1, 2, . . . (apart 
from the noise contributions, of course). The actual discrete time model will 
however depend on the intersample behavior, i.e.. a model which has a perfect 
fit for Z O H input will not describe the system under a F O H input. 

• The formulas for translating a discrete time model to continuous time will 
depend on the intersample behavior of the input for which the model was 
fitted. For a Z O H input we should use the inverse of (4.67)-(4.71). 

Note that the methods of this book also allow a direct fit of a continuous 
time model to discrete time data. It is just a matter of parameterization as in 
(4.65). However, the parameterization must be done using a sampling formula 
that is consistent with the true intersample behavior of the input. 

• When we build a discrete time model from u(kT) = uk to y(kT). it is the dis
crete signal spectrum <$>f that determines the model quality (uncertainty) as in 
(13.24). This follows from the analysis in Chapters 8 and 9 where the intersam
ple behavior does not enter. However, as noted above, the translation of the 
discrete time model to continuous time should depend on the input intersam
ple behavior. Therefore, the quality of the resulting continuous-time model 
will depend both on the input's discrete signal spectrum and its intersample 
properties. 
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Which aspects should then guide the choice of input intersample behavior? 

• Affinity to the model use. If the model is to be used for Z O H inputs, as is 
typical in all computer controlled applications, it is natural to use a Z O H input 
experiment to generate the identification data. Then the resulting model can 
be used directly in discrete time. 

• Ease and accuracy of input generation. The practical experiment equipment 
will of course also decide what is the natural choice of input character. Note 
that if the model is to be constructed as, or transformed to, continuous time, it 
is necessary that the assumed intersample behavior coincides with the actual 
one. Whatever choice is easier to implement accurately is then to be preferred. 

Finally, we may note that if the sampling rate is fast compared to the bandwidth 
of the system (as will be suggested in Section 13.7), the difference between various 
intersample behaviors may be insignificant. 

13.4 IDENTIFICATION IN CLOSED LOOP: IDENTIFIABILITY 

Tt is sometimes necessary to perform the identification experiment under output 
feedback, i.e., in closed loop. The reason may be that the plant is unstable, or that it 
has to be controlled for production, economic, or safety reasons, or that it contains 
inherent feedback mechanisms. 

In this section we shall study problems and possibilities with identification data 
from closed loop operation. In many cases we will not need to know the feedback 
mechanism, but for some of the analytic t reatment we shall work with the following 
linear output feedback setup: The true system is j 

yit) = Gofo)K(f) + v(l) = Go(qMt) + H0(q)e(t) (13.40a) 

Here {e(t)} is white noise with variance A.0. We shall also use the notation v(t) = 
Ho(q)e(t). The regulator is as in Figure 13.7: 

ii(0 = r ( 0 - F,(q)y(t) (13.40b) 

Here (r(r)} is a reference signal (filtered version of a setpoint, or any other external 
signal) that is independent of the noise {e(t)}. The model is 

v (0 = G(q.6)u(t) + H(q.0)e(t) (13.40c) 

We also assume that the closed loop is well defined in the sense that 

Either Fy(q) or both G(q,9) and Go(q) contain a delay (13.40d) 

The closed loop system is stable (13.4()e) 
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Figure 13.7 Block diagram of a typical feedback system. 

The closed loop equations become 

y ( f ) = G0(q)S0(q)r(t) + S0(q)v(t) 

u(t) = So(q)r(t) - Fv(q)So(q)v(t) 

(13.41a) 

(13.41b) 

where So(q) is the sensitivity function 

Soto) = 
I 

1 + FAq)Go(q) 
(13.42) 

In the sequel we shall omit arguments co, q, el(a, and t whenever there is no risk of 
confusion. 

The input spectrum is 

4>M = |50|24>, + IFvflSo!2*, (13.43) 

Here dj>r and <&v are the spectra of the reference signal and the noise, respectively. 
We shall use the notation 

= \So\^r, K = Hvl2|5bl2*„ (13.44) 

to show the two components of the input spectrum, originating from the reference 
signal and the noise respectively. See also (8.74). 
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Some Basic Good News 
Most of the analytical development in Chapters 8 and 9 was done under general 
conditions that include closed loop data. The basic convergence theorem. Theorem 
8.2, applies also to closed loop data, and Theorem 8.3 tells us that a prediction error 
method will consistently estimate the system if 

• The data is informative (Definition 8.1) 
• The model set contains the true system 

regardless if the data {u, y) have been collected under feedback. Since the variance 
results of Chapter 9 (Theorem 9.1, equations (9.17) and (9.31)) apply also to closed 
loop data, we know that under the above assumptions the straightforward prediction 
error estimate will have optimal accuracy. 

We therefore need only look into what constitutes informative experiments 
under closed loop, and what the approximation aspects are when the model set does 
not contain the true system. 

Some Fallacies with Closed Loop Identification 

There are some fallacies associated with closed loop data: 

• The closed loop experiment may be non-informative even if the input in itself 
is persistently exciting. The reason then is that the regulator is too simple. See 
Example 13.3 below. 

• Spectral analysis applied in a straightforward fashion, as described in Chapter 
6, will give erroneous results. According to Problem 6G.1 the estimate of G 
will converge to 

• Correlation analysis, as described by (6.7)—(6.11) will give a biased estimate of 
the impulse response, since the assumption Eu(t)v(t — T ) = 0 is violated. 

• For open loop data, output error models (see (4.25) and (4.117)) will eive 
consistent estimates of G, even if the additive noise is not white. This follows 
from Theorem 8.4. This is not true for closed loop data. See (13.53) below. 

• The subspace method (7.66) will typically not give consistent estimates when 
applied to closed loop data. 

and suppose that the system is controlled by a proportional regulator during the 
experiment: 

G*(eia>) = 
Go(e"»)<S>r(a>) - Fy(e-"°)fvW 

<t>r(co) + \Fy(eu»)\2 <bv(co) 

Example 13.3 Proportional Feedback 

Consider the first-order model structure 

y(r ) + ay(t - 1) = bu(t - 1) + e(t) (13.45) 

«(0 = - / y < 0 (13.46) 
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Inserting the feedback law into the model gives 

y(r) + (a+bf)y(t - 1) = e(t) (13.47) 

which is the model of the closed-loop system. From this we conclude that all models 
(a. b) subject to 

a = a + yf 
(13.48) 

b = b — y 

with y an arbitrary scalar, give the same input-output description of the system as the 
model (a. b) under the feedback (13.46). There is consequently no way to distinguish 
between these models. Notice in particular that it is of no help to know the regulator 
parameter / . The experimental condition (13.46) is consequently not informative 
enough with respect to the model structure (13.45). It is true, though, that the input 
signal u(t) is persistently exciting since it consists of filtered white noise. Persistence 
of excitation is thus not a sufficient condition on the input in closed-loop experiments. 

If the model structure (13.45) is restricted by. for example, constraining b to 
be 1 

yit) + ay(t - 1) = u(t - 1) + eit) 

then it is clear that the data generated by (13.46) are sufficiently informative to 
distinguish between values of the <3 -pa ramete r , • 

Informative, Closed Loop Experiments 

It could consequently be problematic to obtain relevant information from closed-
loop experiments. Conditions for informative data sets must also involve the feed
back mechanisms. To get a feeling for the problem, consider (8.12) in Definition 8.1. 
If (8.12) holds for two different models, then 

E[AWy(q)y(t) + AWu(q)u(t)]2 = 0 (13.49) 

for some filters AWV and AWU that are not both zero and that are of about the same 
complexity as the models in the model set. For the regulator (13.4()b) this would 
mean that 

0 = E 

using (13.41). Let 

W = [WX VVH] = [ A W V A V V W ] ^ ° S O } 
I 1 -FySnJ 

The determinant of the last matrix is —GQFXSQ — So = — 1, so it is always invertible, 
which means that W = 0 will imply that both AWV and AWU are zero. Recall that 
r and v are uncorrelated by assumption, so 

0 = E\W [rir - I W v V + E 
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The filtered noise v is persistently exciting, and if Sor is that too. then the conclusion 
is that W = 0. Under that assumption we have thus shown that (13.49) implies 
A W\ = 0 and AWl4 = 0. Note also that Sor will be persistently exciting if /• is. since 
the analytical function So can be zero at at most finitely many points. We summarize 
this result as a theorem. 

Theorem 13.2. The closed loop experiment (13.40) is informative if and onlv if r 
is persistently exciting. 

As a matter of fact (13.49) contains more information. This equation essentially 
implies that there is a linear, time-invariant, and noise-free relationship between v 
and it: 

AWu{q)u(t) * -AWAq)y(t) (13.50) 

Therefore, only if there is a feedback like (13.50) during the experiment is the data 
set not informative enough. Thus not only external signals like r in the regulator will 
assure an informative experiment, but also nonlinear or time-varying or complex 
(high-order) regulators should, in general, yield experiments that are informative 
enough. This is the most general s tatement that can be made about informative 
experiments. 

A general result for the multivariable case with time-varying regulators can be 
formulated as follows: 

Let the input signal be given by output feedback plus an extra signal: 

u(t) = -Fi(q)y(t) + Ki(q)rith i = 1,2 r (13.51) 

Here Ft and Ki are linear filters that are changed during the experiment between 
r (different) ones. The changes are made so that each regulator is used a nonzero 
proport ion of the total time, and so seldom that any high-frequency contributions to 
the signal spectra that arise from the shifts can be neglected. The dimension of the 
filters Fj are m x p (m = dim u, p = dim y ) . and of Kj are m x s {s = dim r). 

Assume that the signal r is persistently exciting. Then the experiment is infor
mative if and only if 

(13.52) 
for almost all frequencies. See Soderstrom, Ljung, and Gustavsson (1976)for a proof. 
An interesting consequence of this result is that, even if no extra input is allowed, 
informative experiments result if we shift between different linear regulators. By 
checking (13.52) in the SISO case, we find that it is sufficient to use two regulator* 

u(t) = -Fi{q)y(t) and u(t) = -F2(q)y(t) 

subject to 

[F^) - F2(eia>)] # 0, Vo> 
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which is a very mild condition. This could be a useful way to achieving informative 
experiments when the requirement of good control is stringent. 

Bias Distribution 
We shall now characterize in what sense the model approximates the true system, 
when it cannot be exactly described within the model class. The discussion will 
be based on the frequency domain expressions for the limiting criterion function, 
developed in Section 8.5. see (8.76)-(8.77). 

Let us focus on the case with a fixed noise model H(q,6) = H*(q). This case 
can be extended to the case of independently parameterized G and H, analogously 
to (8.73). Recall that any prefiltering of the data or prediction errors is equivalent 
to changing the noise model. The expressions below therefore contain the case of 
arbitrary prefiltering. For a fixed noise model, only the first term of (8.77) matters in 
the minimization, and we find that the limiting model is obtained as 

G , = argmin j | G 0 ( O + B{eho) - G(eioj.0)f 

x ^dco (13.53a) 

| * ( < > ) | 2 = ^ f - • ^ \ • \H0(eiM) - / / * ( 0 | 2 (13.53b) 

This is identical to the open loop expression (8.71), except for the bias term B. See 
also Problem 8G.6. Within the chosen model class, the model G will approximate 
the biased transfer function G u + B as well as possible, according to the weighted 
frequency domain function above. The weighting function <t> H / | / /* | 2 is the same as 
in the open loop case. The major difference is thus that an erroneous noise model 
(or unsuitable prefiltering) may cause the model to approximate a biased transfer 
function. 

Let us comment on the bias function B. From (13.53b) we see that the bias-
inclination will be small in frequency ranges where either (or all) of the following 
holds 

• The noise model is good (Ho — //* is small) 

• The feedback contribution to the input spectrum (dp^/O,,) is small 

• The signal to noise ratio is good ( A 0 / d > « is small) 

In particular, it follows that if a reasonably flexible, independently parameterized 
noise model is used, then the bias-inclination of the G -estimate can be negligible. 

Variance and Information Contents in Closed Loop Data 

Let us now consider the asymptotic variance of the estimated transfer function Ca
using the asymptotic black-box theory of Section 9.4. Note that the basic result (9.62) 
applies also to the closed loop case. 
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From the general expression (9.62) we can directly solve for the upper left 
element: 

n X{) 

From (8.75) we easily find that the denominator is equal to <Pr

u so 

n 4>v(<u) n 4>t.(a>) 
Cov G ,\ = r = (1^551 

The denominator of (13.55) is the spectrum of that part of the input that originates 
from the reference signal r . The open loop expression has the total input spectrum 
here. 

The expression (13.55) is derived from the covariance matrix obtained for the 
maximum likelihood method for Gaussian noise, see Chapter 9. This means that it 
is also the asymptotic Cramer-Rao lower limit (for Gaussian noise: see (7 .79) ) . so 
it tells us precisely "the value of information" of closed loop experiments. It is the 
noise-to-signal ratio (where "signal"' is what derives from the injected reference) that 
determines how well the open loop transfer function can be estimated. From this 
perspective, the part of the input that originates from the feedback has no information 
value when estimating G. 

The expression (13.55) also clearly points to a fundamental property in closed 
loop identification: The purpose of feedback is to make the sensitivity function So 
small, especially at frequencies with disturbances and poor system knowledge. Feed
back will thus worsen the measured data 's information about the system at these 
frequencies. 

However, this is not the whole truth. Feedback will also allow us to inject more 
input in certain frequency ranges, without increasing the output power. We shall see 
in Section 13.6 that for experiment design that involve output variance constraints it 
is always optimal to use closed loop experiments. 

Finally, let us stress that the basic result (13.55) is asymptotic when the orders 
of both G and H tend to infinity, as well as N. 

13.5 APPROACHES T O CLOSED LOOP IDENTIFICATION 

As noted in Section 13.4, a directly applied prediction error method—applied as 
if any feedback did not exist—will work well and give optimal accuracy if the true 
system can be described within the chosen model structure (both regarding the noise 
model and the dynamics model) . Nevertheless, due to the pitfalls in closed loop 
identification, several alternative methods have been suggested. Although these 
methods, as such, are not experiment design issues, it is natural to discuss them in 
the context of the current chapter. 

One may distinguish between methods that 

1. Assume no knowledge about the nature of the feedback mechanism, and do 
not use r even if known. 
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2. Assume the signal r and the regulator to be known (and typicallv of the linear 
form (13.40b)). 

3. Assume the regulator to be unknown. Use the measured r to infer information 
about it, and use the estimate of the regulator to recover the system. 

If the regulator indeed has the form (13.40b), there is no major difference between 
(1), (2), and (3): This noise-free relationship can be exactly determined based on 
a fairly short data record, and then also r carries no further information about the 
system, if u is measured. The problem in industrial practice is rather that no regulator 
has this simple, linear form: Various delimiters, anti-windup functions and other non-
linearities will have the input deviate from (13.40b), even if the regulator parameters 
(e.g. PID-coefficients) are known. This strongly disfavors the second approach. The 
methods correspondingly fall into the following main groups: 

1. The Direct Approach: Apply the basic prediction error method (7.12) in a 
straightforward manner: use the output y of the process and the input u in the 
same way as for open loop operation, ignoring any possible feedback, and not 
using the reference signal r. 

2. The Indirect Approach: Identify the closed loop system from reference input 
r to output y , and retrieve from that the open loop system, making use of the 
known regulator. 

3. The Joint Input-Output Approach: Consider y and u as outputs of a system 
driven by r (if measured) and noise. Recover knowledge of the system and the 
regulator from this joint model. 

We shall in this section treat each of these approaches. 

Direct Identification 
The Direct Identification approach should be seen as the natural approach to closed 
loop data analysis. The main reasons for this are: 

• It works regardless of the complexity of the regulator, and requires no knowl
edge about the character of the feedback. 

• No special algorithms and software are required. 
• Consistency and optimal accuracy are obtained if the model structure contains 

the true system (including the noise properties). 
• Unstable systems can be handled without problems, as long as the closed loop 

system is stable and the predictor is stable. This means that any unstable poles 
of G must be shared by H, like in A R X . A R M A X and state-space models (see 
(4.23) and (4.91)). 

The only drawback with the direct approach is that we will need good noise models. 
In open loop operation we can use output error models (and other models with 
fixed or independently parameterized noise models) to obtain consistent estimates 
(but not of optimal accuracy) of G even when the noise model H is not sufficiently 
flexible. See Theorem 8.4. 
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This shows up when a simple model is sought that should approximate the sys
tem dynamics in a pre-specified frequency norm. In open loop we can do so with 
the output error method and a fixed prefilter/noise model that matches the specifi
cations. See (8.71) and Examples 8.5 and 14.2. For closed loop data, a prefilter/noise 
model that deviates considerably from the true noise characteristics will introduce 
bias, according to (13.53). 

All this means that we cannot handle model approximation issues with full con
trol in the feedback case. However, consistency and optimal accuracy is guaranteed, 
just as in the open loop case, if the true system is contained in the model structure. 

A natural solution to this would be to first build a higher order model G using 
the direct approach, with small bias, and then reduce this model to lower order with 
the proper frequency weighting. While many model reduction schemes now exist, 
based on balanced realizations and the like, an identification-based way to achieve 
it is as follows: First simulate the model with an input u of suitable spectrum, thus 

generating noise free output y = Gu. Then subject the input-output data y, « to an 
output error model of desired complexity. This gives the model 

nin = / 
G J 

G* = argmin = / \G(e,<0) - G ( 0 <&u(to)dto (13.56) 

Note, though, that reduction of unstable models may contain difficulties. 

Indirect Identification 

The closed loop system under (13.40b) is 

v(0 = Gci(q)r(t) + vd(t) f 

G ^ . r { t ) + _ 4 _ _ 1 ; ( 0 ( 1 3 . 
1 + F,(q)G0(q) 1 + Fy(q)Gn(q) 

The indirect approach means that Gci is estimated from measured y and r , giving 
Gci, and then the open loop transfer function estimate G is retrieved from the 
equation 

G 
Gd = = — (13.58) 

1 + GFy 

An advantage with the indirect approach is that any identification method can be 
applied to (13.57) to estimate Gct, since this is an open loop problem. Therefore 
methods like spectral analysis, instrumental variables, and subspace methods, that 
may have problems with closed loop data, also can be applied. 

The major disadvantage with indirect identification is that any error in Fy (in
cluding deviations from a linear regulator, due to. e.g., input saturations or anti-
windup measures) will be transported directly to G. 
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For methods, like the prediction error method, that allow arbitrary parameter
izations Gci(q. 9) it is natural to let the parameters 9 relate to properties of the open 
loop system G. so that 

G{q.9) 
Gciiq.O) = — (13.59) 

1 + Fy(q)G(q. 9) 

That will make the task to retrieve the open loop system from the closed loop one 
more immediate. 

We shall now assume that Gci is estimated using a prediction error method 
with a fixed noise model/prefilter / /* : 

y(f) = Gd(q,0)rU) + H«(q)e(t) (13.60) 

The parameterization can be arbitrary, and we shall comment on it below. It is 
quite important to realize that as long as the parameterization describes the same 
set of G, the resulting transfer function G(q, 9s) will be the same, regardless of 
the parameterizations. The choice of parameterization may thus be important for 
numerical and algebraic issues, but it does not affect the statistical properties of the 
estimated transfer function. 

Let us now discuss bias and variance aspects of G estimated from (13.60) and 
(13.59). We start with the variance. According to the open loop result (9.63) (which 
holds also if the noise is not modelled: see Problem 9G.7), the asymptotic variance 
of Gci,N will be 

- n <f>r,r/(ft>) n | 5 0 | 2 <D r 

CovGrf.A- = — = — — — (13.61) 
N $>r((*>) N $r 

regardless of the noise model / /*. Here <t>v <-/ is the spectrum of the additive noise v r / 
in the closed loop system (13.57), which equals the open loop additive noise, filtered 
through the true sensitivity function. To transform this result to the variance of the 
open loop transfer function, we use Gauss* approximation formula (see (9.56)): 

dG * ( dG Y 
C o v G = _ C o v C r f ( — ) (13.62) 

It is easy to verify that 

dG 1 n <J\ n d>,: 

so CovG.v = 
dGcl | 5 0 | r " N\S0\2<Pr NVU 

which—not surprisingly—equals what the direct approach gives. (13.55). 
For the bias, we know from (8.71) that the limiting estimate 0* is given by (we 

write Go as short for G(euo. 9)) 

A* • f I G<> G* I2

 A 9 = a rgmin I -do) 

» J-„\l + FyG0 1 + FvGe\ l " * L 2 

- Go 
7-ir I 1 + Fvt 

— argmin , 
B o J_„ 11 + FVG$ 

2 | S b | 2 4 > r . 
—dco 

\HA2 
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Now, this is no clear cut minimization of the distance Go — Go- The estimate ft" will 
be a compromise between making Go close to Go and making 1/(1 + FyGn\ (the 
model sensitivity function) small. There will thus be a "bias-pull" towards transfer 
functions that give a small sensitivity for the given regulator, but unlike (13.53) it 
is not easy to quantify this bias component . However, if the true system can be 
represented within the model set. this will always be the minimizing model, so there 
is no bias in this case. 

Parameterizations. The above results are independent of how the closed loop sys
tem is parameterized. A nice and interesting parameterization for this indirect iden
tification of closed loop systems has been suggested by Hansen. Franklin, and Kosut 
(1989)and Schrama (1991). It is based on so-called dual Youla-Kucera parameteri
zation. See Problem 13G.3. 

Indirect Identification with Nonlinear, Known Regulator. The indirect technique 
can also be applied when the regulator is non-linear, but with considerably more 
work: One will have to compute the model output y(t\9) = f{9. H, r') as a func
tion of the open loop dynamic parameters 9, the known regulator H. and the past 
reference signal values r\ and then form an output error criterion. 

Joint Input-Output Identification 

Assume that there possibly is a non-measured signal w in the regulator in addition 
to r\ 

u(t) = r ( r ) + w(f) - F,(q)y(t) (13.63) 

We assume that w is independent of r and v. The closed loop from v. w and r can 
be written similarly to (13.41) as: 

y = G 0 5 o r + SQV + GQSQW = Gcir + vj (13.64a) 

u = S^r — FySov + Sow = G r „ r +jv2 (13.64b) 

Identification methods that use models of how both y and u are generated are termed 
joint input-output techniques. This leaves a number of variants open, which fall into 
the following groups: 

1. Allow correlation between v\ and v2, and work with a model: 

= Qr + Jiv (13.65) 

2. Disregard the correlation in the noise sources and treat (13.64a) and (13.64b) 
as separate models. 

The first approach works also when there is no measurable reference signal r. It 
can be shown that this approach in essence is equivalent to the direct approach of 
estimating G in (13.40a) and Fy in (13.63). See Problem 13G.4. 

The second approach in turn has some variants, but they all have in common 
that the system dynamics is estimated as 
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where G r / and Gru are estimated from the two open loop systems (13.64). The case 
when spectral analysis estimates are used was described and analyzed by Akaike 
(1967. 1968). Various parametric approaches have also been suggested. 

From (13.64) we see that 

Gd = G0Gru (13.67) 

so cancellations should take place when (13.66) is formed. This will however not 
happen for the estimated models, due to the model uncertainties, so G will then 
be of unnecessarily high order. It is thus natural to enforce (13.67) in the model 
parameterization: 

Gci(q, 0 ) = G(q, 9)S(q, n ) . Gru(q, ©) = S(q, n ) . 0 = 

If we assume V\ and v2 to be independent white noises with variances 1 and 1/a, we 
obtain the following identification criterion for (13.64), (13.68): 

V ( 0 ) = £ | Y ( 0 - G(q.e)S(q,r})r(t)\2 + J2a\u(t) ~ S{q.n)it)\2 (13.69) 

The question still remains how to parameterize G and 5 . Some possibilities, including 
the so-called coprime factor method, are described in Van den Hof et.al. (1995b). 

The Two-Stage Method. We shall turn to the case where ot —> oc in (13.69). If a 
is very large, the second sum will dominate the criterion when r) is determined to 
give 5 . Since 0 only enters the first sum, and 5 is given from the second term, this 
procedure is the same as first estimating 5 in (13.64b) and then using 

«(/) = S(q,q)r(t) (13.70) 

in 
>•(/) = G(q,0)u(t) + v,(/) (13.71) 

to estimate G. This is the two-stage method suggested by Van den Hof and Schrama 
(1993). A variant with a non-causal S is described in Forssell and Ljung (1998d). Let 
us analyze the properties of the latter variant: Suppose S(r/) is parameterized as a 
non-causal F IR filter: 

M 

s(q. n) = Skq~k 

k=-M 

and take M so large that any correlation between u{t) and r(s), \s — tj > Af can 
be ignored. The model 

u(t) = S(q, q)r(t) + v 2 ( / ) 

can then be estimated using the least squares method giving 

u(t) = S(q. rj)r{t) 

such that the sequence u = u — it is uncorrelated with the sequence r . Notice that 
this holds irrespectively of the true relationship between r and u, which very well may 

0 
(13.68) 



4 4 0 Chap. 13 Experiment Design 

be non-linear\ (In this latter case u and r will be dependent , but still uncorrelated.) 
Suppose that the true system is given by (13.40a). Then, inserting u gives 

y = Goit + v + GQU 

where the "noise" sequence t' + GQU is uncorrelated with the "input" sequence u. 
Suppose now that we estimate G from (13.71) with a fixed noise model //*. From 
(8.71). which is valid if the noise and input are uncorrelated, we then have the model 
converging to G* = G(0*) where 

0* = a rgmin j | c 0 ( O - G(eito. 6>)|" <t>u(co)/ |/Y. (*''") | 2 d c o (13.72) 

Here the spectrum <J>̂  is fixed and known to us. So, if u is persistently exciting, we 
can consistently estimate Go by using a large enough model structure G&. In any 
case we can achieve an approximation to Go in a known frequency norm <J>,;/ ;/7X| 2 

that we can affect by a proper choice of noise model (prefilter). We have thus gained 
something over the direct identification method, which gives a possible bias as in 
(13.53). The price is the increased variance caused by the extra "noise'" G{)ii. Note 
again, that this result is valid even if the regulator is non-linear. 

Summarizing Remarks 

We may summarize the basic issues on closed loop identification as follows: 

• The basic problem with closed loop data is that it typically has less information 
about the open loop system—an important purpose of feedback is to make the 
closed loop system less sensitive to changes in the open loop system. 

• Prediction error methods, applied in a direct fashion! with a noise model that 
can describe the true noise properties still give consistent estimates and optimal 
accuracy. No knowledge of the feedback is required. This should be regarded 
as a prime choice of methods. 

• Several methods that give consistent estimates for open loop data may fail when 
applied in a direct way to closed loop identification. This includes spectral and 
correlation analysis, the instrumental variable method, the subspace methods, 
and output error methods with incorrect noise model. 

• If the regulator mechanism is correctly known, indirect identification can be 
applied. Its basic advantage is that the dynamics model G can be correctly es
timated without estimating any noise model, even when Go is unstable. How
ever, any error in the assumed regulator will directly cause a corresponding 
error in the estimate of G. Since most regulators contain non-linearities, this 
means that indirect identification has fallacies. 

• The joint input-output approach in the two-stage variant offers the advantage 
that model approximation in a known and user-chosen frequency weighting 
norm can be achieved (see (13.72)) at the price of higher variance. 
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13.6 O P T I M A L E X P E R I M E N T D E S I G N FOR HIGH-ORDER BLACK-BOX 
M O D E L S 

In this section we shall use the asymptotic variance expression (9.62) to design optimal 
experiments. In Chapter 12 we derived a general design criterion based on this 
expression. (12.32): 

JP(X) = j ^(co,X)dco (13.73a) 

l f f , v , A Q Cn (eo) - 2Re [Cl2(co)<t>ue(-co)\ + C 2 2(a>)<Ma>) 
W(co.X) = . — , <Dr(a>) (13.73b) 

A0<t>u(to)-\<S>ue(to)\-
Here, we dispensed with the scaling n/N, which is immaterial for the choice of 
experimental condition X . Recall that the variance expression is asymptotic in the 
model order. 

For design variables, we can work with different equivalent setups. An imme
diate choice is to design the input spectrum and the cross spectrum: 

X = {4>H, <J>«,} (13.74) 

A more explicit way is to work directly with the regulator and the reference signal 
spectrum: 

«(/) = -Fy(q)y(t) + r(t) 

and regard X = { F v , <&r} as the design variables. In this case we have 

Xo^u(co) - \<$>ue(co)\2 = *.o<br

u(a>) 

where 0>r

u is that part of the input spectrum that originates from the reference signal 
(see (13.44)). 

Criterion Involving G Only. 

We shall first consider the case where C12 = C22 = Oi that is the design criterion 
involves only the dynamics part G: 

Jp(X) = / C o v G w ( O G n ( a » ) r f f t ) - / T ^ C „ ( W ) ^ (13.75) 

This is no doubt the most common special case, where the quality of the noise model 
is of less importance. 

We shall minimize this design criterion, subject to constrained variance of the 
input and the output in the general form 

aEu2 + pEy2 < 1 (13.76) 

Here, we assume that a and 0 are chosen so that it is at all possible to achieve 
this constraint with the given disturbances. The solution is given by the following 
theorem. 
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Theorem 13.3. Consider the problem to minimize Jp in (13.75) with respect to the 
design variables X = {Fy. <&r] under the constraint (13.76). This is achieved bv 
selecting the regulator u(t) — — Fv(q)yU) that solves the standard L O G problem 

F x

o p t = a r g m i n [ a £ « 2 + 0 £ v 2 ] , y = G 0 w + H{)e (13.77) 

The reference signal spectrum shall be chosen as 

1 + Go(eho)FT(ei<!')? 
^pt(co) = nj4>r(o>)Cu(<o) , ' =±- (13.78) 

v ' a + p\Go(e>«)\2 

where fx is a constant, adjusted so that equality is met in (13.76). 

Proof. We first establish the following straighforward result. For two positive func
tions A(t) and X(t) we have that 

f A(t) , f 
The integral / „,^dt with constraint / X{t) < K 

J XU) 

K 
:i3.79) 

i s minimized by X(t) = fiy/A(t). ji = 
/ </Mtjdt 

To prove this we have by Schwarz's inequality 

-> 

^ ) d t ] = \ / ^ } ^ ) d t 

" J X(t) J J X(t) 

[A(t). [f^AUJdt]2 

or / dt > — — 
J X(t) ~ K 

which gives (13.79). 
For the closed loop we have (see (13.42)-( 13.44) and (8.75)) 

1 + Fy{q)GAq) 

<t>y(to) = |G 0 | 2 |So | 2 <M<y) + |S0|2<J>,M (13.80) 

<t>r

u = \S„\2<i>r. 4>e
u = | F v | 2 | 5 o | 2 0 „ . \4>„M\2 = 
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This means that it is convenient to use 

x = {<*>;;, Fy] ( 1 3 . 8 I ) 

as design variables. With this, we can rewrite the constraint (13.76) as 

1 > J a<t>u(a>) + p<by(co)dco 

and the criterion is 

min / — C \ \ d a ) 

The criterion does not depend explicitly on Fy, and is a question of making <Pr

u as 
large as allowed. From the constraint we see that this means that Fy should be chosen 
by solving the L Q problem 

• 1 • V rr ^vdo) = min E(au2 + py2) 
. n | l -I- G 0 r v | - F» 

for v(f) = G 0 ( g ) w ( O + u(t) = -*>(?)>'(') 

Define the constant y as 

-opt,? 
y = l - / : ——d>,,rfct> 

7-, |1 + G 0 F v

o p , | 2 

which is assumed to be positive. 
The minimization problem now reads 

— dco. with / (or + P\Go\2)<&r

udco < y 

In (13.79) we take X = (a + p\G0\2Wu) and A = <b v Cn (a + p\G0\2) which gives 

V̂« + / * | G 0 f 

which, via (13.80), concludes the proof. • 

The theorem tells us a number of useful things: 

• The optimal experiment design depends on the (unknown) true system and 
noise characteristics. This is the normal situation for optimality results, and in 
practice it has to be handled by using the best prior information available about 
the svstem. 
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• If we have a pure input power constraint, Eir < K and the system is stable, 
then it is always optimal to use open loop operation, Fy = 0. The input 
spectrum is then proportional to V ^ i - C n . which shows that the input power 
should be spent in frequency bands where there is substantial noise (<£>, large) 
and/or where a good model is particularly important {Cu large). 

• If the constraint involves any limitation on the output variance (ft > 0), then it 
is always optimal to use closed loop experiments. In these cases the regulator 
does not depend on the criterion function C\\, but only the constraint and the 
system. 

Input Variance Constraint Only 

Consider now the situation were also the noise model quality enters the criterion 
(C:2(a;) > 0) , but there is no cross term (C\2 — C2\ = 0) . Suppose also that the 
constraint incolves the input variance only. That is, we have 

XQCU(CO) + C22(LO)$>U{CO) 

X = {<PU. <l>ue} (13.82b) 

Eu1 < K (13.82c) 

. —— v i , • <t>v(aj)dco (13.82a) 
•IT 

Since the design variable $> u e does not enter the constraint, we realize immediately 
that the opt imum choice of this variable is <$>ue = 0, since this minimizes the integrand 
in the criterion pointwise. This means that open loop operat ion is optimal. This, in 
turn, means that the variance of H is not affected by the design. In other words, the 
integrand reads 

fryCn <Et-C22 

so this case is solved by Theorem 13.3: The optimal design is an open loop experiment, 
with an input with spectrum 

= Py/<S>vCn (13.83) 

where p is adjusted so that the input power constraint is met. 
Other cases of the general problem (13.73) are treated in the Problem Section, 

and in the references mentioned in the bibliography. 

13.7 CHOICE OF S A M P L I N G INTERVAL A N D P R E S A M P L I N G FILTERS 

The procedure of sampling the data that are produced by the system is inherent in 
computer-based data-acquisition systems. It is unavoidable that sampling as such 
leads to information losses, and it is important to select the sampling instances so 
that these losses are insignificant. In this section we shall assume that the sampling 
is carried out with equidistant sampling instants, and we shall discuss the choice of 
the sampling interval T. 
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Aliasing 

The information loss incurred by sampling is best described in the frequency domain. 
Suppose that a signal s{t) is sampled with the sampling interval T: 

sk = s(kT), k = 1 . 2 . . . . 

Denote by cos = 2TT/T the sampling frequency, and then cos = cos/2 is the Nyquist 
frequency. Now. it is well known that a sinusoid with frequency higher than coy 
cannot, when sampled, be distinguished from one in the interval [—a>,\, cos]'-

With \co\ > co\ there exists a co: —cos <co< co.\ so that 

cos cokT = cos<J>AT 
. ._ . _._ k = 0 , 1 , . . . (13.84) 

sm cok I = sin cok I 

This follows from simple manipulations with trigonometric formulas. Consequently, 
the part of the signal spectrum that corresponds to frequencies higher than cos will be 
interpreted as contributions from lower frequencies. This is the alias phenomenon; 
the frequencies appear under assumed names. It also means that the spectrum of the 
sampled signal will be a superposition of different parts of the original spectrum: 

DC 

<t>{p(co) = Y , + r c ° s ) (13'85> 

Here 4>£ is the spectrum of the continuous-time spectrum, defined by (13.36) and 

<J>5 7 ) (co) is the spectrum of the sampled signal: 

_ ! * 
RT(tT) = Esksk+l = lim - Y) Es(kT)s(kT + IT) 

k-

< f > f V ) = T ] T RT(tT)e-i0)(T 

k=l 
(13 .86) 

£=-oc 

The effect of (13.85) is often called folding: the original spectrum is "folded" (and 
added) to give the sampled spectrum. 

Antialiasing Presampling Filters 

The information about frequencies higher than the Nyquist one is thus lost by sam
pling. It is then important not to make bad worse by letting the folding effect distort 
the interesting part of the spectrum below the Nyquist frequency. This is achieved 
by a presampling filter ic(p): 

sF(t) = K(p)s(t) (13.87) 
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{p is here the differentiation operator) . Analogous to the formulas of Theorem 2.2. 
the spectrum of the filtered signal Sf(t) will be 

<$>c

SF(co) = \K(ico)\2 &5(to) (13.88) 

Ideally, K(ICO) should have a characteristic so that 

\K(iO))\ = 1, \C0\ < COy 
(13.89) 

|tf(ia>)| = 0, \co\ > cos 

This can be realized only approximately. In the ideal case (13.89), we would have 

V (co) = \ ^ ( ( 0 ) ' W " M 

^'F™ 10 . CO > \Q>N\ 

which means that the sampled signal 

s[ = sF(kT) 

will have a spectrum, according to (13.85), 

<t>{

s

T

F

](co) - ^ (w) . -cos < co < cos (13.90) 

With the filter (13.87) and (13.89) we thus achieve a sampled spectrum with no alias 
effects. Therefore, this filter is also called an antialiasing filter. According to what 
we said, such a filter should always be applied before sampling if we suspect that the 
signal has nonnegligible energy above the Nyquist frequency. 

Noise-reduction Effect of Antialiasing Filters ^ 

A typical situation is that the signal consists of a useful part and a disturbance part, 
and that the spectrum of the disturbances is more broadband than that of the signal. 
Then the sampling interval is usually chosen so that most of the spectrum of the useful 
part is below cos • The antiasiasing filter then essentially cuts away the high-frequency 
noise contributions. Suppose we have 

s(t) = m(t) + v(t) 

where m(t) is the useful signal and i»(/) is the noise. Let 4>f

r(o>) be the spectrum of 
v(t). The sampled, prefiltered signal then is 

s[ = mk + v [ , sk

F = sF(kT) 

where the variance of the noise is 

<t>{JF

}(co)dco = / *r

lF(io + ra>s)da> 
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From this expression we see how the noise effects from higher frequencies are folded 
into the region [—a>;v. &>x] and are thus contributing to the noise power. By elimi
nating the high-frequency noise by an antialiasing filter (13.89). the variance of vk

F 

is thus reduced by the term 

] T f ®c

v(o) + rcos)d(o = f <$>c

v(to)dco 
r 3 _0 J-(t)\ J\(i)\>a)<ii 

compared to no presampling filter at all. This is a significant noise reduction if the 
noise spectrum has considerable energy above the Nyquist frequency. 

Antialiasing Filters during Data Acquisition 

Let us comment on the role of the antialiasing filters in system identification ap
plications. Suppose first that the system is not under sampled-data control so that 
the continuous-time input is not piecewise constant. This may be the case when we 
collect data from a process in normal operation. If the input then is band limited 
and has no energy above the frequency COB- this means that all useful information in 
the output also lies below COB. provided the process is linear. We could then apply 
an antialiasing filter with cutoff frequency COB and sample with T = it j COB with no 
loss of information. If the input is not bandlimited. the antialiasing filter will destroy 
useful information at the same time as the noise is reduced. If T is chosen so that 
the Nyquist frequency ( = the cutoff frequency for the filter) is above the bandwidth 
of the system, the loss of useful information is insignificant. Notice that in this case 
the antialiasing presampling filter should be applied also to the input signal. 

Consider now the case that the input is piecewise constant over the sampling 
interval. Then, clearly, the sampled input equals the piecewise constant values, and 
no presampling filtering should be applied to this sequence. The stepwise changes in 
the process input do. though, contain high frequencies that could travel through the 
process to the output. An antialiasing filter applied to the process output could thus 
distort useful information. There are three ways to handle this problem: 

1. Sample fast enough that the process is well damped above the Nyquist fre
quency. Then the high-frequency components in the output that originate from 
the input are insignificant. 

2. Consider the antialiasing output filter as part of the process and model the 
system from input to filtered output (this might increase the necessary model 
orders, though). 

3. Since the antialiasing filter is known, include it as a known part of the model, 
and let the predicted output pass through the filter before being used in the 
identification criterion [this approach is illustrated in (13.95) and (13.96)]. 

Solution 1 is the most natural; it is conceptually depicted in Figure 13.8. 

Remark: For control purposes it might be a good idea to apply a low-pass filter 
to the piecewise constant sampled-data input sequence. This will also be helpful for 
solution 1. 
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B N 
Figure 13.8 Sampling depicied in the frequency domain. Solid line: frequency 
characleristics of the process: dashed line: noise spectrum: dotted line: Frequency 
characteristics of the antialiasing filter. A': the Nyquist frequency. B: Band-width. 

Some General Aspects on the Choice of T and N 

Tf the total experiment time 0 < t < T\- is limited, but the acquisition of data within 
this time is costless, it is clearly advantageous from an information theoretic point of 
view to sample as fast as possible. Slower sampling leads to data sets that are subset* 
of the maximal one. and hence is less informative. The cost effectiveness of the 
new information will, however, typically decrease as we sample faster and faster (cf. 
Figure 13.9). In this idealized case, where adding new data points is costless, there are 
only two aspects that may prevent us from sampling as fast as technically possible: 
One is that building sampled models with very small sampling interval compared 
to the natural time constants is a numerically sensitive procedure (all poles cluster 
around the point 1). See Problem 13G.1. The other is that the model fit may be 
concentrated to the high-frequency band (see the following discussion on bias). The 
latter problem should be dealt with by prefiltering the data so as to redistribute bias, 
as explained in Section 14.4. The former problem should probably be handled b\ 
fitting continuous-time models directly to the fast sampled data with models of the 
type (2.23). 

Another idealized situation is that the experiment time 0 < t < Ts as such 
is costless, and all cost is associated with acquiring and handling the data. We could 
then settle for collecting, say. N data and select T (then T\ = N T) so that the data 
set becomes as informative as possible. A T that is much larger than the interesting 
time constants of the system would then yield data with little information about the 
dynamics. A small 7", on the other hand, would not allow for much noise reduction, 
and the data might be less informative for that reason. A good choice of T should 
thus be a trade-off between noise reduction and relevance for the dynamics. 

If the model should be used for control purposes, certain other aspects will 
enter. The sampling interval for which we build the model should be the same as for 
the control application (unless we want to recalculate it from one sampling interval 
to another) . A fast sampled model will often be nonminimum phase (Astrom and 
Wittenmark, 1984), and a system with dead time may be modeled with delay of many 
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sampling periods. Such effects may cause problems for the control design and will 
therefore influence the choice of T. 

For the choice of N, it is useful to have the asymptotic result (9.92) in mind. It 
describes how small the model order to sample size ratio has to be in order to achieve 
a certain accuracy for a given design and given noise spectrum. 

Bias Considerations 

We know from Chapter 8 that the fit between the model transfer function and the 
true one is related to a quadratic norm [see (8.71)]: 

\G{)(e'wT) - G(e,<oT.9)\" Q(co.9)dto (13.91) 
-.T/r 

Here Q{to. 9) is the filtered input spectrum divided by the noise spectrum: 

Q{co,9) = 
\H{eiaiT.9)\ 

We also marked where the T-dependence enters. As T tends to zero, the frequency 
range over which the fit is made in (13.91) increases. Normally, though, the natural 
dynamics of the system and the model are such that Go(e'<oT) — G{el(vT. 9) is well 
damped for high frequencies so that the contribution from higher values of co in 
(13.91) will be insignificant even if the input is broadband. An important exception 
is the case where the noise model is coupled to the dynamics, as in the A R X structure 
(4.9), where H{ei<t)T) = \/A{eiioT). Then the product 

G0(ei<oT) - G(eib)T,9) 

\H(e^T.9)\2 

does not tend to zero as co increases and the fit in (13.91) is pushed into very high 
frequency bands as T decreases. This may lead to quite curious results, as illustrated 
in Wahlberg and Ljung (1986). In such cases, very fast sampling is thus undesirable, 
even apart from the numerical difficulties that may arise. The effects can be counter
acted by proper prefiltering, as described in Section 14.4. In any case, it is important 
to keep in mind the influence of T on the bias distribution. 

Variance Considerations 

The variance of an estimated parameter based on a given number of data will depend 
on the average information per sample. This, as mentioned previously, is a trade-off 
between the noise reduction that slow sampling may offer and the poor information 
about the dynamics that slowly sampled data contain. To pinpoint this trade-off. let 
us consider a simple example. 
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0 = - -L<1 _ e-aT) + _L(1 _ e-aT)2^ (13.96) 

Example 13.4 Optimal Sampling 

Consider a continuous-time system 

1 
>'(') = z : u(t) + r(0 

1 + pr 
or 

rx(t) + x(t) = u(t) 
(13.92) 

y(f) = jc(f) + v(t) 
where t'(?) is a very broadband noise (== "almost white noise") with variance A / Tr,. 
where 1 / To is its bandwidth [i.e.. To is the smallest sampling interval under which the 
sampled version of v(t) is truly white]. As a simple presampling filter, we employ 
an integrator 

1 fkT 

yk = y(kT) = - / y(t)dt = I(ftr) + M * n (13.93) 
' Jt=(k-l)T 

Here x(kT) is the mean of the useful signal x(t) over the sampling interval and 
{vj(kT)) is a sequence of independent random variables with variance k/T (if 
T > To). We use an output error model set 

x(kT + T) = e'aTx(kT) + (1 - e-aT)uikT) (13.94a) 

y(kT + 7/1*7/, a ) = * ( * 7 / + 7 / ) = ? ( 1 * T K(kT) (13.94b) 
— 

Here, the model parameter a corresponds to 1/r with r as in (13.92). We let the 
input signal be a sinusoid (piecewise constant) of frequency coo'. 

u(kT) = a • cos(cookT) 

When calculating the predictor (13.94), we ignored the presampling filter, which may 
be reasonable when 7/ is small enough. To allow for a fair t reatment also of larger 
values of 7/, we could take the presampling filter (13.93) into account and let the 
prediction be 

d 
—x(t,a) = ax(t,a) + au(t) (13.95a) 
dt 

yT(kT + T\kT,a) = - / x(t,a)dt 
1 Jt=kT 

Pq - e-Qj \\ - (\jaT)(\ - e~aT)] 
= l- S-u(kT) (13.95b) 

q - e~al 
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(Notice that the second term in the numerator is ^ aT/2 for small 7*.) The asymp
totic variance of <5.v is now given by Theorem 9.1 as 

, 1 VarFWr) 
E(aN - l/r)2 - - = (13.97 

N E{ifT{t))2 

where 

V a r F r ( 0 = £ and if,T(t) = ^-yT(kT + T\kT, a)\a={1/T) 

T da 

For the simplified expression (13.94), we have 

Te-T/T(q - 1) 
iMO = ~ jr—r-aCOSCOQt 

(q - e~I/T)z 

and 

We thus have 

— , , T2e~2T/T(2 - 2cosa> 0 T) 
EWT{t))2 = a2 i ( i 3 . 9 8 ) 

[l - 2e~T</T cosCOQT + e~2T/r] 

VaraN = r (13.99) 
NT • E WT(t))2 

This expression tends to infinity as 

T3 

as T increases to infinity; this is the effect of poor information about r with slow 
sampling. Also, some calculations reveal that it tends to infinity as 1 / T when T 
tends to zero; this is the effect of poor noise rejection at fast sampling. We have thus 
formalized the earlier mentioned trade-off. 

The exact predictor (13.96) gives similar, but more complicated expressions. In 
Figure 13.9 the expression (13.99) and the exact counterpart are plotted as funtions 
of T for coo = l / r . The figure reveals two things: 

1. The optimal choice of sampling interval lies around the time constant of the 
system. 

2. It is far worse to use a too large T than a too small one: T = lOr gives a 
variance more than 10 5 times the optimal one, while T — O.lr gives a variance 
that is less than 10 times the optimal one. • 
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variance 

10 

1 

0 
0 T / 2 T T 

Figure 13.9 Variance of a,v plotted as a function of the sampling interval 
7"(wi, = 1 / T ) (1.) Expression 03.99). (2.) Using (13.96). 

Conclusions 

Let us summarize the discussion on sampling rates as follows. 

• Very fast sampling leads to numerical problems, model fits in high-frequency 
bands, and poor returns for extra work. 

• As the sampling interval increases over the natural time constants of the system, 
the variance increases drastically. 

• Optimal choices of T for a fixed number of samples will lie in the range of 
the time constants of the system. These are. however, not exactly known, and 
overestimating them may lead to very bad results. 

All these aspects point to the advice that a sampling frequency that is about 
ten times the bandwidth of the system should be a good chbice in most cases. Note 
that this discussion concerns the sampling rate chosen for the model building. With 
"cheap" data acquisition we can always sample as fast as possible during the experi
ment and leave the actual choice of T for later by digitally prefiltering and decimating 
the original data record. 

Careful experiment design, yielding data with good information is the basis of a 
successful identification application. In this chapter we have discussed how to design 
good experiments. The leading principles are as follows: 

• Let the experimental condition resemble the situation for which the model is 
going to be used. 

• Identifiability is secured by persistently exciting input and not allowing too 
simple feedback mechanisms (Theorem 13.2). 

13.8 S U M M A R Y 
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• To minimize the parameter variance with respect to the experiment design 
variables, the expression 

shows that interesting parameters must have a clear effect on the output pre
dictions. 

• Periodic inputs have certain advantages, in particular, for single input systems. 
Sum of sinusoids and PRBS signals may then be good choices. To make use of 
the advantages, an integer number of periods should be applied. 

• For systems operating in closed loop, the basic choice of method is to apply a 
prediction error method in a direct fashion, using a flexible noise model. 

• To minimize a quadratic frequency-domain fit of the estimated transfer function 
G,\(e'(°) in a (high order) linear model set, use, in open loop. 

where C\\ is the weighting function in the criterion of fit (Theorem 13.3). 

• A suitable choice of sampling frequency lies in the range of ten times the guessed 
bandwidth of the system. In practice, it is useful to first record a step response 
from the system, and then select the sampling interval so that it gives 4-6 
samples during the rise time. 
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<P„(o>) -~ y/^Aco) • Cn(o>) 
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Anderson and Gevers (1982). Caines and Chan (1975). and Sin and Goodwin (1980). 
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/ 
( 

13.10 PROBLEMS 

13G.1 Effects of round-off errors: Suppose that the data are measured with a precision of 
10 bits (which is quite reasonable for typical AJD converters) and suppose that The 
bandwidth of the system (the highest frequency of interest) is cog- Follow the advice 
of Section 13.7 and choose the sampling frequency a>, = 10wg. What is the lowest 
frequency that can be adequately modeled with the finite precision data? (Hint: A 
natural mode with time constants behaves, approximately, as 

y(t + T) = ( 1 - ~\ y(f) + -u(t) 

if T <JC T . where T is the sampling interval T = 2;r/&>,-.) Answer: Lowest frequency 
* 0.01a)fl. Notice the implications on how wide (i.e., narrow) are the frequency range* 
that can be adequately modeled! Reference: Goodwin (1985). 

13G.2 Singular criterion matrix: Suppose that the criterion matrix C(co) in (12.6) and 
(13.73) is singular, and rewrite it 

I M{e-'w) 1 
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Show that, in (13.73b). 

S(a>) • <E, (co) 

A 0 

1 + 
\X0M(e,w) - $ „ , M | 

A0<j>„m - \<t>ue(to)\: 

Conclude from this that the criterion 

min / *l>(w. 

subject to any constraint is minimized by the closed-loop design 

Miq) 
u(0 = v(r) + r(t) 

( 1 3 . 1 0 0 ) 

(13.101) 
G0(q)M(q) + H^qY 

for any extra input r(t) [including r(i) = 0 ] . provided it is an admissible {u(t)}. That 
is. (13.101) gives (he global minimum of (13.100) w.r.t X in (13.73) (reference: Ljung, 
1986). 

13G.3 Youla-Parameterization is a way of parameterizing all stabilizing regulators for a 
given systems—or equivalently parameterizing all systems that are stabilized by a 
given regulator Fy. (See. e.g.. Vidyasagar, 1985.) In the SISO case it works as follows. 
Let FY = X/Y (X. Y stable, coprime) and let Gnom = N/D (N. D stable, coprime) 
be any system that is stabilized by FY. Then, as R ranges over all stable transfer 
functions, the set 

G : G(q.6) = 
N(q) + Y(q)R(q 11] 

.9)1 D(q) - X(q)R(q. 

describes all systems that are stabilized by Fy. This idea can now be used for identifi
cation (see. e.g.. Hansen. Franklin, and Kosut. 1989. Van den Hof and Schrama. 1991): 
Let it and y be input-output data from a plant controlled by the regulator Fy. Define 
X. Y. i\. D as above and let 

Z(t) = y(f) - L(q)N(q)Y(q)r(T) 

x(t) = L(q)Y2(q)r(t) 

where L = 1/(YD + NX). which is stable and inversely stable(since Gnom isstablized 
by Fy). Then estimate R(q.9) from the open loop identification problem 

Z(t) = R(q.0)x(t) + H(q.9)e(t) (13.102) 

Use the resulting estimate R in (g to find the corresponding estimate G of the transfer 
function from u to y . Show that this method is the same as applying indirect identifi
cation for the model parameterizat ion (g. The main advantage of this method is that 
the obtained estimate G is guaranteed to be stabilized by Fy. 

13G.4 Consider the joint input-output model (13.65) with the parameterization 

g(q.9) = 

5i(q,9) = 

1 

1 + G(q.0)Fy(q.9) 

1 

1 + G(q.9)Fy(q.9) 

G(q.9) 

H(q.9) G(q.9) 

~F(q.9)H(q.9) 1 
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This is the structure we obtain if we think in terms of the regulator (13.63) and take 

v — \e t r ] . Assume that the covariance matrix of v is . AppK the 
L 0 J 

multivariable prediction error /maximum likelihood method to this parameteri /dt ion 
and show that the criterion becomes 

1 V 

V . v ( Z v . 0 ) = — Y ] l t f - V 0 ) ( v ( O - G(q.0)u(t))]2 

1 , V 

+ — Vl"<0 ~ rit) + Mtf .0)v</>] : 

A - ' 
" ! = \ 

If G and Fy are independently parameterized, this is the same as estimating G b \ the 
direct method and separately determining F v from (13.63). 

13E.1 Suppose that the signal u(t) is persistently exciting of order n. Give a condition on the 
stable filter L(q) that guarantees that uF{t) = L(q)u{t) is also persistently exciting 
of order n. 

13E.2 Consider the A R X structure 
A(q)y(t) = B(q)u{t) + e(t) 

where the degree of B is Show that an open-loop input that is persistently exciting 
of order nt is sufficiently informative with respect to this set. regardless of the order 
of A, provided the process noise is persistently exciting. 

1 3 E 3 Consider a model structure 
yit) = G(q.p)u(t) + H{q,r))eU) 

with independent parametrizat ion of G and H. Show that it is not possible to affect 
the accuracy of /) in an open-loop experiment. 

13E.4 Consider the F IR model structure j 
y(t) - b\u(t - 1) -I- . . . + bmu(t - m) + e(t) 

Determine the input spectrum that minimizes det P»(X) subject to the constraint 
Eir(t) < 1. 

13E.5 Consider the model structure 
y ( / ) + ay(t - 1) = buit - 1) + e(t) 

and determine the open-loop input spectrum that minimizes det Po{X) subject to 
Eu2(t) < 1. What is the optimal input in case b is fixed to the value 1? Assume that 
the true system is given by 

y(t) - 0.5y(/ - 1) = u(t - 1) + <?o(0 

where e$(t) is white noise. 
13E.6 Suppose we are interested in the dynamics from propeller velocity to speed of a ship. 

We may measure both these signals but may only affect the torque of the propeller 
axis from the engine. This axis is also affected by forces from the water resistance thai 
depend on the ship's speed in a complex manner. Discuss the identifiability of the loop 
from propeller velocity to ship speed based on such experiments. 
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L3E.7 As mentioned in the text, it is not straightforward to use PRBS for multi-input systems. 
One idea for a two-input system is as follows: Let sM = s(t), t = 1, M be a 
maximum length {M) PRBS signal. Make an identification experiment over a multiple 
of 2M samples by letting u\ = Hi = sM for the first M samples, and it\ = - h i = sM 

for the next M samples. Show that this gives the same input covariance matrix as 
exciting one input at a time with >j2sM, i.e.. U\ = y/lsM. u2 = 0 for the first M 
samples and then U\ = 0 , = >/2sM for the next M samples. 

13T.1 Minimize Jp{X) in (13.73) with respect to <t>u with <fV(a>) = 0. subject to the con
straint Ey-(t) < a. Assume that the true system is given by 

y(t) = G0(q)u(t) + HQiq)e0(t) 
13T,2 Experiment design for minimum variance control: Suppose that the intended model 

application is minimum variance control. Use Problem 13G.2 to compare the perfor
mance degradation J{X) obtained with an optimal open-loop input to that obtained 
for the overall optimal input (reference: Gevers and Ljung. 1986). 

13D.1 Consider the time-varying system 

y(f) = Gt(q)u(t). a l l / 

such that 

Gt(q) = Gi(q). kN < t < kN + aN 

Gt(q) = G2{q). kN + aN < t < (k + l)N 

Let the spectrum of w be <t>K(<y). Show that, as N increases, the spectrum of y becomes 

<Mo>) = aGl(ei°')Qu(<o)Gl(e-ia) + ( 1 — a ) C : ( ^ ) < D ^ ) G [ ( f ^ ) 
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PREPROCESSING DATA 

When the data have been collected from the identification experiment, they are not 
likely to be in shape for immediate use in identification algorithms. There are several 
possible deficiencies in the data that should be at tended to: 

1. High-frequency disturbances in the data record, above the frequencies of in
terest to the system dynamics 

2. Occasional bursts and outliers, missing data, non-continuous data records 
3. Drift and offset, low-frequency disturbances, possibly of periodic character 

It must be stressed that in off-line applications, one should always first plot the data 
in order to inspect them for these deficiencies. In this section we shall discuss how 
to preprocess the data so as to avoid problems in the identification procedures later. 

14.1 DRIFTS A N D D E T R E N D I N G 

Low-frequency disturbances, offsets, trends, drift, and periodic (seasonal) variations 
are not uncommon in data. They typically stem from external sources that we may 
or may not prefer to include in the modeling. There are basically two different 
approaches to dealing with such problems: 

1. Removing the disturbances by explicit pretreatment of the data 

2. Letting the noise model take care of the disturbances 

The first approach involves removing trends and offsets by direct subtraction, 
while the second relies on noise models with poles on or close to the unit circle, 
like the A R I M A models (1 for integration) much used in the Box and Jenkins 
(1970)approach. 

458 
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Signal Offsets 

We shall illustrate the two approaches applied to the offset problem. The standard 
linear models that we use. like 

A(q)y(t) = B(q)u(t) + vit) (14.1) 

describe the relationship between it and v. That covers the dynamic properties, i.e.. 
how does a change in u cause changes in y . as well as the static properties, i.e.. the 
static relationship between a constant u(t) = 17 and the resulting steady-state value 
of y ( / ) . say y: 

Ml)y = B(l)Ji (14.2) 

In practice, the raw input-output measurements, say « ' " ( / ) . y ' " ( r ) , are collected and 
recorded in physical units, the levels of which may be quite arbitrary. The equation 
(14.1) that describes the dynamic properties may therefore have very little to do 
with the equation (14.2) that relates the levels of the signals. In other words, (14.2) 
is quite an unnecessary constraint for (14.1). There are at least six ways to deal with 
this problem: 

1. Lety ( f ) andu ( r ) be deviations from a physical equilibrium: The most natural 
approach is to determine the level y that corresponds to a constant um(t) = u 
close to the desired operating point. Then define 

y(t) = ymit) - y (14.3a) 

it(t) = um{t) - u (14.3b) 

as the deviations from this equilibrium. These translated variables will auto
matically satisfy (14.2). making both members equal to zero, and (14.2) will 
thus not influence the fit in (14.1). This approach emphasizes the physical 
interpretation of (14.1) as a linearization around the equilibrium. 

2. Subtract sample means: A sound approach is to define 

.V s 

f=i /=i 

and then use (14.3). If an input u'"(t) that varies around w leads to an output 
that varies around y. then (w, y) is likely to be close to an equilibrium point 
of the system. Approach 2 is thus closely related to the first approach. 

3. Estimate the offset explicitly: One could also model the system using variables 
in the original physical units and add a constant that takes care of the offsets: 

A(q)ym(t) = B(q)u'"(t) + a + v(t) (14.5) 
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Comparing with (14.1) to (14.3), we see that cc corresponds to A(\)y — B(\)Ti 
The value a is then included in the parameter vector 6 and estimated from 
data. It turns out that this approach in fact is a slight variant of the second 
approach. See Problem 14E.1. 

4. Using a noise model with integration ( = differencing the data): In (14.5) the 
constant a could be viewed as a constant disturbance, which is modeled as 

where 8(t) is the unit pulse at time zero. The model then reads 

m 1 
A{q) (1 - q x)A(q) ' 

where w(t) is the combined noise source a8(t) + v(t) — v(t — 1). The off
set a can thus be described by changing the noise model from l/A(q) to 
1/ [(1 — ) A (</)]. According to what we noted in (7.14) this is equivalent to 
prefiltering the data through the filter L(q) = 1 — q~l, that is, differencing the 
data: 

yf(t) = L(q)ym(t) = ym(t) - ym(t - 1 ) 
(14.8) 

w'£(0 = L(q)um(t) = um{t) - um(t - 1) 

5. Extending the noise model: Notice that the model (14.7) becomes a special 
case of (14.1) if the orders of the A and B polynomials in (14.1) are increased 
by 1. Then a common factor 1 — q~l can be included in A(q) and B(q). This 
means that a higher-order model, when applied tp the raw data ym. will 
converge to a model like (14.7). 

6. High pass filtering: Differencing data is a rather drastic filter for removing 
a static component. Any high-pass filter that has gain (close to) zero at fre
quency zero will have the same effect. See Section 14.4 for further discussion 
of prefiltering. 

Evaluation of the Approaches 

In an off-line application with offsets, the approach to recommend would be the first 
one or, if a steady-state experiment is not feasible, the second one. Estimating the 
offset explicitly (approach 3) is an unnecessarily complicated way to subtract the 
sample mean. Differencing the data as in (14.8) corresponds to a prefilter (inverse 
noise model) that has a very high gain at high frequencies. According to (8.71). this 
will push the model fit into a high-frequency region, which is unsuitable for many 
applications. Approach 5 has the additional drawback that more parameters have to 
be estimated. Approach 6 may be a quite useful alternative, especially if the offset 
is slowly time-varying. 
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14.2 OUTLIERS A N D M I S S I N G DATA 

In practice, the data acquisition equipment is not perfect. It may be that single values 
or portions of the input-output data are missing, due to malfunctions in the sensors 
or communication links. It may also be that certain measured values are in obvious 
error due to measurement failures. Such bad values are often called outliers, and 
may have a substantial negative effect on the estimate. Bad values are often much 
easier to detect in a residual plot (see Section 16.6). 

Example 14.1 Outliers 

Consider simulated data from the system 

v(/) - 2.85y(r - 1) + 2.717v(r - 2) - 0.865v(/ - 3) 
(14.9) 

= u(t - l ) + « ( / - 2 ) + K ( f - 3 ) + e ( / ) + 0 . 7 e ( / - l ) + 0.2«?(f - 3 ) 

The values y(313) y(320) were then artificially changed to zero. The resulting 
output plot is shown in Figure 14.1, Although visual inspection shows a possible glitch 
around these values, no serious errors seem to be at hand. An A R M A X model with 

It is especially important to remove offsets {trends and drifts) when output error 
models are employed. The discrepancy in levels will then be dominating the criterion 
of fit, and the dynamic properties become secondary. For methods that use flexible 
noise models (such as the least-squares method) , the problem is less pronounced, 
since the effects of approach 5 will automatically de-emphasize the importance of 
signal levels. 

Drift, Trends, Seasonal Variations 

Methods to cope with other slow disturbances in the data are quite analogous to the 
approaches we discussed previously. Drifts and trends can be seen as time-varying 
equilibria. Straight lines or curve segments can be fitted to the data in the same 
manner as the constant offset levels in (14.4). and deviations from these time-varying 
means are considered. For seasonal variations, several techniques of this character 
have been developed for economic time series. Periodic signals are adjusted to data, 
and then subtracted. See. e.g.. Box and Jenkins (1970). 

Another approach would be to difference the data, analogously to (14.8) or, 
equivalently. to use A R I M A model structures, which include an integrator in the 
noise model. Alternatively, the noise model could be given extra flexibility to find 
the integrator or a complex pair of poles on the unit circle to account for periodic 
variations. In Goodwin et.al. (1986)a comprehensive discussion of the latter problem 
is given. With some knowledge of the frequencies of these slow variations, a better 
alternative may be to high-pass filter the data. This has the same effect of removing 
off-sets and slow drifts, but does not push the model fit into the high frequency range 
as differencing does. See Section 14.4 for further comments on this. 
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Output data 
3000 , . , . 

0 200 400 600 

Residuals 
200 

0 

-200 

-600 0 200 400 600 
Figure 14.1 Data with outliers. Upper plot: the output signal. Lower plot: The 
residuals from model 0\. 

the correct orders is estimated giving the estimate 0\. The residuals (prediction 
errors) from this model are also shown in Figure 14.1. Now. there is no doubt about 
the data problems around t = 318. Another model was then estimated based only 
on the first 300 data points. This is denoted by 92. Finally, the whole data record 
was used to estimate an A R M A X model applying a robust norm in the criterion 
according to (15.9)—(15.10). That gave the estimate 0 3 . The estimates of the .4- and 
B-polynomials are summarized as follows, where 9Q denotes the true values: 

00 - 2 . 8 5 0 0 2.7170 - 0 . 8 6 5 0 1.0000 l.(X)00 1.0000 

0i -2 .8523 2.7200 - 0 . 8 6 6 8 -0 .1669 2.6418 0.4159 

92 -2 .8504 2.7165 - 0 . 8 6 5 2 0.9726 1.0496 1.0221 
- 2 . 8 5 5 7 2.7267 - 0 . 8 7 0 1 1.0250 1.0185 0.8842 

(14.10) 

We see that the few outliers have made the estimate of the B -polynomial in 9\_ 
quite bad. It should be added that the estimates "are aware" of this: The esti
mated standard deviations of the 3 B-parameters in 9\ are given as 0.9997. 1.7157. 
and 1.1421, while those of 92 have standard deviations 0.0602, 0.0750, and 0.0611. 
respectively. • 

To deal with outliers and missing data, there are a few possibilities. One is to 
cut out segments of the data sequence so that portions with bad data are avoided. 
The segments can then be merged using the techniques of Section 14.3. For a data 
set with many inputs and outputs it might be difficult—in certain applications—to 
find data segments that are "clean" in all variables. It is then better to treat outliers, 
both in inputs and outputs, as missing data and view them as unknown parameters. 
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Dealing With Missing Data 

Assume, for the moment, that we have a model M(9) that describes the relationship 
between the input-output data. In the basic linear predictor form (4.6) it is given by 

Suppose now that some of the input-output data are missing. One must distinguish 
between missing inputs and missing outputs, since they should be handled differently. 
Let us first consider missing inputs. 

Missing Input Data. If the input is a determistic sequence, it is natural to consider 
missing inputs as unknown parameters. Since the above expression is linear in the 
data, it is clear that for a given model M(0) the missing data can be estimated using 
a linear regression, least squares procedure. If we denote the missing data with the 
vector rj we have 

where k € Ku is the set of non-missing inputs u(k), and <p(t, 0) is made up from 
g(t — k{.0). kj g Ku in an obvious way. The parameters 6 and t) can then be 
estimated by a prediction error criterion in the usual way. Note that for fixed 0. 
(14.12) is a linear regression for rj. so missing input data can easily be estimated for 
any given model. It may then be natural (but not necessarily numerically efficient) to 
iterate between estimating the missing data, using the current model, i.e., estimating 
t] for fixed 0. and estimating the model 0 using the currently reconstructed missing 
data. To start up the iterations, the first model can be built using linearly interpolated 
values for the missing data. 

Missing Output Data. It is not natural to regard missing output data as unknown 
parameters, since they are treated as random variables in the prediction framework. 
The correct prediction error criterion will be to minimize the error between y(t) 
and y(t\9, Y^,), where the prediction is based on those past y(k) that actually have 
been observed (k e Ky). To compute this prediction correctly we can use the 
time-varying Kalman filter (4.94)-(4.95) and deal with the missing data as irregular 
sampling. To be more specific, suppose that the underlying, discrete time model is 
given in innovations form as (4.91): 

y(t\0) = ~ k,0)u{k) + Y h { t - (14.11) 

k=\ 

x(t + 1 , 0 ) = A(6>)A ( / ,6>) + B(9)u(t) + K{0)e{t) 

y(t) = C{9)x(t.9) + e(t) 

(14.13) 

(14.14) 

The cross-covariance between process noise and measurement noise (see (4.85) will 
be Rn(0) = K(0)R2. Now. if some or all components of y{t) are missing at a certain 
time / , this is treated as time-varying C({9) and R(.i2(9)< where only those rows of 
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C and Rn are extracted, that correspond to measured outputs. If all outputs are 
missing at time t. Ct and Rr\2 will be the empty matrices. The time varying Kalman 
filter (4.94)-(4.95) with Ct{0) and Rt.nW) inserted into (4.95) will now produce the 
correct predictors 

y(t\0) = C(0)x{t,e) = y(t\0,YK,) 

Working with the time varying predictor of course leads to much more computations, 
and approximate alternatives sometimes may be preferrable. One approximation 
would be to replace any missing y(k) in (14.11) by y(k\0). i.e.. the predictor based 
on data up to time k — 1. (The correct replacement would be to use the smoothed 
estimate of y(k) using measured data up to time / — 1.) Another approximation 
would be to treat also missing outputs as unknown parameters. This corresponds to 
replacing missing y{k) in (14.11) by their smoothed estimates, using the whole data 
record. A third possibility is to carry out the minimization of the prediction error 
criterion by the EM-method. see Problem 10G.3. The missing data then correspond 
to the auxiliary measurements X. See Isaksson (1993). 

14.3 SELECTING S E G M E N T S OF DATA A N D M E R G I N G E X P E R I M E N T S 

Selecting Data Segments 

When data from an identification experiment or. in particular, from normal operating 
records are plotted, it often happens that there are portions of bad data or non-
relevant information. The reason could be that there are long stretches of missing 
data which will be difficult or computationally costly to reconstruct. There could be 
portions with disturbances that are considered to be non-representative, or that take 
the process into operating points that are of less interest. In particular for normal 
operating records, there could also be long periods of "no information:" nothing 
seems to happen that carries any information about the/process dynamics. In these 
cases it is natural to select segments of the original data set which are considered to 
contain relevant information about dynamics of interest. The procedure of how to 
select such segments will basically be subjective and will have to rely mostly upon 
intuition and process insights. 

Merging Data Sets 

It is also a very common situation in practice that a number of separate experiments 
have been performed. The reason could be that the plant is not available for long, 
continuous experiments, or that only one input at a time is allowed to be manipulated 
in separate experiments. A further reason is, as described above, that bad data have 
forced us to split up the data record into several separate segments. How shall 
such separate records be treated? We cannot simply concatenate the data segments, 
because the connection points would cause transients that may destroy the estimate. 

Suppose we build a model for each of the data segments, all with the same 
structure. Let the parameter estimate for segment / be denoted by 9U). and let its 
estimated covariance matrix be PU). Assume also that the segments are so well 
separated that the different estimates can be regarded as independent. It is then well 
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known from basic statistics that the optimal way to combine these estimates (giving 
a resulting estimate of smallest variance) is to weigh them according to their inverse 
covariance matrices. 

i=l 

- i - l 
- l 

L/=i 
(14.15) 

P will then also be the covariance matrix of the resulting estimate 6. This can be 
proved in different ways. See Problem 14E.2 for a matrix-based proof. Compare 
also Lemma II.2 in Appendix II and Problem 6E.3. 

One might ask if this estimate could not be obtained directly from the data 
segments. To see this. let us seek guidance from the linear regression case. Assume 
we are treating the model 

y{t) = <pTit)0 (14.16) 

The estimate for any segment will be 

^<p{t)<pTit) £ ? ( r w o , Pih = i m 

-i - 1 

X > ( 0 / ( 0 
te'f 

(i) 

Here Tl is the index set of the / th segment, excluding those / for which <pit) is not 
fully known. This means that the first m a x ( n a , rib) samples are excluded from each 
segment for an ARX-model (4 .7) . It was called the covariance method or the non-
windowed case in the discussion following (10.13). By \T'\ we mean the number of 
time indices in T'. 

If we apply (14.15) to these estimates, and assume that is independent of 
/ , it is easy to see that the resulting estimate is the same as (14.16) would give if 
the summation was carried out over the union U ; T' of segments. This is of course 
most natural. Note, however, that for a dynamic model, this is not the same as 
first concatenating the data segments and then applying an ARX-model . Cutting 
away the first observations in each segment eliminates the transient problems at the 
merging points. 

For the general case, with predictor models that have infinite impulse responses, 
this suggests that a criterion should be formed as 

v & ) = (-v<'> - > , ( ' ^ ) 2 + ••• + £ (>•<'> - > , ( ' i ^ ) 2 < 1 4 - 1 7 ) 

t€TN 

where the filters that compute y(t \9) for each of the segments should be reinitialized 
with zero initial conditions (or associated with a separate set of initial conditions to 
be estimated). The actual minimization algorithm is however entirely analogous to 
the one described in Sections 10.2 and 10.3. 
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What are the advantages of (14.17) compared to (14.15)? In the first place, it j$ 
more efficient to use just one minimization run rather than n separate ones. Second, 
if each of the experiments (segments) are poorly exciting but provide good excitation 
taken together, then minimizing (14.17) will be better conditioned than minimizing 
each of the sub-sums. Such a situation arises, e.g., when safety or production reasons 
require separate experiments, where one input at a time is manipulated. 

Averaging over Periodic Data 

A different way of "merging" data sets is at hand when an experiment with a periodic 
input has been conducted. We noted in Section 13.3 that it is then advantageous to 
average the output signal over the periods, so that the condensed set consists of just 
one period of input-output data. See (13.34). This allows shorter data records and 
independent noise estimates. 

14.4 PREFILTERING 

Prefiltering the input and the output data through the same filter will not change the 
input-output relation for a linear system: 

>'(/) = G0(q)uO) + HQ{q)e(t) => L(q)y(t) = G0{q)L(q)u(t) + L(q)H(}(q)e[t) 

(In the multivariable case all signals must be subjected to the same filter, so that 
L(q) is a multiple of the identity matrix.) The filtering however changes the noise 
characteristics, so the estimated model will still be affected by the prefiltering. In 
this section we shall discuss the role and use of this feature. 

From an estimation point of view, filtering the prediction errors before making 
the fit, as in (7.10), is an important option: 

eF(t,0) = L(q)e{t,0) = (y(f) - G(q,0)u(t)) 
H(q, 9) 

(14.18) 
= ^ m (L(q)y(t) - G(q,9)L(q)u(t)) 

From these expressions we see a few things: 

• Filtering prediction errors is the same as filtering the observed input-output 
data. In the multivariable case the same filter must then be applied to all 
signals. 

• A prefilter L(q) is equivalent to a noise model H(q) = \/L(q). We can thus 
interchangeably talk about prefilters and noise models. 
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The noise model/prefilter has three functions: 

1. We know from Section 8.5 that it will affect the bias distribution of the resulting 
model. We shall shortly review these results. 

2. The discussion in Section 9.3 shows that if the transfer function estimate G is 
unbiased, then the best accuracy is obtained for a prefilter that corresponds 
to the true noise characteristics: L(q) = l/H^q). (See discussion following 
(9.42).) 

3. The function of the prefilter may also be to remove disturbances of high or low 
frequencies that we do not want to include in the modeling. 

The second function is the classical statistical one: In order to attain the Cramer-Rao 
bound, we need a correct noise model . Since this is typically unknown, it is natural to 
estimate that too. by including parameters in the noise model/prefilter. For purposes 
1 and 3 there is no reason to let the prefilter contain adjustable parameters: On the 
contrary, a parameterized noise model will pull H(q,0)/L{q) to resemble the error 
spectrum (see (8.73)), and this may undo what L(q) was intended to achieve for 
these purposes. The three functions of the prefilter may consequently be conflicting. 

While the second purpose of the prefilter really is a noise modeling issue, the 
two others correspond to pure data preprocessing. We shall now review the use of 
prefiltering for each of these two purposes. 

Affecting the Bias Distribution 

In general, it is not possible to describe the true system exactly within the chosen 
model set, so that the model will be biased. Prefiltering the data may have a substan
tial influence on the distribution of this bias. As we found in Section 8.5. the limiting 
model can be interpreted as a compromise between minimizing 

* arg min / \G0{eia)) - G(eia},0)\2 Q(co,0*)dt 

| Z V " ) | 2 <D„M 

\<x> 

(14.19) 
\Ue"°)r <$>,Aco) 

on the one hand and fitting \H{e,(°, 0)/L(e'(O)\ to the error spectrum <!>£/?{co. $*) 
on the other. See (8.73). This means that Q(co, 0*) will be taken as the weighting 
function that determines the bias distribution of G. This weighting function can in 
turn be affected by properly selecting the 

• Input spectrum <J>w(<w) 

• Noise model set H{q,0) (14.20) 

• Prefilter L(q) 
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Notice that it is only the ratio <&U\L\2/\H\2 that determines the bias distribution: the 
values of the individual functions <t>w, / / , and L are immaterial. Note also thai the 
interpretation of the role of the prefilter is clear cut only if the noise model H does 
not depend on 0 . In the general case (14.19) is somewhat heuristic, but it still is a 
quite useful tool to understand and manipulate the bias distribution. We illustrate 
that in the following example. 

Example 14.2 Affecting the Bias Distribution 

Consider the system (8.78) of Example 8.5. The resulting model in the OE-structure 
(8.79) gave the Bode plot of Figure 8.2a. This corresponds to Q(co) = 1 ( 0 -
independent) in (14.19). Since \G(e,<0)\ decays very rapidly for high frequencies 
(has a rapid roll-off), this means that high frequencies play very little role in the 
Bode plot fit. 

1 

0.1 

0.01 

0.01 0.1 1 
frequency (rad/s) 

Figure 14.2 Amplitude Bode plot of the true system and model identified in the 
OE-structure (8.79). with an HP prefilter Z.,(<y)"(cf. Figuye 8.2). Thick line: true 
system: thin line: model. 

To enhance the high-frequency fit, we filter the prediction errors through a 
fifth-order high-pass (HP) Butterworth filter L\{q) with a cut-off frequency of 0.5 
rad/sec. This changes Q(co) to this HP-filter. The Bode plot of the resulting estimate 
is given in Figure 14.2. The fit has now moved into high frequencies, but clearK the 
second-order model has problems describing the fourth-order roll-off. 

Consider now the estimate obtained by the least-squares method in the ARX-
model structure (8.81). This was depicted in Figure 8.2b. If we want a better low-
frequency fit. it seems reasonable to counteract the H P weighting function Q(co. 0* \ 
in Figure 8.3 by low pass (LP) filtering of the prediction errors. We thus construct 
L2(q) as a fifth-order LP Butterworth filter with cut-off frequency 0.5 rad/sec. The 
A R X model is then estimated for the input-output data filtered through L^iq). 
Equivalently, we could say that the prediction-error method is used for the model 
structure 

b\q~] + b2q~2 1 
> ( / ) = i J -\2 - 2 M ( f ) + / M M x = n 3 7 * 0 (14.21) 

1 + a\q 1 + a2q 1 L2{q)(l + a\q 1 + a2q -) 
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0.01 0.1 1 
frequency (rad/s) 

Figure 14.3 Bode plots of the true system and model identified in the 
ARX-structure (8.81) with an LP prefilter Lijq) (cf. Figure 8.2b). Legend as in 
Figure 14.2. 

The resulting estimate is shown in Figure 14.3, and the corresponding weighting 
function Q(co, 0*) in Figure 14.4. The resulting models in Figures 8.2a and 14.3 are 
quite similar. O n e should then realize that the A R X estimate for filtered data of 
Figure 14.3 is much easier to obtain than the output error estimate of Figure 8.2a, 
which requires iterative search. Z 
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Figure 14.4 The weighting function Q((o.d') = U^ie"")]' • 
{I + a"e~"° + ale~lu> j " corresponding to the estimate in Figure 14.3. 

Dealing with Disturbances 

The third purpose of prefiltering. as listed in the beginning of this section, is to remove 
disturbances in the data that we do not want to include in the modeling. This actually 
goes hand in hand with the noise modeling aspect of prefiltering: Removing, say, a 
seasonal variation of a certain frequency by a band-stop filter, can also be interpreted 
as fixing a noise model with very high gain in this frequency band, which is a way of 
expressing the presence of the seasonal variation. 

0.1 

0.01 
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High-Frequency Disturbances. High frequency disturbances in the data, above the 
frequencies of interest for the system dynamics, indicate that the choices of sampling 
interval and presampling filters were not thoughtful enough. This can however be 
remedied by low pass filtering of the data. Also, if it turns out that the sampling 
interval was unnecessarily short, one may always resample the data by picking every 
.ah sample from the original record. Then, however, a digital antialias filter must be 
applied before the resampling, in the same manner as discussed in Section 13.7. 

Low-Frequency Disturbances. Low frequency disturbances in terms of offset, drift, 
and slow seasonal variations were discussed in Section 14.1. A very suitable method 
to deal with such problems is to apply high pass filtering. This must be considered as 
a clearly better alternative to data differencing. 

14.5 FORMAL DESIGN OF PREFILTERING AND INPUT PROPERTIES 

To secure good models, we have a number of design variables, as discussed in Chapter 
12. In addition to designing the experiment according to the advice of Chapter 13. 
we also have the prefilter as an important design variable. We shall in this section 
return to the formal design problem (12.7)—(12.9) and consider the joint design of 
prefilter and input signal properties. 

Optimizing the Bias Distribution 

Let us first turn to the formal design problem (12.29) for the bias error, in the special 
case 

c«*>=[c,r:] / 
With (14.22), (12.29) can be rewritten 

T>opt = a r g m i n f \G (eia>. 0*(D)) - G0(eho)\2Cu(a>)dto (14.23) 

Let us also specialize to open-loop operation: O u e ( w ) = 0 and the noise model to 
be fixed to 1: H(q.O) = 1. (Since we allow prefiltering, this includes the case of any 
given, fixed noise model.) We have the input spectrum and prefilter 

D = {*,(.), L(q)\ (14.24) 

as design variables. In this case (14.19) specializes to 

0*(T>) = arg min / | G 0 ( O - G(e'w,6)\2 \L{ei(t))f dco (14.25 j 
$€DMJ-„L 1 

We are thus faced with the minimization problem (14.23) with the function 9*(V\ 
defined by (14.24) and (14.25). This problem has an explicit solution. 
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Theorem 14.1. Consider the optimization problem (14.23) with 0*(D) defined by 
(14.24) and (14.25). The minimum is obtained for any T> such that 

*u(a>) | L ( 0 | 2 = a • C i i M (14.26) 

provided this is an admissible design for some positive scalar a. 

Before turning to the proof, we note that the theorem says that the signal-to-
noise model ratio should be chosen proportional to the criterion weighting function, 
and this can be accomplished either by input design or by prefilter/noise model se
lection. Some extensions to this theorem are outlined in Problems 14G.1 to 14G.3. 
Note in particular that for (14.22). open-loop operation indeed is optimal. That is. if 
<t>ue (co) is included among the design variables (14.24), then the optimal solution is 
<t>ue(co) = 0, together with (14.26). 

Proof. First we establish the following lemma. 

Lemma 14.1. Let V(x. y) be a scalar-valued function of two variables such that 
each may take values in some general Hilbert space. For a fixed y, let 

x*(y) - a rgmin V(x. y) (14.27) 
X 

and for a fixed let 
v*(z) = a rgmin V (**(v) , z) (14.28) 

y 
assuming that these minimizing values are unique and well defined. Then 

>'*(*) = z (14.29) 

Proof of Lemma 14.1: By the definition (14.27), 

V{x*(z),z) < V(x.z), VJC, VZ 

Hence 

V(x*(z),z) < V (**(>) , ; : ) , Vy (14.30) 

From (14.28). by definition, 

V(x*(y*(z)).z) < V(x*(y).z) Vy (14.31) 

Now, (14.30) and (14.31) imply 

**(>•• = x*(z) 

which implies (14.29) since the mapping x* is assumed to be injective (follows from 
the assumed uniqueness of the minimum in (14.28)). End proof of Lemma 14.1. D 

Remark. The assumption of uniqueness in (14.28) can be relaxed by consid
ering instead the set 

y*(z) = | >'|V (*•(>-), z) = minV(x*(y).z) 

The statement corresponding to (14.29) then is z e >'*(;) which is sufficient for our 
purposes. 
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arg mm £ G(y*\M£>)) - G0(el<°) Cn(oj)dco (14.3?) 

with respect to the design variables prefilter, input spectrum, and cross spectrum 
between input and noise (i.e. feedback mechanism) 

V = [L(q\ <t>u(-), <t>ue()} (14.3S) 

under the constraints 

J <&u(to)dco < a, H(q,0) = l (14.39) 

To return to the problem (14.23). introduce the function 

W(0%K(-)) = J \G(eio\0) - G0(eUo)\2 K(co)dco (14.32) 

and define 

0 (*(.)) = a rgmin W {9. *(•)) (14.33) 

We thus have, from (14.25), 

0\T>) = e(Qui<o) | L ( 0 | 2 ) (14.34) 

Since the limiting estimate 9* depends on the functions in T> only via the product 

K{CO, T>) = <S>u(to)\L(eicv)\2 

the optimal design problem (14.23) is in fact a search for the best K: 

KOPT = argmin W(0*{V). C n ( - ) ) = a rgmin W(9(K(-)) . C u ( - ) ) (14.35) 

Applying Lemma 14.1 to (14.35), we find that 

K0pt((o) = a • Cn(a>) (14.36) 

where a is any positive scalar such that the design is admissible (T> € A ) . This 
follows since scaling tc does not affect the problem (14.35). This concludes the proof 
of Theorem 14.1. C 

Optimizing the Mean Square Error / 

Theorem 14.1 solves the problem of minimizing the bias contribution to the criterion 
(14.23). In (13.83) we minimized the variance contribution to the same criterion. Tt 
is easy to see that both criteria can be minimized simultaneously, which means that 
we can solve the total error problem (12.30). This gives the following result. 

Theorem 14.2. Consider the problem of minimizing the mean square error 
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The solution is 

4 V ( o > ) = 0 

\L(ei(0)\ 
^ 2 V <!>,.<») 

(14.40) 

Here /ii is adjusted so that the input power constraint is met, while fi? is a constant, 
such that the filter L(q) is monic. 

This result could be obtained easily since the two components of the mean 
square error in (12.26) could be minimized simultaneously with respect to D , and no 
compromise had to be made. For other design variables, typically the model order, 
bias and variance are conflicting and an optimal trade-off has to be met. 

Example 14.3 Pole Placement 

Suppose we intend to use the model to design a regulator that achieves a certain 
closed loop system R(q). Suppose the true system is Go and we use the model G. 
A regulator that gives the desired closed loop with the model is 

u(t) = Fr(q)r(t) - F,(q)y(t) 

where FY, Fr are subject to 

G(q)Fr(q) = R(q) ( l + G(q)Fy(q)} 

Here r is the reference signal, and we want to achieve y = Rr. The difference 
between the desired and actual closed loop is 

GcjFr 

- R = 
GoFr GFr 

1 + GQFy 1 + G 0 F v 1 + GFy 

(Go - G)Fr (Go - G)R ( G 0 - G)R 

(1 + GnFvXl + GFy) G ( l + G0Fy) G 0 ( l + GQFy) 

where the last step holds if G is close to Go- The size (variance) of the error y = 
Gclr(t) is 

~> 

|Go - G | 2 • C\\dco, C\\ = 
R 

G 0 ( l + G0F,) 

Consequently the experiment that gives the best model for this regulator design 
under the constraints (14.39) is 

Lop\eia>) = 

\R(ein\ V ^ M l / / 0 ( O l 
| G 0 ( ^ ) | | l + Go(e^)Fy(e^)\ 

| / ? ( 0 | V

/ ^ M 
| G 0 ( * " w ) | | / W W ) | |1 + G o ( ^ ) F v ( ^ ) | 
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We see that the characteristics of the true system are required in order to compute 
the optima! design. Even though these may not be known in detail, the expressions 
are still useful. They tell us to spend the input power where 

1. A gain increase is desired: » 1 
- . Coir ) ! 

2. The reference signal is going to have energy: <$>r{a>) large 
3. The disturbances are significant: j f / o (^ ' w ) | large 
4. The sensitivity due to feedback is poor: | l + G()(e'(V)Fy(e'lv) | small 

These suggestions are as such quite natural, but their formalization is useful. • 

Identification for Control 
Control design is one of the most important uses of identified models. Considerable 
effort has therefore been spent on designing experiments and methods that give mod
els well suited for control design. Feedback control is both forgiving and demanding 
in the sense that we can have good control even with a mediocre model, as long as 
it is reliable in certain frequency ranges. Loosely speaking, the model has to be reli
able around the cross-over frequency the bandwidth of the closed loop system), 
and it may be bad where the closed loop sensitivity function is small. The required 
accuracy of the model therefore depends on the (unknown and to-be-designed) sen
sitivity function. We saw the basic features of the experiment design in Example 
14.3. and even though the optimal choices depend on unknown facts, it may be suffi
cient for a successful application. The interplay between the model and the criterion 
C\\, which depends on the regulator, which in turn depends on the model, has led 
to a substantial literature on 'identification for control." This frequently involves 
iterative approaches, where a sequence of experiments are performed, interleaved 
with evaluations of the preliminary regulator designs. For/an overview, see Gevers 
(1993). ' " 1 

14.6 S U M M A R Y 

Preprocessing of data is an important prerequisite for the estimation phase. It may 
involve "repair" of the data in terms of replacing missing or obviously wrong data 
as well as merging disjunct data sets. It typically also involves data polishing by 
removing undesired disturbance features in the data. This is accomplished primarily 
by low-pass or high-pass prefiltering and/or subtracting offsets and trends from the 
data. Notice that if the data are prefiltered, the noise model is affected. If a very 
specific effect is desired with the prefiltering, it may therefore be wise not to let the 
noise model be flexible. 

Prefiltering also affects the distribution of bias over the frequency range, to
gether with other design variables. We showed in this chapter how, in some cases, 
formal design criteria could be optimized with respect to the design variables. More 
important, however, is that insights into the mechanisms that govern the bias distri
bution allow thoughtful design that secures a good fit in important frequency ranges, 
even when the optimality results are not directly applicable. 
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14.7 BIBLIOGRAPHY 

Various approaches to deal with the offset problem are illustrated in Astrom (1980). 
Modeling using marginally unstable noise models to cope with slow disturbances is 
studied, e.g.. in Box and Jenkins (1970)and Goodwin et.al. (1986). Practical aspects 
of the data handling are given in several treatments, like Isermann (1980). 

A general treatment of missing data is given in Little and Rubin (1987). Ap
plications to time-series and dynamical systems are treated in, e.g., Isaksson (1993), 
Ansley and Kohn (1983), Kohn and Ansley (1986). and Goodwin and Feuer (1998). 
The outlier problem is specifically addressed in Abraham and Chuang (1993), and 
will commented upon again in Chapter 15. 

More aspects on bias shaping by prefiltering are given in Wahlberg and Ljung 
(1986), while a comprehensive discussion of the issues of Section 14.5 is given in Ljung 
(1986a). The use of prefilters for control-relevant identification has been discussed 
also by Rivera, Pollard, and Garcia (1992). 

Identification for control has been discussed extensively in the 1990's. See, e.g., 
Hjalmarsson. Gevers, and De Bruyne (1996), Lee et.al. (1995), Schrama (1992), Van 
den Hof and Schrama (1995), and Zang. Bitmead, and Gevers (1995). The topic 
has also spurred ideas of different approaches to identification and frequency func
tion interpolation based on Jhfc and other techniques. See the special issue Kosut. 
Goodwin, and Polis (1992)for several such ideas. 

14.8 PROBLEMS 

14G.1 Consider the design problem (14.23) with <t>ue(to) = 0 and a given noise model set 

& = \H(q.r))} 

that is parametr ized independently from the transfer function model set Q. Show that 
the solution to (14.23) then is 

©opt : p = a • Cu(co) 
| H(eitu. ??*)!; 

where rf denotes the resulting noise model parameter . 
Hint: Establish first the following corollary to Lemma 14.1: Lc tA*(y) be defined 

as in the lemma. Let / ( y ) be an arbitrary function, and let 

y*(2) = a r g m i n V (x* </<>•)). -) 
V 

Then / (y*( : ) ) = z (reference: Yuan and Ljung, 1985). 
14G.2 Consider the design problem (12.29) with a general matrix C(co). Assume that the 

noise model is fixed to H* and chosen a priori ( thus it does not belong to D). The 
design variables consist of <PU and <t>lie. Show that the solution to (12.29) is to select 
<t>„ and <Pue so that 

1 [" <J>„(ft>) 4>ue(o>)l = RC M <ft>) C 1 2 M " | 

\H„(eia>)f Y^uei-co) * J |_C"2i(w) * J 
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Here * means that the element in question does not affect the optimal design, o j$ an 
arbitrary positive scalar (reference: Ljung. 1986a). 

14G.3 Consider the design problem (14.23) subject to the design variables 

V = {*„<•). *„,(•). HAq)) 

Show that the optimal design is 

<t>T(o>) = 0, — —-7 = a • C M 

Hint: Use Problem 14G.2 (reference: Ljung, 1986a). 

14E.1 Consider the model (14.5) and introduce 

<pm(t) = [-ym{t - 1 ) . . . -ym(t - na) um(t - 1 ) . . . u m ( t - nh) l]T 

9 = [al...a„ebi...bHba]T 

Derive an expression for the LS estimate 0.y. Show that with the approximations 

.v 
— ^ y(f - k) * v. for all 1 < k < na 

N 
i=i 

i A 
— 2 j « ( t - k) % « , for all 1 < k < 

!=\ 

.V 

r=l 

the estimates of a-, and bt are identical to those obtained by subtracting sample means 
as in (14.4) and (14.3) and then applying the LS method to (14.1). 

14E2 Prove the following matrix identities: 

(/ - Z)Pl(I - Z)T + ZP2ZT = Pi - PtR^Pi + ( Z -f PiR~x)R(Z - P , / rV 

ftfl-1 = < P ~ l + P{l)~lPfK where R = ( P , + P:) 

Use this to prove that if B, a re unbiased estimates of 0 O (i-e. = % ) with variances 
Pi, then the variance of 

is minimized for o/j = ( P f 1 + P 2 " , ) - , P 1 " 1 . 
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CHOICE OF IDENTIFICATION 
CRITERION 

The selection of an identification method is one of the important decisions to be taken 
in system identification. In Chapter 7, we have structured the abundant supply of 
candidates. Different aspects and results on various methods have been mentioned 
in earlier chapters. It is the purpose of the present chapter to sum up these and also 
discuss how different options affect the properties of the resulting estimates. 

A general discussion is given in Section 15.1. The particular problem of choos
ing the norm £(•) for the prediction-error method (7.155) or the shaping function 
a(-) in (7.156) is studied in Section 15.2. Section 15.3 deals with optimal instruments 
for the IV method and their approximate implementation. Section 15.4 summarizes 
some basic advice to the user. 

15.1 GENERAL ASPECTS 

We have described three basic approaches to identification in this book, each asso
ciated with some design variables: 

1. The prediction-error approach (7.12) 

• £(•): norm 

• Ji: noise model set, including prefilter L{q) 

2. The correlation approach (7.110) 

• a ( ) : shaping function 
• L(q): prefilter 
• £(r . 6): correlation vector 

3. The subspace approach to estimating state-space models (7.66). Section 10.6 

• <ps(t): correlation vector, corresponding to the regressors for which the 
fr-step ahead predictors are determined 

• r : Maximum prediction horizon 
• W], W2: The weighting matrices in (10.127) 
• R: The "post-multiplication matrix" in (10.128). 

477 
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The choice between the approaches and the choices of design variables within the 
approaches are guided by a number of issues: 

Applicability 

The prediction error approach has the advantage that it is applicable to all model 
structures, linear and nonlinear, tailor-made and black-box-parameterized. It is also 
valid for systems operating in open as well as closed loop. The minimization code is 
essentially the same, only the computation of the predictor and its gradient is specific 
for the model structure. 

The correlation approach is also, in principle, generally applicable, but it is most 
naturally used only for the linear black-box family (4.33). Most of its use is really as 
an IV-method for the ARX-model . Closed-loop applications require special care in 
the choice of instruments. 

The subspace method is specifically designed for black-box linear systems in 
state-space form. Also for this method, it is necessary to use special solutions for 
closed-loop operation. 

Bias Considerations 

Will the method give unbiased estimates in case 5 e iM? All the listed methods for 
all generic choices of design variables will give consistency in the case of open loop 
operation. The prediction error approach has the added advantage of guaranteeing 
consistency for systems operating in closed loop as well, in case the model structure 
(including noise model) contains the true system. 

If 5 ^ M, can the bias distribution be clearly explained and affected? Here 
prediction-error methods have a clear advantage. Expressions (8.71) and related 
ones describe quite clearly in what sense the model approximates the true system in 
the linear case. For fixed noise models and open loop systems, it is easy to control 
the frequency emphasis by prefiltering. The approximation aspects of the correla
tion methods can be written down, but are less transparent. The exact nature of the 
approximation properties of subspace methods and how these are affected by the 
design variables are not yet fully understood. 

Variance and Robustness Considerations 

Optimizing (=minimizing) the variance is a simpler problem than optimizing bias. 
The reason is that we have explicit expressions, from Chapter 9. for how the variance 
is affected by the design variables in the prediction-error and correlation cases. For 
the subspace method, it is currently not fully known how the design variables affect 
the variance. Some partial results were quoted in Section 10.6. 

We know from Chapter 9 that the theoretical Cramer-Rao lower bound is 
asymptotically achievable by the maximum likelihood method, so in a sense we 
know the answers beforehand to all variance optimization questions: 
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• Best choice of £(x) = — log fe(x) (fe(-) being the PDFof the true innovations) 

• Best choice of noise model/prefilter = true noise description (possibly esti
mated) 

• Best choice of IV method = make it equal to the preceeding prediction error 
method 

Still, as we shall see. the M L E may not be the best approach in all cases. The reasons 
may be the bias effects discussed previously, or that the estimates are sensitive to prior 
knowledge that may be imprecise. We shall, in Section 15.2. look into robustness 
issues for the choice of norm I in the prediction error approach. In Section 15.3 
we shall study variance-optimal instruments for the IV method, and see if optimal 
accuracy can be obtained even without iterative search. 

Ease of Computation 

The subspace methods have the important advantage that the algorithms do not 
contain iterative search. They can also be implemented using numerically robust 
algorithms. The IV-method has a similar advantage that it can estimate the dynam
ics of a linear system (but not the noise properties) without iterative search. The 
prediction error methods, except in the linear regression case, must rely upon itera
tive search methods, and may be trapped in false solutions that correspond to local 
minima. 

15.2 CHOICE OF NORM: ROBUSTNESS 

From (9.29) and (9.30) we know how the choice of £(•) in the prediction-error ap
proach affects the asymptotic variance, provided 5 € 3f . The covariance matrix 
(9.29) is scaled by the scalar 

E[£'(e0(t))]2 

K{1) = _ J (15.1) 
[ £ £ " ( e 0 ( O ) ] 2 

According to Problem 9G.4, the shaping function a(x) in the correlation approach 
scales the covariance matrix (9.78) by the same scalar (15.1) with £'{x) = ct(x). 
Hence the choices of t and a can be discussed simultaneously. The scalar K depends 
only on the function t(x) and on the distribution of the true innovations e^t). Let 
the PDF of these be denoted by fe(x). Then 

f(efix))2fe(x)dx 
K{£) = K{t.fe) = (15.2) 

Here prime and double prime denote differentiation with respect to the argument .v. 
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Optimal Norm 

If we focus on variance aspects, our objective is to select £' so that K(L f e ) is min
imized. Notice that this problem, as such, is quite independent of the underlying 
system identification problem, the particular mode! structure used, and so on. We 
have the following result. 

Lemma 15.1. 

KiLfe) > K(-log / , . / , ) , V€ (15.3) 

Proof. We have by partial integration 

J t"(x)fe(x)dx = - j t'(x)f;{x)dx 

Cauchy's inequality now gives 

y t"(x)fe(x)dxj = j j ^ • Mx)dx^ 

< f [t'(x)ffe(x)dx • j fe(x)dx 

with equality when 

which proves that 

gives the minimum in (15 .3) 

fe(x) 

t(x) = C , l 0g / « ( j C ) + C 2 ( 

The lemma tells us that the best choice is 

eopt(e) = - l o g / , ( e ) (15.4a) 

which can be seen as a restatement of the fact that the maximum likelihood method 
is asymptotically efficient. The lemma deals with the case of a stationary innovations 
sequence {eo(t)}. If the distribution of eo(t) d e p e n d s o n / . fe, ( A . / ) , then the optimal 
norm is also time varying. 

*opt<£.0 = - l o g / , ( * . ' ) (15.41M 

This follows from the fact that (15.4b) gives the MLE. It can also be established 
directly: see Problem 15T.2. If the innovations are Gaussian, with known variances, 
then (15.4b) tells us to use a quadratic norm, scaled by the inverse innovation vari
ances. 
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An annoying aspect of these results is that the P D F fe. may not be known. 
There are two remedies for this: to simultaneously estimate fe or to select an i that 
is insensitive to the different t that possibly could be at hand. 

Adapting the Norm 

In the first case we include additional parameters a:£(£, ot) so as to allow for an 
adjustment of the norm. Then we know from (8 .59) that the norm will adjust itself so 
that it becomes close to the optimal choice (15.4). If a reasonably good estimate of 
fe in (15.4) will do. the adaptive norm approach will be a good solution. This might, 
however, not be the case, as we shall now demonstrate. 

Sensitivity of the Optimal Norm 

The optimal variance scaling K { t , f ) in (15.2) could be quite sensitive with respect 
to the P D F / . That is, as a function of / , the scalar K( — log fe, f ) could have a very 
sharp minimum at / = fe. This is illustrated in the following example. 

Example 15.1 Sensitivity of Optimal Norm 

Let the nominal PDF fe, be a normal with variance 1. 

fe(x) = -^=e-xZi2 = <p(x) 

Then — log fe(x) = \x2 (disregarding a constant term) and 

f x2cp(x)dx 
* < - 1 0 g / e . f e ) = / , , J , 7 = 1 (15-5) 

[j <p{x)dx\-
Suppose now that the prediction errors with a very small probability can assume a 
certain large value. This could, for example, correspond to a certain failure in the 
measurement or data transmission equipment. Such data are called outliers. We 
thus assume that s is almost normal, but with probability ^ l O - ^ it may assume the 
value 100, and with probability ^ 1 0 ~ 3 the value —100. The actual / then is 

f{x) = (1 - I 0 _ 3 ) < p t r ) + 1 0 - 3 [\8(x - 100) + \8(x + 100)] (15.6) 

This gives 

ir ( - l o g fe, f ) = (1 - K T 3 ) + 10 4 • 1 0 - 3 = 10.999 (15.7) 

The variance thus becomes 11 times larger, even though the change of probabilities 
in absolute terms was very small. C 

Robust Norms 
It is obvious that such a sensitivity to the true PDF fe. is not acceptable in practical 
use. Adapting the norm is not the solution in most cases, since a finite number of data 
may not render an accurate enough estimate of the best norm. Instead we must look 
for norms that are robust with respect to unknown variations in the PDF. This is a 
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well-developed topic in statistics; see, for example, the monograph by Huber ( 1 9 8 1 ) . 
A useful formalization is to seek the norm £ that minimizes the largest variance 
scaling that may result in a certain class of PDFs: 

^ o D t = arg min maxAf(£, f) 
t fef 

( 1 5 . 8 ) 

This norm gives, in Huber ' s terminology, the minimax M-estimate. The problem 
(15.8) with *:(£, / ) given by (15.2) is a variational problem whose solution depends 
only on the family of / functions. It is thus decoupled from its statistical context, and 
the discussion of (15.8) in, for example, Chapter 4 in Huber (1981)applies equally 
well to our system identification framework. 

Typical families J are environments of the normal distribution, much in the 
spirit of our example. Solutions to such problems have the characteristic feature 
that t'(x) behaves like x for small x , then saturates, and may even tend to zero as x 
increases ("redescending" £'). Some typical curves are shown in Figure 15.1. 

Let us return to our example to check how such £ may handle outliers. 

r\ 
VJ 

i 
0 0 

Figure 15,1 Some typical robust choises of £'(jc) 

Example 15.1 (continued) 

Let £*(JC) be such that 

e'jx) = 
x, \x\ < 4 
4, x > 4 
- 4 , x < - 4 

Then with / as in (15.6) 

0.999 f[x^4x2<p(x)dx + 0.999 J | J [ | > 4 16 • <p(x)dx + 0.001 • 16 

1.015 
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The decrease in variance compared to (15.7) is drastic. Let us also check what we 
loose in optimality if the true P D F indeed was normal: 

lx\<4x2<p(x)dx + f. 16 • <p(x)dx 
(c(^.fe) = 1 1 , * 1.0001 

[f\x\<Mx)dx]~ 

This price of increased variance for the nominal case is thus worth paying to obtain 
resilience against small variations in the PDF. • 

As a recommended choice of robust norm, we may suggest the following, see 
Ruppert (1985)and Hempel et.al. (1986), p 105. 

x \x\ < p - o 
p • a x > p - a ( 1 5 . 9 ) 
—p-a x < —p- a 

Here 6 is the estimated standard deviation of the prediction errors, while p is a 
scalar in the range 1 < p < 1.8. The estimate a in turn should be robust so that it 
is not disturbed by outliers. A recommended estimate is to take 

M A D 
a = (15.10) 

0.7 

Here M A D = the median of [\e(t) — 1 {} with e as the median of {e(t)} 

Influence Function 
A basic idea behind robust norms is to limit the influence of single observations on 
the resulting estimate. It is reasonable to ask how the estimate would change had 
a certain observation been lacking. For the least-squares estimate, an exact answer 
can be given. It follows from (11.9) that 

0N - 0 l V . , = R~\N)<p(t)[y(t) - 0T

Nt<p{t)\ 

= R-\N)<p(t)[y(t) - H<P(0] (15.11) 

where $s is the actual estimate and the is the estimate with the measurement 
(y( r ) , <p(t)) removed. Also, 

R(N) = Y<P(0<pT(kh RAN) = R(N) - <p(t)(pT(t) 
k=l 

The influence of measurement (y(t), <p(t)) can thus be evaluated by 

R~\N)<p(t)s(tJN) 
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This is, somewhat simplified, the idea behind H a m p e r s {I914)influence function. 
Generalized to arbitrary norms and model structures, the influence of measurement 
t can approximately be evaluated by 

Sit) = R;\NW(tJN)e'(e(t.8N)) 

R,(N) = ^1r(kJN)t'\e{k.$N))ilrT(kJN) ( 1 5 ' 1 2 ) 

Compare (11.52). The objective with robust norms t as in Figure 15.1 could then be 
expressed as minimizing 

max \S(i)\ 

More pragmatically, it makes good sense to critically evaluate S(t) in (15.12) after 
the parameter fit has been completed so as to reveal which observations have con
siderably influenced the estimate. Such observations had better be reliable or their 
influence should be reduced. 

Detecting Outliers 

Outliers that are as drastic as in Example 15.1 and data points that have a large 
influence on the estimate will often be detected by eye inspection of the data record. 
It is good practice, even when robust norms are used, to display the data before they 
are used for identification. Outliers are most easily detected in plots of the residuals 
s(t. 0.y). See Example 14.1 and Section 16.5. 

Multivariable Case (*) / 

The covariance matrix for multivariable systems is given by (9.47). Choices of the 
function t(s) from Rp to R are quite analogous to the scalar case discussed pre
viously. The multivariable case introduces a new issue, though: How should the 
different components of the vector s be weighted together? We shall illustrate this 
question by considering the family (7.28) and (7.29) of quadratic criteria. 

The covariance matrix associated with the quadratic norm A - 1 in (7.27) is. 
according to (9.47) (see also Problem 9E.4), 

P*(A) = [ £ ^ ( / , ^ ) A - V r ( / . f l b ) ] " ' [ ^ ( / . f t ) ) A - 1 A o A - V r ( ' . ^ ) ] 

x [Ef(t,Ocj)A-ifT(t,ei))Yl 

Here A 0 = Eea(t)eT(t) is the true innovations covariance matrix. It is straightfor
ward to establish (cf. Problem 9E.4) that 

Pe(A) > / M A 0 ) VA 
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so that the best norm requires knowledge of the true covariance. Since anyway the 
minimization of (7.29) is carried out iteratively. the following variant to implement 
A = A n suggests itself: 

K$ = ^ y j f ( » . « ; " ) e r ( f . 5 j j ' ) 

<?,v+" = arg min — ^ £ V • Q ) [ A!v ] * e(t.$) 

where superscript (/') denotes the / th iterate. 
It is interesting to note, though, that the criterion 

(15.13) 

f? v = arg min det 

L t=\ 

(15.14) 

gives the same asymptotic covariance matrix for 0.v as the quadratic norm (7.27), 
with A being the true innovations covariance. See Problem 9E.5 and also (7.92) to 
(7.96). 

15.3 VARIANCE-OPT IMAL I N S T R U M E N T S 

Consider now the IV method (7.129). Under assumptions (9.80) and (9.81) the 
asymptotic covariance matrix P» of the estimates is given by (9.83). Clearly, the 
choice of instruments £( / , 0Q) and the choice of prefilter Liq) may have a consider
able effect on Now. what might the optimal choices be? 

A Lower Bound 

Suppose that the true system is given by 

v(f) = G0(q)u(t) + Hn(q)e0U) (15.15) 

and that the transfer function Go is to be estimated, while Ho is assumed known. 
Let 

G„<„) = (15.16) 

and let the model be parametrized as 

G{q.O) = (15.17) 
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with appropriate model orders. The limit of the Cramer-Rao bound for this estima
tion problem is given by (9.31) (normality assumed here): 

PCR = A 0 [ £ ^ ( r , 0 o ) ] - 1 i 15.18) 

1 

•[-G0(q)u(t - 1) 
Ho(q)AoiqV 

-Go(q)u(t - na) u(t -!)...«(/- nb)] (15.19) 

[cf. (10.55); here we have used A for what is called F in the model (4.33)]. 

Optimal Instruments 

Equation (15.18) gives a lower bound for any unbiased method aiming at estimating 
$ in (15.17). It thus applies also to the IV method, so (15.18) is a lower bound for 
(9.83). However, this lower bound is achieved for 

H0(q)A{}(q) (15.20) 

f°i*(0 = ^ ( / , 0 « ) 

To see this, we note that 

cpF(t) = Lopt(q)<p(t) = V(f ,0 o ) + <pe{t) 

where ^ ( f ) depends on {e()(f)} only, while \j/(t, Oo) depends on (w(f)} only. Hence 

~Ei!/(t.0o)<pUt) = ~E1/(t.0oWT(t.0J) 

and (9.83) simplifies to (15.18). when the system operates in open loop. The optimal 
design variables for the IV method are thus given by (15.20). 

Adaptive IV Methods 

While (15.20) gives direct advice about the best IV method, the annoying aspect 
is that the optimal prefilter and instruments depend on unknown properties of t he 
true system. This could be handled by letting the instruments £(r, $) depend on H 
in a proper way and by simultaneously estimating the noise properties. This leads 
to algorithms that are closely related to and of about the same complexity as the 
corresponding prediction-error method. An alternative is to approximately realize 
the optimal choices in a multistep algorithm. 

Multistep Algorithm 

The choices of instruments and prefilters in the IV method primarily affect the asymp
totic variance, while the consistency properties are generically secured. This suggests 
that minor deviations from the optimal values according to (15.20) will only cause 
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G^'iq) = 
A^iq) 

Step 3: Let 
xifit) = A$(q)y(t) - Bf{q)u{t) 

and postulate an A R model of order na -\-tit, (order chosen to balance the compu
tational efforts in each step) for w^it): 

L(q)wf{t) = eit) 

Estimate Liq) using the LS method and denote the result by L\<iq). 

Step 4: Let x(2)(t) be defined analogously to (15.22). and let 

t ( 2 ) ( 0 = LN{q)[-x<2){t - 1 ) . . . -x{2)it - na) uit - 1 ) . . . M(/ - nh))T 

(15.24) 
Using these instruments and a prefilter L$(q) in (7.129) with a{x) = determine 
the IV estimate of 9 in (15.21), giving the final estimate 

9\ — 
;V - , - 1 N 

L/=i J t=\ 

<pFit) = LNiq)<pit), yFit) = LNiq)yit) 

(15.25) 

second-order effects in the resulting accuracy. It could thus be sufficient to use con
sistent, but not necessarily efficient, estimates of the dynamics and of the noise when 
forming the instruments and prefilter. To retain the appealing simplicity of the IV 
method, we should work with linear regression structures for these steps. We thus 
suggest the following four-step IV estimator for a system that operates in open loop. 

Step 1: Write the model structure (15.17) as a linear regression 

v( / |0) = <pT(t)G (15.21) 

Estimate 9 by the LS method (7.34). Denote the estimate by tflj1 and the corre

sponding transfer function by G^iq) 

Step 2: Genera te the instruments as in (7.122) and (7.123): 

A - , 1 l ( r ) = G^\q)u{t) (15.22) 

f ' n ( f ) = [ - * " > ( / - 1 ) . . . - .v ( 1 ) (f - na) u(t - 1 ) . . . uit - n * ) ] r ( 1 5 . 2 3 ) 

and determine the IV estimate (7.118) of 8 in (15.21) using these instruments. Denote 
the estimate 9^ and the corresponding transfer-function estimate 

file://-/-tit
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This algorithm is a special case of a multistep procedure discussed in Section 6.4 
of Soderstrom and Stoica (1983). They show that the asymptotic covariance matrix 
of $s indeed is the Cramer-Rao bound (15.18). provided (in our case) the true /Y0 

is an autoregression of order 

Example 15.2 Four-Step TV Algorithm 

The system 
L O T 2 + 0 . 5 o - 3 

1 - \.ztg~l + O.lq " 

was simulated over 400 samples with \e{t)) white Gaussian noise of variance 1 and 
{u(t)\ as a white binary ± 1 signal. A second-order ARX-model structure with 
two delays was used. The four-step IV method gave the following transfer-function 
estimates: 

1.0597<3T2 + 1.1546$-* 

1 - I . O 2 5 5 4 - 1 + 0 .2965?" 2 

* ( 2 ) _ 0.9778^ ~ 2 + 0.2750<? 

1 - 1.6O720- 1 + () .7803^" 2 

0 .9688?" 2 + 0.5216^ " 3 

1 - 1.5038?- 1 + 0.7023<r2 

The example indicates that the extra work of steps 3 and 4 is worthwhile. An 
additional advantage is that these steps provide a noise characteristics estimate, nec
essary for the computation of the asymptotic covariance (9.83). In fact, as remarked 
previously, the particular choices of £ and L give the following estimated covariance 
matrix of 0.\-: / 

1 r v 

L/=l 
— Py — Av 
N 

(15.26a) 

1=1 

15.4 SUMMARY 
It is an unavoidable consequence of the structure of this book that useful results 
and advice on various identification methods are scattered over several chapters. 
Therefore, we give here a concrete user-oriented summary of suggested parametric 
identification procedures. 

We consider prediction-error methods (PEM) to be the basic approach to sys
tem identification. They have three important advantages: 
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1. Applicability to general model structures 
2. Optimal asymptotic accuracy when the true system can be represented within 

the model structure 
3. Reasonable approximation properties when the true system cannot be repre

sented within the model structure 

For a given model structure y(f |0 ) , the P E M can be summarized as follows: 
Select a prefilter L(q), guided by the discussion of Section 14.4. Form the criterion 

1 * 
VN{0,Zs) = - £ ^ ( , , 0 ) ) 

eF(t,e) = L(q)[y(t) - v(f |0)] 

£(•) given by (15.9) 

For a linear black-box model, form an initial estimate 9X

U by the procedure 
(10.79). Then minimize VV iteratively using the damped Gauss-Newton method 
(10.40), (10.41). and (10.46) [(10.47) when necessary]. The asymptotic properties of 
the resulting estimate 0\- are then given by (8.103) and (9.90). 

However, it is still true that other methods may be preferable in certain cases. 
Especially for a linear system with several outputs, that requires a model structure 
with many parameters, the subspace methods form a valuable alternative. They 
have the advantage of allowing an estimate, using efficient and numerically robust 
calculations without iterative search. 

The main advantage of the IV method is its simplicity. It is often worth-while 
to use the four-step procedure (15.21)—(15.26), as well as the subspace method, for 
a first quick estimate of the system transfer function. This may then be refined by 
P E M , if necessary. 

We may note that it is not necessary to be able to tell which of the approaches 
is "'best/* Experience says that each may have its advantages. It is good practice 
to have them all in one's toolbox, compute models with the different methods, and 
subject them to validation according to the next chapter. 

15.5 BIBLIOGRAPHY 

Robust norms have been extensively discussed in the statistical literature. Huber 
(1981)gives a comprehensive account of robust estimates. Hempel et.al. (1986)dis-
cusses the use of the "influence function. Krasker and Welsch (1982)describe how 
to "robustify" linear regressions also with respect to the magnitude of the regres
sors. Polyak and Tsypkin (1980)have advocated the use of robust norms for on-line 
applications. Tsypkin (1984)contains a comprehensive t reatment of this application. 

Optimal instruments and their approximate implementation have been exten
sively studied by Soderstrom and Stoica (1981, 1983)and Stoica and Soderstrom 
(1983). Several mixed IV-PEM schemes have been studied also by Young and Jake-
man (1979). 
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15.6 PROBLEMS 

15G.1 Consider an identification criterion 

1 V 

Vs{0,Zs) = —J^a,UeU.0),t) 
t=\ 

where the functions £(•, / ) are given and the positive scalars a , , are to be selected. 
Suppose that S € M and that the true innovations {eo(/)} are white, zero mean, but 
not necessarily stationary. Show that the choice of [a, \ that minimizes the variance of 
the parameter estimate is 

or, — — (times arbitrary scahne) 

Conclude that, if t(x.r) = x2 all / . then the optimal weights a, are the inverse 
variances of the innovations eo(t)s regardless of their distribution. (Compare (11.65).] 
Conclude also that, if eo(t) is Gaussian with variance A , and £{x) = \x\. then u ' r ' = 
l / v 7 ^ -

15E.1 Consider the output error model structure 

y</|0) = G(q,8)u(0 

Suppose that the t rue system is given by 

y(f) = Goiq)u(t) + H0{q)eo(t) 

where e^it) is white noise. Suppose also that G0(<y) = Giq* 0 O ) . Apply a prediction-
error method with prefilter L{q) to estimate 0 and compute the variance of 9\. Show 
that the variance is minimized for L(q) = H^x(q). 

15T.1 Prove that (15.18) gives a lower bound for (9.83) by direct algebraic methods (refer
ence: Soderstrom and Stoica, 1983. p. 97). 

15T.2 In case a time-varying norm is allowed, (15.1) takes the forn/ 

«(€<«..))- 0 5 , 7 ) 
[Ei';f(e0(t),t)]2 

(see Problem 9T.1). Recall that 

- 1 , v 

Egie(t).t) = lim — Eg{e(t). t) 
N i=\ 

Establish that (15.4b) minimizes (15.27) by applying Schwarz's inequality to the ex
pression corresponding to (15.27) with finite N values replacing the limit E. 

15T.3 Suppose that the innovations have a time-varying distribution, but that the norm t{() 
is constrained to be time invariant. Show that (15.1) is then minimized by 

lie) = - log I lim — > fe(e. 0 



16 

MODEL STRUCTURE 
SELECTION AND MODEL 

VALIDATION 
The choice of an appropriate model structure M is most crucial for a successful 
identification application. This choice must be based both on an understanding of 
the identification procedure and on insights and knowledge about the system to be 
identified. In Chapters 4 and 5 we provided lists of typical model structures to be 
used for identification. In this chapter we shall complement these lists by discussing 
how to arrive at a suitable structure, guided by system knowledge and the collected 
data set. 

Once a model structure has been chosen, the identification procedure provides 
us with a particular model in this structure. This model may be the best available 
one. but the crucial question is whether it is good enough for the intended purpose. 
Testing if a given model is appropriate is known as model validation. Such techniques, 
which are closely related to the choice of model structure, will also be described in 
this chapter. 

16.1 GENERAL ASPECTS OF THE CHOICE OF M O D E L S T R U C T U R E 

The route to a particular model structure involves, at least, three steps: 

1. To choose the type of model set. (16.1) 
This involves, for example, the selection between nonlinear and linear mod
els, between input-output, black-box and physically parametrized state-space 
models, and so on. 

2. To choose the size of the models set. (16.2a) 
This involves issues like selecting the order of a state-space model, the degrees 
of the polynomials in a model like (4.33) or the number of "neurons" in a 
neural network. It also contains the problem of which variables to include in 
the model description. We thus have to select M from a given, increasing chain 
of structures 

Mi C M2 C Mi... (16.2b) 

491 
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[Recall the definition of M\ C M2 in (4.127).] This problem (16.2) will be 
called the order selection problem. 

3. To choose the model parametrization. (16.3) 
When a model set M* has been decided on (like a state-space model of a given 
order) , it remains to parametrize it. that is. to find a suitable model structure 
M whose range equals M* (see Section 4.5). 

In this section we shall discuss basic guidelines for these three steps. We said in 
Chapter 12 that the goal of the user is to "obtain a good model at a low price." The 
choice of model structure certainly has a considerable effect on both the qualitv of 
the resulting model and the price for it. 

Quality of the Model 

The quality of the resulting model can. for example, be measured by a mean-square 
error criterion J(T>) as in (12.26). where the design variables T> include the model 
structure JVf. (For nonlinear systems and models we could, at least conceptuallv. 
give analogous formalizations.) In Chapter 12 we found it convenient to split up the 
mean-square error into a bias contribution and a variance contribution: 

J(D) = JB(V) + JP(V) (16.4) 

[see (12.26)]. We would thus select M so that both bias and variance are kept small. 
These are usually, however, conflicting requirements. To reduce bias one basically 
has to employ larger and more flexible model structures, requiring more parameters. 
Since the variance typically increases with the number of estimated parameters [see 
(9.92)], the best model structure is thus a trade-off between: 

• Flexibility: Employing model structures that offer good capabilities of de
scribing different possible systems. Flexibility can be.obtained either by using 
many parameters or by placing them in "strategic positions." (16.5) 

• Parsimony: Not to use unnecessarily many parameters: to be "parsimonious" 
with the model parametrization. (16.6) 

This trade-off can be formalized objectively as a minimization of (16.4) with respect 
to the model structures. 

Price of the Model 
The price of the model is associated with the effort to calculate it. that is, to perform 
the minimization in (7.155) or to solve the equation (7.156). This work is highly 
dependent on the model structure, which influences: 

• The algorithm complexity: We saw in Chapter 10 that solving for 0$ involves 
evaluation of the prediction errors s(t.0) and their gradients \f/(t.9) for a 
number of 6. The work associated with these evaluations depends critically on 
M. (16.^1 

• The properties of the criterion function: The amount of work to solve for 6 v 
also depends on how many evaluations of the criterion function and its gradient 
are necessary. This is determined by the "shape" of the criterion function 
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(7.155) or (7.156): nonunique minimum, possible undesired local solutions, 
and so on. The "shape" in turn is a result of the choice of £(•) and of how the 
£(t, 0) depend on 0 (i.e., the model structure). (16.8) 

There is also a price associated with the use of the model. A high-order complex 
model is more difficult to use for simulation and control design. If it is only marginally 
better [in the sense of (16.4)] than a simpler model, it may not be worth the higher 
price. Consequently, also 

• The intended use of the model (16.9) 

will affect the choice of model structure. 

General Considerations 

The final choice of model structure will be a compromise between the listed aspects 
(16.5) to (16.9). The techniques and considerations that are used when evaluating 
these aspects can be split into different categories: 

• A priori considerations: Certain aspects are independent of the data set Z A 

and can be evaluated a priori, before the data have been measured. We shall 
discuss these in Section 16.2. 

• Techniques based on preliminary data analysis: With the data available, cer
tain testing and evaluation of Z ' v can be carried out that give insights into 
possible and suitable model structures. These techniques do not necessarily re
quire the computation of a complete model. Section 16.3 contains a discussion 
of such preliminary data analysis. 

• Comparing different model structures: Before a final model structure is cho
sen, it is advisable to shop around in different model structures and compare 
quality and prices of the models offered there. This will require the compu
tation and comparison of several models; such procedures are described in 
Section 16.4. 

• Validation of a given model: Regardless of how a given model is obtained, 
we can always use Z's to evaluate whether it seems likely that it will serve its 
purpose. If a certain model is accepted, we have also implicitly approved the 
choice of the underlying model structure. Such model-validation techniques 
are described in Sections 16.5 and 16.6. 

16 .2 A PRIORI CONSIDERATIONS 

Type of Model 

The choice of which type of model to use is quite subjective and involves several issues 
that are independent of the data set ZN. It is usually the result of a compromise 
between the aspects listed previously, combined with more irrational factors like the 
availability of computer programs and familiarity with certain models. Let us briefly 
comment on the rational issues involved in the choice. 
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The compromise between parsimony and flexibility is at the heart of the iden
tification problem. How shall we obtain a good fit to data with few parameters? The 
answer usually is to use a priori knowledge about the system, intuition, and ingenu
ity. These facts stress that identification can hardly be brought into a fully automated 
procedure. The problem of minimizing (16.4) thus favors physically parametrized 
models. It will depend on our insight and understanding of the process whether it 
is feasible to build a well-founded physically parametrized model structure. This is 
of course an application-dependent problem. 

For a physical system, a priori information can typically best be incorporated 
into a continuous-time model such as (4.62). This means that the computation of 
s{t. 0) and the minimization of (7.155) become a laborious task both regarding the 
programming effort and the computation time required. Aspects of algorithmic 
complexity as well as the shape of the criterion function therefore favor black-box 
models. By this we mean a model like (4.33) that adapts its parameters to data, 
without imposing any physical interpretation of their values. 

A general advice is to "try simple things first.'" One should go into sophisti
cated model structures only if simpler ones do not pass the model-validation tests. 
Especially linear regression models like (4.12) lead to simple and robust minimiza
tion schemes (the least-squares method; see Section 7.3). They are therefore often 
a good first choice for an identification problem. 

One should note that using physical a priori knowledge does not necessarily 
mean that fancy continuous-time model structures have to be constructed. Some 
thinking about the nature of the relationships between the measured signals can 
give good hints for model structures. This was illustrated in Example 5.1. where a 
"semiphysical" model structure of linear regression type was obtained from fairly 
simple a priori considerations. In general, one should contemplate whether non
linear transformations of data [such as (5.20) or a logarithmic transformation] will 
make it easier for the transformed data to fit a linear mo/lel. Note in particular 
that nonlinear effects in actuators and sensors may be known and may be used for 
helpful redefinitions of the input-output signals. See Kashyap and R a o (1976). Box 
and Cox (1964), Daniel and Wood (1980), or Carroll and Ruppert (1988)for further 
discussion on data transformations. 

Model Order 

Solving problem (16.2) usually requires help from the data. However, physical insight 
and the intended model application will often tell which range of model orders should 
be considered. Also, even when the data have not been evaluated, knowing N and 
the data quality will indicate how many parameters it is feasible to estimate. With 
few data points, it is not reasonable to try to determine a model in a complex model 
structure. 

A related problem is how many different time scales it is feasible to let one and 
the same model handle. Problem 13G.1 indicated that, for numerical reasons, it may 
be difficult to adequately describe more than two to three decades of the frequency 
range within one model. Considerations on sampling rates, proper excitation, and 
data record lengths strongly suggest that one should not aim at covering more than 
three decades of time constants in one experiment. If the system is stiff so that 
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it contains widely separated time constants of interest, the conclusion thus is to 
build two (or more) models, each covering a proper part of the frequency range 
and each sampled with a corresponding, suitable sampling interval. For a high-
frequency model, the low-frequency dynamics for all practical purposes look like 
integrators (the number being equal to the pole excess at low frequencies): think 
of a Bode diagram representation. These should thus be postulated for the high-
frequency model. Correspondingly, the high-frequency dynamics look like static 
(instantaneous) relationships to the low-frequency model. Thus introduce a no-delay 
term bou(t) in this model. 

Model Parametrization 
The issue of model parametrization is basically numerical. We seek model para
metrizations that are well conditioned so that a round-off or other numerical error 
in one parameter has a small influence on the input-output behavior of the model. 
This is a problem that has been widely recognized in the digital filtering area, but less 
so in the identification literature. In fact, the standard input-output model structures 
like (4.7) to (4.33) could be quite sensitive to numerical errors. See Problem 16E.1 
for an example. (Compare also with Problem 13G.1.) The choice of parametrization 
of a linear model essentially amounts to picking a certain state-space representation. 
The difference equation models correspond to the observability canonical form of 
Example 4.2. Other choices of state variables, such as wave-digital filters or lad
der/lattice filters (cf. Section 10.1) give better conditioned parametrizations. See 
Mullis and Roberts (1976)or Oppenheim and Schafer (1975)for a discussion of this 
issue. Middleton and Goodwin (1990)has advocated parametrizations in terms of 

8 = 1 - q-1 

rather than q~] to cope with this problem. See also Gevers and Li (1993)for a 

thorough discussion of parameterization issues. 

16.3 M O D E L S T R U C T U R E SELECTION BASED O N PRELIMINARY DATA 
ANALYSIS 

By preliminary data analysis, we mean calculations that do not involve the deter
mination of a complete model of the system. Such analysis could prove helpful for 
finding suitable model structures. 

Estimating the Type of Model 

Generally, data-aided model structure selection appears to be an underdeveloped 
field. An exception is the order determination in linear structures, to be discussed 
shortly. It is conceivable that various nonparametric techniques could be helpful to 
find out suitable nonlinear transformations of data, as well as to indicate what type 
of dependences between measured variables should be considered. In the statistical 
literature, such procedures are discussed (e.g., in Daniel and Wood, 1980, and Parzen. 
1985), but they have not really found their way into system identification applications 
yet. 
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A particular problem forms an exception; to test for nonlinear effects. That is, 
is it likely that the data can be explained by a linear relationship or will a nonlinear 
model structure be required? Such tests are based on the relationships between 
higher (than second) order correlations and spectra that follow from linear descrip
tions. See Billings and Voon (1983), Rajbman (1981), Haber (1985). Tong (1990). 
and Varlaki, Terdik, and Lototsky (1985)for further details. 

Order Estimation 
The order of a linear system can be estimated in many different ways. Methods that 
are based on preliminary data analysis fall into the following categories. 

1. Examining the spectral analysis estimate of the transfer function 
2. Testing ranks in sample covariance matrices 
3 . Correlating variables 
4. Examining the information matrix 

We shall give a brief account of each of these approaches. 

1. Spectral analysis estimate: A nonparametric estimate of the transfer func
tion G\(et0)) as in (6,82) will give valuable information about resonance peaks and 
the high-frequency roll-off and phase shift. All this gives a hint as to what model 
orders will be required to give an adequate description of the (interesting part of 
the) dynamics. Note, though, that discrete-time Bode plots show some artifach in 
their interpretation in terms of poles and zeros, compared to continuous-time Bode 
plots. Thus, use the observations with some care. 

2. Testing ranks in covariance matrices: Suppose that the true system is de
scribed by 

v(0 + 01 v(f - 1) + • • • + a«y(r - « ) ^ 

= b\u(t - 1) + •• • + b„u(t - n) + i-o(f) (16.10) 

for some noise sequence {i'o(f)}- Suppose also that n is the smallest number for 
which this holds C'n is the true order") . As usual, let 

<^(,) = [-y(t - 1 ) . . . - y ( f - s) u(t - l ) . . . w ( f - s)]T (16.11} 

Suppose first that i\)(t) s 0. Then (16.10) implies that the matrix 

1 l V 

R\N) = -J^<pAt)<pl(t) (16.12) 

will be nonsingular for s < n (provided {«(/)} is persistently exciting) and singular 
for 5 > n + 1. K(S) = det RS(N) could thus be used as a test quantity for the 
model order. This was first suggested by Woodside (1971). The relationship between 
singularity of (16.12) and the corresponding model order, however, goes back to Lee 
(1964)and the realization algorithm by H o and Kalman (1966). (See also Lemma 
4A.1.) 
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In case a noise {i'o(t)\ is present in (16.10). (16.12) can still be used, with a 
suitable threshold, provided the signal-to-noise ratio is high. If this is not the case. 
Woodside (1971)suggested the use of the "enhanced" matrix 

RS{N) = RS(N) - o2Rv (16.13) 

where a2Rv is the estimated influence of i'o(/) on RS(N). 
A better alternative, when the influence of i\)(t) is not negligible, is to use other 

correlation vectors. If {i !n(0} a r >d {«(*)} are uncorrelated, we could use 

<,(r) = [ « ( / - 1) «(/ - 2 ) . . . u ( t - 2s))T (16.14) 

and find that 
RS

C(M) = E<ps{t)g{t) (16.15) 

is nonsingular for s < n and singular for s > n + 1 [cf. the discussion on consistency 
of the IV method, (8.98)]. Replacing E by sample mean then gives a usable test 
quantity. If {t'o(f)} is known to be a moving average of order r , so that y(f — r — 1) 
and v()(t) are uncorrelated, we could also use 

&(0 = Vs(t - r) (16.16) 

or any combination of such correlators with (16.14). This order-determination test 
has been discussed by Wellstead (1978)and Wellstead and Rojas (1982). and was 
apparently first described for multivariable structures in Tse and Weinert (1975). 

3. Correlating variables: The order-determination problem (16.2b) is whether 
to include one more variable in a model structure or not. This variable could be 
y{t — n — 1) in (16.10) (a true order-determination problem) or a measured possible 
disturbance variable w(t). In any case, the question is whether this new variable has 
anything to contribute when explaining the output variable y (r) . This is measured by 
the correlation between y(r) and w(t). However, to discount the possible relation
ship between y(t) and w(t), already accounted for by the smaller model structure, 
the correlation should be measured between w(t) and what remains to be explained 
[i.e., the residuals e(t. 0\) = y ( / ) — y(f |0 ( v)] . This is known as canonical correlation 
or partial correlation in regression analysis (see Draper and Smith. 1981). See also 
the discussion in Section 16.6. 

We may also note that the determination of the state-space model order, i.e., 
determining how many of the singular values in (10.127) are significant (or step 2 of 
(7.66), is a test of the same kind. 

4. The information matrix: It follows from Theorem 4.1 that, if the model 
orders are overestimated in certain model structures, global and local identifiability 
will be lost. This means that \ff(t,9) will not have full rank at 9 = 9* (the limit 
value), and hence the information matrix (7.89) will be singular. Since the Gauss-
Newton search algorithm uses the inverse of the information matrix, a natural test 
quantity for whether the model order is too high will be the conditioning number of 
this matrix. See Young, Jakeman. and McMurtrie (1980), Mehra (1974), Soderstrom 
(1975a), and Stoica and Soderstrom (1982c). 
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A related situation occurs when the IV method is used. Then the matrix 

1 * 

in (7.118) will be singular when the orders are overestimated, as we found in (8.98) 
and under paragraph 2. Testing the conditioning of this matrix is thus naturally 
incorporated in the IV approach. 

Multivariable Case: Model Parametrization (*) 

The black-box multivariable parametrization problem is to select the multi-index 
v„ in (4A. 16) to (4A.18). Some different methods for this have been discussed in 
the literature. The observability indexes {07}, defined in the proof of Lemma 4 A.2, 
form one possible choice for v „ . The indexes {<r,} are defined by the rank structure 
of 3fnp+p. which in turn, in the noise-free case, is related to the rank structure of 
RS(N) in (16.12). Guidorzi (1975)has suggested the use of R'(N) to determine the 
observability indexes and, in the noise-corrupted one. the analog of the "enhanced" 
matrix (16.13). Tse and Weinert (1975)use instead an estimate of the matrix (16.15) 
and (16.16) (in the input-free case) for the same purpose. 

An alternate route has been considered by van Overbeek and Ljung (1982). 
They use the overlapping model structure (4A.33) and switch, during the criterion 
minimization, from one parametrization to another when the information matrix is 
ill-conditioned. They also link the conditioning of this matrix to the conditioning of 
the state covariance matrix. 

Other non-canonical parameterizations, like a tridiagonal form and a full 
parameterization, have been discussed in McKelvey and Helmersson (1996)and 
McKelvey (1994). The use of balanced realization parameterizations is described 
in Ober (1987)and Hanzon and Ober (1997). / 

16.4 C O M P A R I N G M O D E L S T R U C T U R E S 

A most natural approach to search for a suitable model structure is simply to test a 
number of different ones and to compare the resulting models. In this section we 
shall discuss what to compare and how to evaluate the comparisons. The model to 
be evaluated will generically be denoted by m = M{0\). It is estimated within the 
model structure M, which is supposed to have d^ — dim 0 free parameters. By the 
Estimation Data we mean the data that were used to estimate m, while Validation 
Data will denote any data set available that has not been used to build any of the 
models we would like to evaluate. 

What to Compare? 

There are of course a number of ways to evaluate a model. We shall here describe 
evaluations and comparisons that are based on data sets from the system. Generally 
speaking, the tests should bring out the relevant features for the intended model 
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application, so it is desirable that these data sets have been collected under conditions 
that are close to the intended operating conditions. The model tests are then basically 
tests of how well the model is capable of reproducing these data. 

We shall generally work with k-step ahead model predictions \k(t\m) as the 
basis of the comparisons. By that we mean that y* (f | m ) is computed from past data 

u{t - 1) w ( l ) , yit - k) y(1) (16.17) 

using the model m . The case when k equals oc corresponds to the use of past 
inputs only. i.e.. a pure simulation. We use the notation y ^ ( t \ m ) = ys(t\m) for this 
case. Similarly we introduce y\it\m) = yp(t\m) for the standard one-step ahead 
predictor. For a linear model y = Gu + He we thus have, according to Chapter 3, 

v , ( f | m ) = GiqMt) (16.18a) 

ypU\m) = H-liq)Giq)uit) + ( l - H~liq))yit) (16.18b) 

yk(t\m) = Wk(q)G(q)u(t) + ( l - W*fa)) .v( / ) (16.18c) 

with Wk determined as in (3.29). For an output error model, H(q) = 1, there 
is clearly no difference between the expressions in (16.18). Otherwise, note the 
considerable conceptual difference between yx and yp. The latter has y(t — 1) and 
earlier y-values available and can therefore give fits that "look good.'" even though 
the model may be bad. 

Example 16.1 A Trivial Model 

Consider the model 

m : yit\0) = yit - 1) 

It will predict the next output to be the previous one. For a data record that is sampled 
fast (like the one in Figure 14.1a), yp{t\m) will be practically indistinguishable from 
y(f ) . On the other hand, y s ( / | m ) = 0, so the model is useless for simulation. • 

For the general model (5.66) the simulated output is defined recursively as 

ys(t\m) = g(t.Z'-lJN) (16.19) 

Zr~] = {y,(r - l | m ) . w ( / - 1 ) . y , ( / - 2\m),uit -2) ys(\\m).u(\)\ 

For control applications, the predicted output over a time span that corresponds to 
the dominating time constant will be an adequate variable to look at. The simulated 
output may be more revealing, since it is a more demanding task to reproduce the 
output from input only. For an unstable model, we clearly have to use predictions. 
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Now, the models can either be evaluated by visual inspection of plots of vit) 
and yk(t\m), or by the numerical value 

1 : V 

Jk(m) = ^ £ | v < 0 ~ >* ( ' l™) | 2 06.20) 
r=t 

We will also use the notation Jp — J\ and Js = J-x. It is useful to give some 
normalized measure of this fit. Assume that y has been detrended to zero mean and 
define 

Mm) 
R~ = \ - - — ^ - (16.21) 

*E;=ii.v(oi 2 

Then R is that part of the output variation that is explained by the model, and is 
often expressed in %. See also (11.38). 

The quality measure Jk(m) will depend on the actual data record for which 
the comparison is made. It is therefore natural also to consider the expected value 
of this measure, where expectation is taken with respect to the data, regarding the 
model as a fixed, deterministic quantity: 

7k(m) = EJk{m) (16.22) 

This gives a quality measure for the given model. Now, m = Jvf(f?v) is itself a 
random variable, being estimated from noisy data. The expectation of the model fit 
with respect to 0,y gives a quality measure for the model structure M\ 

lk(M) = Elk(M{6N)) (16.23) 

It should be noted that for linear regression models, the measure Jp{m) can be 
computed for many models simultaneously. The requirement is only that the models 
are obtained by deleting trailing regressors. This follows from (10.11), which shows 
that the norm of the &:th row of R2 gives the increase Jp(m,\) — Jp{Trh) when the 
k:lh parameter is removed from the model structure. 

Comparing Models on Fresh Data Sets: Cross-Validation 

It is not so surprising that a model will be able to reproduce the estimation data. The 
real test is whether it will be capable of also describing fresh data sets from the process. 
A suggestive and attractive way of comparing two different models rri\ and is to 
evaluate their performance on validation data, e.g., by computing Jk(trij) in (16.20). 
We would then favor that model that shows the better performance. Such procedures 
are known as cross-validation and several variants have been developed. See. for 
example, Stone (1974)and Snee (1977). An attractive feature of cross-validation 
procedures is their pragmatic character: the comparison makes sense without any 
probabilistic arguments and without any assumptions about the true system. Their 
only disadvantage is that we have to save a fresh data set for the validation, and 
therefore cannot use all our information to build the models. 

For linear regressions, we can use Jp(m) in the following way: Let yp(t\mr) 
be computed for a model m, which is estimated from all data except the observa
tion (>(?). <p(t)). within the model structure M. Form J by summing over all the 



Sec. 16.4 Comparing Model Structures 501 

corresponding squared errors. T h e n J is a measure of the predictive p o w e r of this 
mode l structure in a cross-val idat ion sense , yet no data have b e e n "wasted" in the 
es t imat ion phase. The procedure is k n o w n as PRESS (Predict ion sum of squares) : 
see A l l en ( I 9 7 1 ) a n d D r a p e r and Smith (1981) . Sect ion 6.8. For dynamic sys tems that 
d o not have predictors with finite impulse responses , this is less easy to accompl i sh . 

Comparing Models on Second-hand Data Sets: Evaluating the 
Expected Fit 

The proper quality measure for the m o d e l m is the e x p e c t e d criterion Jk in (16.22) . 
If the m o d e l is eva luated on val idation data, the observat ion Jk is a reasonable and 
unbiased es t imate of This is why m o d e l eva luat ion o n val idation data is to be 
preferred. 

If w e use es t imat ion data for the comparisons , then Jk is n o longer an unbiased 
es t imate of Jk • In this sect ion we shall discuss the nature of this discrepancy in case 
the compar i son criterion co inc ides with the es t imat ion criterion. This m e a n s that the 
value Jp will equal the value of the identification criterion: 

1 N |2 1 S 

J P { m ) = JjT^ \>ir)
 - > '<' l£v) | =m}nJjJl Lv(f) - ft'Wl2

 (16 .24) 
t=\ i=i 

A Pragmatic Preview. The m o d e l ob ta ined in the larger m o d e l structure will auto
matically yield a smaller value of the criterion of fit. s ince it is the minimiz ing value 
obta ined by minimizat ion over a larger set . A s the m o d e l structure increases , as in 
(16 .2b) . the minimal value of the criterion will thus b e h a v e as depic ted in Figure 16.1: 
it is a monoton ica l ly decreas ing function of the m o d e l structure flexibility. To beg in 
with, the value Vy decreases s ince the m o d e l picks up m o r e of the relevant features 
of the data. But e v e n after a mode l structure has b e e n reached that a l lows a cor
rect descript ion of the system, the value V c o n t i n u e s to decrease , n o w because the 
addit ional (unnecessary) parameters adjust t h e m s e l v e s t o features of the particular 
real izat ion of the noise . This is k n o w n as overfit and this extra improved fit is of 
course of n o value to us, s ince w e are go ing to apply the m o d e l to data with differ
ent no i se realizations. It is reasonable that the decrease from overfit should be less 
significant than the decrease that results w h e n m o r e relevant features are included 
in the mode l . We will thus be look ing for the " k n e e " in the curve of Figure 16.1. 
Indeed , it is g o o d practice to plot this curve to get a subject ive op in ion o n w h e t h e r 
the improved fit is significant and worthwhi le . 

A Formal Result. For the case that the the compar i son criterion co inc ides with the 
es t imat ion criterion, w e have the fo l lowing result: 

Theorem 16.1. Let 

1 V 

0,v = a r g m i n VN(0. Z ; V ) = a r g m i n — V £ (e(t. 9), 0. t) 
w ft 9 /V L — ' 

V{9) = E£{e(t.8).9.t) = lim EVN{6,ZN) 
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Figure 16.1 The minimal value of the loss function as a function of the size of the 
model structures (16.2b). V.v = min V\-{9). 

Let 9* be the minimizing argument of V(9) and suppose 

EN(9N - $*)( 

Then, asymptotically, as N - > oc 

EN(0N - 9*)(9N - 9*)T PE as N -> oc 

EV(9N) » EVN0N, ZN) + \-\.xV"(9*)PE (16.25) 

with expectation over the random variable 0 # . 

P r o o / Expand V(0) around 9*: 

7(0, v ) = 7(0*) + i ( 0 i V - ^ * ) r F ' ( C A ' ) ( ^ - (16.26) 

Similarly, since 1^ , (0^ , ZN) = 0 , 

V v ( 0 j V , Z ' v ) = VN($*. ZN) - \(9N - 0 * ) r VA'(F*. 2 ' v ) ( r 3 j V - 0 ' ) (16.27) 

Take expectation of these two expressions and use the following asymptotic relation
ships 

E\(fiN - 0*)TV"(M(9N - 9*) 

= i £ t r { v ' U v ) ( 0 , v -0*)(9LW - 9 * ) T } * i t r V " ( 0 * ) / V (16.2S) 

where P\ = (1/N)PQ is the asymptotic covariance matrix of 0 # . Note that P\ 

decays as \ /N. Also, 

£i(8 l V - B*)TV^N, Z ' v ) ( 0 , v - 9*) « itr7"(0*)/>* (16.29) 

and 

EVN(9*,ZN) % 7(0*) 
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This gives, from (16.26) and (16.27), respectively, 

EV{6N) * V{B*) + \xrV'\0*)PN (16.30a) 

EVN($N. Z ; V ) % 7(0*) - ± t r V " ( 0 * ) P / v (16.30b) 

which concludes the proof. • 

Note the important difference between EV(0s) and EVN(0,V). If we gener
ate many estimation and validation data sets in a Monte-Carlo manner, the second 
measure would be the averages of the fits of the models as they are fitted to estima
tion data, while the first one is the average as the estimated models are evaluated 
on validation data. Clearly, it is this value that is the one to consider for validation 
purposes. 

Akaike's Final Prediction-Error Criterion (FPE). Let us now specialize to 
I (e(t. 6). 0, /) = e2(t, 0 ) . Then we have 

7, CM) = E V 0 N ) 

Let us also assume that 

• The true system is described by 0* = Oo, (i.e., 5 e M) 

• The parameters are identifiable so that V " ( 0 O ) is invertible (16.31) 

• The validation data have the same second order properties as the 
estimation data 

Then we can use Theorem 16.1 to determine a suitable estimate of J p that can 
be formed from estimation data only: We know from (9.17) that (note that V" = 
2E\}/ifT in our case) 

Pe = 2 A 0 [V"(0{>)]~1, where k0 = Ee2

0(t) = V(00) (16.32) 

The last of the assumptions (16.31) means that this function V(0) is the same as the 
one in (16.25). We can consequently use this expression for PQ in (16.25) which gives 

1P{M) = EV(0N) * VN0NjZN) + ^ t r [ V " ( 0 o ) [ V " ( 0 o ) ] - 1 ] 

= V N 0 N , Z N ) + ) J ^ 
N 

In the first step, we replaced E V,v(#,v, ZN) with the only observation we have of it, 
viz. VA (0,V. Z A ) . In the last step we used that 

trjv"(0o)['V7"(0o)]"1} = d i m 0 M = dM 



504 Chap. 16 Model Structure Selection and Model Validation 

The expression 

shows the fundamental cost of parameters. The more parameters are used bv the 
model structure, the smaller the first term will be. However, each parameter carries a 
variance penalty that will contribute with 2AQ//V to the expected mean square error 
fit. This is true regardless of the importance of the parameter for the fit. i.e.. how 
much it reduces the first term. Any parameter that improves the fit of V v by less 
than 2/.()/N will thus be harmful in this respect. 

Now, AQ is not known, but can easily be estimated. According to (16.30) (ig
noring the first expectation): 

V ; V (0 . V , ZN) * V(00) - i t rV"(f t>)P l V * AQ - D M ' A ° 
N 

A suitable estimate for A 0 is thus obtained as 

f = VN{0N.ZN)  
A * " 1 - (dM/N) 

which, inserted into (16.33), gives 

1 - (dja/N) 

1 + idM(N) 1 , * 

This criterion was first described by Akaike (1969)as a final prediction-error (FPE) 
criterion. It shows how to modify the loss function to get a reasonable estimate of 
the validation and comparison criterion J from estimation data only. The observed 
fit must be compensated for using the number of estimated parameters to give a fair 
picture of the model quality. 

A Note on Regularization. Suppose that we are using the regularized criterion 
(7.107): 

1 N 

WN(6,ZN) = - y ^ ( e ( f , 6 > ) ) + 6 | 0 - 0 * | 2 = Vjv(0. ZN) + 8\9-6*\2 (16.35) 
t=\ 
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Assume also that the true system is in the model set, that (16.31) holds and that 
94 = Oo. The latter assumption is of course not quite realistic, and we shall comment 
on it below. The calculations in Chapter 9 can directly be applied to (16.35), to give 

P» = \w"(0o)] 1 Q [W"(0O)] 1 , w"{Oo) = V"(0Q) + 81. Q = X0V"(9o) 

See (9.9)—(9.11). Inserted into the equation leading to (16.33), the trace-term be
comes (H = V"(90)) 

IIH(.H + srr'H(H + sir' = V , „ 0 

where o-, are the eigenvalues (singular values) of V"(0Q). This follows since H and 
H + 81 can be simultaneously diagonalized. This means that instead of (16.33), the 
regularized criterion leads to 

7pi!M) = EVNWS) Kv(0v. ZN) + - ^ Y - 4 ^ <16-36) 
N (cry + sy 

We note that with 5 = 0 the sum will equal d^. so the special case (16.33) is then 
re-obtained. Typically, the singular values of V"(0o) are widely spread so that either 
cr, 8 or 07 3> «5. which means that the sum really just counts the number of 
singular values that are larger then 5. We could think of this as the efficient number 
of parameters used by the model structure with the regularized criterion. The other 
parameters can be thought of as locked in by the regularization. Comparing with 
(16.33) we may regard the regularization parameter 8 as a knob by which we control 
the number of free parameters in the model structure, without having to decide which 
ones to set free. The criterion will then let M use those that have the largest influence 
on the fit. 

The expression (16.36) has been derived under the (unrealistic) assumption 
9* = 0Q. In the common case that 94 = 0. the regularization will cause a small 
bias in the parameters, due to the pull towards the origin. This is similar to the bias 
introduced by using too few parameters, so the bias-variance trade-off in terms of 
the regularization parameter 8 is still analogous to the one obtained by explicitly 
controlling the number of parameters. 

Model Structure Selection Criteria: AIC, BIC, and MDL 

Suppose that the prediction-error criterion is chosen as the normalized log-likelihood 
function [see (7.84)]: 

v 1 

V.v(0, Z ) = (log likelihood for the estimation problem) 
N 
1 v 

= L N { 9 , Z S ) (16.37) 
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PN = P7"^)] 1 ' ^ = [ELl-(90)] 1 (16.38) 

[see (7.80). (7.89), and (9.29)]. This inserted into (16.25) gives the criterion 

EVs(0N) = ~Lv($v.Z*') + ^ (16.39) 
N N 

since 
t r { v " ( 0 o ) • {V"(0o)] ' j = dxm01Kt = dM 

This expression is the Akaike AIC criterion (7.106). We can thus phrase the joint 
problem of model structure determination and parameter estimation as 

{6-y. it} = arg min min \-L\.(6M. Z ; V ) + dm] (16.40) 

where L.v is the log-likelihood function and superscript M denotes that 9M is asso
ciated with the model structure M. 

Example 16.2 AIC for Gaussian Innovations 

Suppose that the process innovations are Gaussian with unknown variance A. Then 

Z A ) = ^ - y >ogX - y l o g 2 , T 

where 9 = \9'. A] [see (7.87) and (7.17)]. For the inner minimization (within a given 
model structure) in (16.40), we have (see Problem 7E.7) 

0N = [§.v.£.vl 

Hence 

9'N- = a r g m i n y ^ g 2 ( f , 0 ) 

v N N * N 
Ln(0N.Z' ) = - y l o g A . v - y l o g 2 : r 

and the outer minimization (w.r.t !M) in (16.40) takes the form 

Then provided that (16.31) holds we know from the asymptotic distribution result of 
Section 9.3 that 
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The term to minimize is 
r 

log + 
2d Tit 

J = 1 

log (16.41) 

where the last approximation follows when dim 9^ <3C N. Note the similarity with 
(16.34). ' • 

The criteria that we have discussed here may. from a more pragmatic point of 
view, be seen as joint criteria for the determination of model structure and parameter 
values within the structure. Conceptually, they could be written 

W%{6.M.ZN) = KV(6>.ZA')(1 + Ux(.M)) (16.42) 

where V\ is the prediction-error criterion (7.155) within certain model structures M, 
and U\'(M) is a function that measures some "complexity" of the model structure. 
In the cases so far, this measure has been related to the dimensionality of 9\ 

2dimf? 
UN(M) = — — (16.43) 

N 
These criteria have been directed to find system descriptions that give the smallest 
mean-square error. A model that apparently gives a smaller mean-square (predic
tion) error fit will be chosen even if it is quite complex. In practice, one may want 
to add extra penalty in (16.43) for model complexity, reflecting the cost of using it: 
"If I am going to accept a more complex model (according to my own complexity 
measure) it has to prove to be significantly better!" 

What is meant by a complex model and what penalty should be associated with 
it are usually subjective issues. An interesting approach to this problem is taken by 
Rissanen (1978). He asserts that the ultimate goal of identification is to achieve the 
shortest possible description of data. This leads to a criterion of the type (16.42) with 

log AT 
UN(M) = d i m 0 • - 2 — ( 1 6 . 4 4 ) 

N 
called the M D L (minimum description length) criterion. This has also been termed 
"BIC" by Akaike. 

Statistical Hypothesis Tests (*) 

The selection between two model structures JMo and M\, subject to (16.2b), can also 
be approached by the theory of statistical tests. The idea is to pose the hypothesis 

HQ : the data have been generated by MoiO^) 

This hypothesis is to be tested against the alternative 

H] : the data have been generated by M\ {9^1) 

(16.45) 

(16.46) 
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If now M\ is "larger" than Jty). we should introduce a prejudice against M]. This 
means that we would prefer the set MQ unless there is "convincing evidence" that 
the hypothesis H\ is true. In statistics this is expressed as H() is the "null hypothesis." 

We should now like to make a decision between H{) and H\ such that the risk 
(the probability) of rejecting Ho when it is true is less than a certain number a. \ The 
smaller a is chosen the more prejudice is inflicted against -'Mi.) At the same time, 
we would like to maximize the probability that Ho is rejected when H\ is true. The 
latter quantity is known as the "power" of the test. 

Let 01 denote the limiting estimate in the model structure MK. If this value 
gives a correct description of the system ( 5 € MK). it can be shown under general 
conditions that 

N • > ~ € Asx2{d(k)) (16.4?) 

That is, the random variable on the left side converges in distribution to the x~ 
distribution with d(k){= d i m f ? ^ ) degrees freedom. This is proved in Lemma II.4 
for the case of linear regressions and by Astrom and Bohlin (1965)for A R M A X 
models. Notice that (16.47) is consistent with the expression (16.30b) in case 5 e IhU. 

Under the null hypothesis (16.45), it follows from (16.47) that 

N • ~m -\ — € AsX

2W\) - rf(0)) (16.48) 

The null hypothesis can thus be tested at any desired confidence level a using this 
expression. 

In case V\ is chosen as the log-likelihood function, this' test also becomes the 
likelihood ratio (LR) test (see, e.g., Kendall and Stuart, 1961), which has maximum 
power. Bohlin (1978)has derived a maximum power test that does not require the 
computation of the model in the large set. 

Using (16.48) amounts to rejecting Ho (and hence choosing the structure M-) 
if 

V ; V ( £ ; ? \ ZN) - Vv&y. ZN) > VN(0"\ Z ' v ) . 4 • (16-49) 

where kj(a) is the a level for the x2 distribution with d(\)—d(0) degrees of freedom. 
From a user's point of view. (16.49) thus coincides with the use of (16.41) (AIC) or 
(16.34) (FPE) , for d <$C N, with a such that 

kd(a) = 2(d(\) - d(0)) (16.50) 

This is satisfied for a somewhere between 7% and 1% depending on the difference 
d(l) — d{0) (within reasonable ranges). There is consequently a clear relationship 
between FPE, AIC, and hypothesis testing in practical use. See Soderstrom (1977)for 
further details. 
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For small A/, a more accurate expression than (16.48) is 

VvWx'.Z") - VN(d„\ZN) N - d(\) 
VS{B$\ZN) d(\) - d(0) 

€ AsF (N - </( l ) , r f ( l ) - d(0)) (16.51) 

(cf. Lemma II.4). Based on this asymptotic F-distribution, F-tests can be applied. 

16.5 M O D E L VALIDATION 

The parameter estimation procedure picks out the "best" model within the chosen 
model structure. The crucial question then is whether this "best" model is "good 
enough." This is the problem of model validation. The question has several aspects: 

1. Does the model agree sufficiently well with the observed data? 
2. Is the model good enough for my purpose? 
3. Does the model describe the "'true system"? 

Generally (Bohlin. 1991). the method to answer these questions is to confront the 
model M(8\) with as much information about the true system as is practical. This 
includes a priori knowledge, experiment data, and experience of using the model. In 
an identification application the most natural entity with which to confront the model 
is the data themselves. Model-validation techniques thus tend to focus on question 1. 
We shall in this section list a number of tools that are useful for discarding models, as 
well as for developing confidence in them. A particularly useful technique, residual 
analysis, is treated separately in the following section. 

Validation with Respect to the Purpose of the Modeling 

While question 3 is intriguing, it is also, philosophically, impossible to answer. What 
matters in practice is question 2. There is always a certain purpose with the modeling. 
It might be that the model is required for regulator design, prediction, or simulation. 
The ultimate validation then is to test whether the problem that motivated the mod
eling exercise can be solved using the obtained model. If a regulator based on the 
model gives satisfactory control, then the model was a "valid" one, regardless of the 
formal aspects on this concept that can be raised. Often it will be impossible, costly, 
or dangerous to test all possible models with respect to their intended use. Instead, 
one has to develop confidence in the model in other ways. 

Feasibility of Physical Parameters 

For a model structure that is parametrized in terms of physical parameters, a natural 
and important validation is to confront the estimated values and their estimated 
variances with what is reasonable from prior knowledge. It is also good practice to 
evaluate the sensitivity of the input-output behavior with respect to these parameters 
to check their practical identifiability (this should also be reflected by the estimated 
variances). 
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Consistency of Model Input-Output Behavior 

For black-box models, we focus our interest on their input-output properties. For 
linear models, we would normally display these as Bode diagrams. For non-linear 
models, they would be inspected by simulation (see the following). It is always good 
practice to evaluate and compare different linear models in Bode plots, possibly with 
the estimated variance translated to confidence intervals of C (and H), see (9.5M). 
Comparisons between spectral analysis estimates (6.46) and Bode plots derived from 
parametric models are especially useful, since they are formed from quite different 
underlying assumptions (i.e., model structures; see Problem 7G.2). 

Generally, when the true system does not belong to the model set, we obtain 
an approximation whose character will depend on the experimental conditions, the 
prefilters used, the criterion, and the model structure (Chapter 8). Thus, comparing 
Bode plots of models obtained by prediction error methods in different structures, 
as well as with different prefilters, by the subspace method and by spectral analysis 
will give a good feel for whether the essential features of the dynamics have been 
captured. 

Model Reduction 

One procedure that tests if the model is a simple and appropriate system description 
is to apply some model-reduction technique to it. If the model order can be reduced 
without affecting the input-output properties very much, then the original model was 
"unnecessarily complex."' Soderstrom (1975b)has developed this idea for pole-zero 
cancellations. 

Parameter Confidence Intervals 

Another procedure that checks whether the current model coritains too many param
eters is to compare the estimate with the corresponding estimated standard deviation 
(see Section 9.6). If the confidence interval contains zero, we could consider whether 
this parameter should be removed. This is usually of interest only when the corre
sponding parameter reflects a physical structure, such as model order or time delay. 
If the estimated standard deviations are all large, the information matrix is close to 
singular. This also is an indication of too large model orders (see Section 16.3). 

Simulation and Prediction 

In Section 16.4 we used the models ' ability to reproduce input-output data in terms 
of simulations and predictions as a main tool for comparisons. Such plots, and the nu
merical fits associated with them, are of course most useful and intuitively appealing 
also for evaluating a given model. We see exactly what features the model is capable 
of reproducing and what features it has not captured. The discrepancies can be due 
to noise or model errors, and we will see the combined effects of these sources. If 
we have an independent estimate of the noise level, e.g., from (7.154). we will also 
be able to tell from Jk(m) in (16.20) what the size of the model error is. 
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16.6 RESIDUAL ANALYSIS 

The '•leftovers'" from the modeling process—the part of the data that the model could 
not reproduce—are the residuals 

e(t) = eitJN) = y ( / ) - >-</ |0 l V ) (16.52) 

It is clear that these bear information about the quality of the model. In this section 
we shall discuss informal and formal methods to draw conclusions about the model 
validity from analysis of the residuals. 

Pragmatic Viewpoints 

The bottom line really is that we have a data set Z v , be it estimation or validation 
data, and a nominal model m . We want to know the quality of the model, which in 
a sense is a statement about how it will be able to reproduce new data sets. A simple 
and pragmatic starting point is to compute basic statistics for the residuals from the 
model: 

1 * 
Si = max \e(t)\. S; = - e2(t) (16.53) 

i " N L—t 

t=] 
The intuitive use of these statistics would then be like this: "This model has never 
produced a larger residual than Si (or an average error of S2) for all data we have 
seen. It's likely that such a bound will hold also for future data." Indeed, the 
rationale of the different identification criteria could be said to allow for as strong 
such statements as possible. Now. this use of the statistics (16.53) has an implicit 
invariance assumption: The residuals do not depend on something that is likely to 
change. Of special importance is. of course, that they do not depend on the particular 
input used in Z A . If they did, the value of (16.53) would be limited, since the model 
should work for a range of possible inputs. To check this, it is reasonable to study 
the covariance between residuals and past inputs: 

1 J V 

= - £ > ( 0 " ( ' - T ) (16-54) 
1=1 

If these numbers are small (and we shall shortly quantify what that should mean) 
we have some reason to believe that the measures (16.53) could have relevance also 
when the model is applied to other inputs. 

Another way to express the importance of R'gU being small is as follows: If there 
are traces of past inputs in the residuals, then there is a part of y(t) that originates 
from the past input and that has not been properly picked up by the model m. Hence, 
the model could be improved. 

Similarly, if we find correlation among the residuals themselves, i.e., if the num
bers 

1 N 
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are not small for r ^ 0, then part of £{t) could have been predicted from past 
data. This means that y(t) could have been better predicted, which again is a sign uf 
deficiency of the model. 

From a more formal point of view we have motivated the estimation criterion 
as a maximum likelihood method, assuming that the data have been generated as in 
(7.82): 

y(t) = g(t.2N:0x) + e(t) (16.56) 

where the £(/) have the properties given by (7.81) to be independent of each other 
and past data. The model validation question related to data. then, is "is it likelv 
that the data record 2 s actually has been generated by (16.56)?'" This question is 
equivalent to "Is it likely that 

s(t) = y(r) - g(t.Zs:6N) (16.571 

is a sequence of independent random variables with P D F fe(x, t: 0.v)?" Clearly 
(16.55) and (16.54) form the basis to part of the answer. 

Whiteness Test 

The numbers R? ( r ) carry information about whether the residuals can be regarded 
as white. To get an idea of how large these numbers may be if indeed £(t) are white, 
we reason as follows: Suppose {e(t)) is a white noise sequence with zero mean and 
variance A. Then it follows from Lemma 9A.1 that 

, N r e < ' - A> 

Le(t - M) J 

e(t) € AsN(0.X- • /) 

f 
The k:th row of this vector is y/N R'^(k). Under the assumption that the e are white, 
this consequently means that 

5 £ ( ^ ) ) : 

T = l 

should be asymptotically x 2(M)-distributed (cf. Appendix II). Replacing the un
known A. by the obvious estimate does not change this, asymptotically. (Rightly, the 
distribution becomes an F-distribution, see (11.79). but we anyway assume j V to be 
large.) The test for whiteness will thus be if 

N 

( * f < 0 ) ) - i ; 

(16.58) 

will pass a test of being x2( A/) distributed, i.e., by checking if ^\.M < x«W- the 
a level of the x2(M)-distribution. 
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In addition to this whiteness test, more tests can be performed, like the number 
of sign changes of s (t), and histogram test for the distribution o f f . See. e.g., Draper 
and Smith (1981), Chapter 3. for details of such tests. 

Independence between Residuals and Past Inputs 

To investigate which requirements should be associated with (16.54). we define 

1 

M = M2 — A / j + 1 = dim <p 

u(t - Mi) 

u(t - M2) (16.59) 

Note that the k:th component of r is equal to \f~N R^u (k + M\ — 1), given by (16.54). 
If the £ are independent of <p and can be written as 

£(t) = ~ = * ( 0 white noise with £ r ( r ) = k (16.60) 
k=0 

then it follows from (9.38)-(9.40) that 
oc 

r£ € AsN(Q.kP), P = Ey(t)v>T{t). <p{t) = + k) (16.61) 
A=l 

It can be shown that the [k, I) e lement of P can also be expressed as 
oc 

Y RAt)Ru(t - (k - £ ) ) . R £ ( T ) = Ee(r)e(t-T), Ru(z) = Eu(t)u(t - x) 

Now. (16.61) implies that 

= \r»p-l[r%\T € AsX

2(M) 

(16.62) 

(16.63) 

iff is independent of the inputs. Thus, Cv M is the right quantity to subject to a / 2 (Af) 
test. Note that we need to estimate a model (16.60) to be able to form this quantity. 
If £ is assumed to be white noise, or has passed the test (16.58), the calculation of 
r % M is simplified. 

A simple use of (16.54) is to consider just one given r as follows: From the 
calculations above, it follows that 

oc 

VNR?U{T) € AsN(0. Pi). Pi = ] P RAk)Ru(k) (16.64) 
k=-x 

If Na denotes the a level of the N(0.1) distribution, we could thus check if 

< J—Na ~ V N 0 
(16.65) 
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If not, the hypothesis that e{t) and u(t — r ) . are independent should be rejected. 
* v 

An appealing way to carry out the test is to plot R*U(T) as a function of T . Since P, 
in (16.55) does not depend on r . the confidence limits will be horizontal lines. Such a 
plot gives valuable insight in the correctness of the model structure. If, for example, 
a time delay of two samples has been assumed in the model, but the true delay is 
one sample, then a clear correlation between u(r — 1) and s(t) will show up. When 
examining plots of / ?p w ( r ) . note the following points: 

1. Correlation between u(t — r ) and e(t) for negative r is an indication of output 
feedback in the input, not that the model structure is deficient. 

2. The least-squares method constructs 0;y so that e(t. Ox) is uncorrelated with 
the regressors. We thus have R*U(T) = 0 for r = 1, . . . . automatically for 
the model structure (4.7), when the analysis is carried out on estimation data. 

This means that some care should be exercised when the numbers M\ and A/ : 

in <p(t) are selected. If estimation data are used, together with an A R X model of 
order na.nt,. we should thus have M\ > n^. Similarly, it is natural to take M\ > 0 if 
only causal dependence from past inputs shall be tested. Note that the levels of the 
tests are somewhat effected by w nether estimation or validation data are used. See 
Soderstrom and Stoica (1990)for an analysis of this. 

Independence between u and e can also be measured in other terms. Un-
modeled nonlinear effects can. for example, be seen in scatter plots of the pairs 
(e(t).u(t — T ) ) , or by correlating non-linear transformations of s and u. See, 
for example. Draper and Smith (1981), Chapter 3, Cook and Weisberg (1982). and 
Anscombe and Tukey (1963)for general aspects on residual testing, and Billings 
and Tao (1991). Lee. White, and Granger (1993), and Luuk.konen. Saikkonen. and 
Terasvirta (1988)for tests that specifically aim at detecting Nonlinearities. 

Tests for Dynamical Systems 

Testing the correlation between past inputs and the residuals is natural to evaluate if 
the model has picked up the essential part of the (linear) dynamics from u to y . For a 
dynamical model, the results of the tests can however be visualized more effectively 
if we view them as estimates of the residual dynamics or Model Error Model: 

e{t) = G£{q)u{t) (16.66) 

In fact, if the input is white, then R^U{T) are approximately the components of the 
estimate Ox obtained in the FIR-model 

e{t) = 0T<p{t) 

with cp given by (16.59). i.e., the impulse response of (16.66). For the case of non-
white input, it will be easier to evaluate a plot of the impulse response estimate of 
G f than of the correlation estimates / ? * , since the latter also are affected by the 
internal correlation of u. 
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Even more effective from a control point of view will be to display the frequency 
function of the estimate G£ {elti>), along with estimated confidence regions. This gives 
a picture of what frequency ranges the model has not captured in the input-output 
behavior. Depending on the intended use, the model could then be accepted, even 
when (16.65) is violated, provided the errors occur in '"harmless" frequency ranges. 

Example 16.3 Residual Analysis for Dynamic Systems 

The system 

yit) - 1.2v(f - 1) - 0.15y(r - 1) + 0.35y(/ - 3) 

= u(t - 1) + 0.5H(* - 2) + e(t) - < ? ( / - ! ) + 0Ae(t - 2) 

was simulated over 500 samples with an input consisting of sinusoids between 0.3 
and 0.6 rad/sec, and white Gaussian noise e with variance 1. A second order A R X 
model m was identified from these data. A validation data set was generated using 
a random binary input with a resonance peak around 0.3 rad/sec. Figure 16.2a shows 
the result of conventional residual analysis when m was confronted with these data. 
Figure 16.2b shows the impulse and frequency responses of the model-error model 
(16.66), estimated as a 10th order A R X model. It is clear that the frequency function 
plot of the error model gives much more precise information about the model 's 
qualities, from a control point of view. In Figure 16.3, the amplitude Bode plots 
of the model and the true system are compared, and we see that the model error 
information from validation data is quite reliable, • 

Error Model Impulse Response 

0 5 10 15 20 25 0 5 10 15 

Error Model Frequency Response 

(a) Conventional residual analysis (b) Model-error model estimated from 
correlation functions. validation data. 

Figure 16.2 Model validation of the second order ARX model using validation data. 
Dash-dotted lines denote confidence intervals. For the frequency domain plot, the confidence 
interval is marked as a shaded region. 
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10- 2 10- 1 10° io 1 

Figure 163 Amplitude Bode plots of the model m (solid line) and the true 
system (dashed line). 

Critical Data Evaluation 

The residuals £(r. 0,v) will also tell us, inserted into the influence function (15.12). 
which data points have had a large impact on the estimate. The reliability of these 
points should be critically evaluated as part of the model-validation procedure. It is 
always good practice to plot s(t, 0^) to inspect the data for outliers and "bad data." 
Compare Example 14.1. 

16.7 S U M M A R Y 

The "true system'" is an esoteric entity that cannot be attained in practical modeling. 
We have to be content with partial descriptions that are purposeful for our applica
tions. Sometimes this means that we may have to work with several models of the 
same system that are to be used for different operating points, for different time scale 
problems, and so on. 

In this chapter we have described various methods by which suitable model 
structures can be found and by which we can reject or develop confidence in partic
ular models. Among a priori considerations, we may single out the principle "Try 
simple things first." This usually means that one should start by testing simple linear 
regressions, such as A R X models in the linear case, and variants with non-linear data 
transformations based on physical insight, whenever appropriate. 

For validation of models, we have described an arsenal of methods of different 
characters. It is wise to include several of these in one's toolbox. We may point to 
the following: 

• Comparing linear models obtained under various conditions in various model 
structures (including spectral analysis estimates) in Bode plots 

• Comparing measured and simulated outputs for models obtained in different 
structures 

• Testing residuals for independence of past inputs and possibly for whiteness 

1 0 2 
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• Monitoring parameter estimate confidence intervals for trailing and leading 
zeros in transfer-function polynomials, as well as for possible loss of local iden
tifiability 

Finally, the subjective ingredient in model validation should be stressed. The 
techniques presented here should be viewed as advisers to the user. It is the user that 
makes the decision. In the words of Draper and Smith (1981, p. 273). "The screening 
of variables should never be left to the sole discretion of any statistical procedure." 

16.8 BIBLIOGRAPHY 

General treatments of the model structure determination problem for dynamical sys
tems are given by Bohlin (1991)and Soderstrom (1987). General discussions on this 
problem can also be found in Hoaglin, Mosteller. and Tukey (1983). Experimental 
comparisons between different techniques are carried out in van den Boom and van 
den Enden (1974), Unbehauen and Gohring (1974). and Freeman (1985). Kashyap 
and Rao (1976)contains detailed discussions on the problem. 

General hypothesis testing, power of tests, and the like, can be studied in 
Kendall and Stuart (1961). Bohlin (1978)developed a general maximum power test 
for dynamical systems. Akaike's AIC has been widely applied. See Akaike (1974a. 
1981). Cross-validation and its relationship to A I C have been studied by Stone 
(1974, 1977a and b). Rissanen's criterion (16.44) has been studied also by Schwarz 
(1978)and another variant by Hannan and Quinn (1979). Rissanen has developed his 
M D L criterion in a very interesting framework of information, coding, prediction, 
and estimation. See. for example. Rissanen (1984. 1985.1986, 1989). 

The model order determination problem in time-scries modeling has received 
considerable attention. See, for example. Hannan (1980b). Shibata (1976,1980). and 
Fine and Hwang (1979). 

Tests for residual independence are treated in many textbooks (e.g.. Draper 
and Smith. 1981: Jenkins and Watts. 1968: Box and Jenkins. 1970). Ljung and van 
Overbeek (1978)describe how to validate models based on how the resulting model 
depends on the experimental condition. 

Regularization is treated, e.g.. in Wahba (1987). It can also be shown that 
the number of iterations used when minimizing the criterion plays a role similar to 
regularization: First the parameters that are very important for the fit will get close to 
their minimizing values, while the less important parameters will move slower (unless 
we have a pure quadratic criterion and apply a Newton method). Increasing the 
number of iterations will thus be the same as decreasing the regularization parameter. 
"Too many" iterations (when the model really is overparameterized) will thus lead 
to overfit. In the neural network literature this has been called overtraining. See. 
e.g., Wahba (1987)and Sjoberg and Ljung (1995). 

From a quite different perspective, in the 1990's there has been a substantial 
interest in model validation for control applications. This literature typically ad
dresses the question of whether a given bound on the model-error model (16.66). 
and on the system disturbance v. together with a nominal model for control design, 
is consistent with a given validation data set. See, e.g.. Skelton (1989), Kosut, Lau. 
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and Boyd (1992), Smith and Doyle (1992), Poolla et.al. (1994), Rangan and Poolla 
(1996), and Smith and Dullerud (1996). These approaches typically deal with a worst 
case scenario for the noise sequence, i.e., no averaging properties of the noise are 
taken into account. This also gives rise to so-called hard bounds on the uncertainty. 
See Wahlberg and Ljung (1992), Makila. Partington, and Gustafsson (1995), Makila 
(1992). and Tse. Dahleh. and Tsitsiklis (1993). Another focus is to characterize the 
model-error model in suitable terms: Goodwin, Givers, and Ninness (1992), Ninness 
and Goodwin (1995), and Ljung and Guo (1997). 

16.9 PROBLEMS 

16G.1 Mallows Cp-criterion: Mallows (1973)has suggested the following criterion for se
lecting model structures: 

,v 

C, = - ^ - T 2 i N - 2p) 
s \ 

Here p is the number of estimated parameters , and s1^ is an estimate of the innovations 
variance, normally taken as the normalized sum of prediction errors for the largest 
model structure considered. Cp is to be minimized w.r.t p. Discuss the relationship 
between Cp and AIC. 

16E.1 Consider the discrete-time system 

S : (1 - 0 .95<? _ 1 ) 5 y(r ) = u{t - 1) 

and a model parametrized in terms of the A R X structure / 

M : y{t) + tfiy(f - 1) + • • • + « 5v(f - 5) = u(t - 1) 

The true value of «5 is thus (—0.95) 5 = -0 .77378 . Suppose that we obtain a model 
where a\ a 4 are exactly correct, but where a , = —0.77379. Where are the poles 
of this model? Suggest an alternative model structure for identifying S that is les< 
sensitive to numerical errors. 

16E.2 Consider the A R M A X model 

A(q)y(t) = B(q)u(t) + C(q)e(t) 

Discuss how to test the hypothesis that A(q) = C(q), that is, we have white measure
ment errors. 

16E.3 Consider a model structure 

A(q)y(t) = q-kB(q)u(t) + e(t) 

with a time delay of k units. Discuss how to determine a good value of k based on 
several different techniques described in this chapter. 
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16E.4 Show that R defined by (16.21) is the correlation coefficient between y ( / ) and yit) 
in case the model has been estimated from the data by minimization of J\{M) in a 
linear regression model structure. 

16T.1 Let {e(t )} be a process independent of u(t) and such that 

e(t) = H-i(q)E(t) 

is white noise with variance A . Let 
uit - s - 1) " 

.9 - M ) J 

Let 

Show that 



17 

SYSTEM IDENTIFICATION IN 

PRACTICE 

In this book we have dealt with the theory of system identification. Performing the 
identification task in practice enhances the "art side" of the topic. Experience, intu
ition, and insights will then play important roles. In this final chapter we shall discuss 
the system identification techniques as a toolbox for investigating, understanding, 
and mastering real-life systems. We shall first, in Section 17.1. describe the system 
identification tool in the hand of the user: interactive computing. Section 17.2 dis
cusses the practical side of identification; how to approach the task. Then, in Section 
17.3 we discuss a few applications to real data sets. Finally, in Section 17.4 we try to 
answer the ultimate question: What does system identification have to offer for real 
problems in engineering and applied science? 

The work to produce a model by identification is characterized by the following 
sequence: 

1. Specify a model structure. 
2. The computer delivers the best model in this structure. 
3. Evaluate the properties of this model. 
4. Test a new structure, go to step 1. 

See Figure 17.1, which is a more elaborate version of Figure 1.10. The first thing that 
requires help is to compute the model and to evaluate its properties. There are now 
many commercially available program packages for identification that supply such 
help. They typically contain the following routines: 

A Handling of data, plotting, and the like 
Filtering of data, removal of drift, choice of data segments, and so on. 

B Nonparametric identification methods 
Estimation of covariances, Fourier transforms, correlation and spectral analysis. 
and so on. 

17.1 THE TOOL: INTERACTIVE SOFTWARE 

520 
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Should data 
be filtered? 

Choice of 
model structure 

Data 
not OK 

Construct the 
experiment and 

collect data 

I Data 

Polish and 
present data 

Data 

Model structure 
not OK 

No 

Fit the model 
to the data 

Model 

1 
Validate 

the model 

I 
Can the model 
be accepted? 

Yes 

Figure 17.1 Identification cycle. Rectangles: the computer's main responsibility. 
Ovals: the users main responsibility. 

C Parametric estimation methods 
Calculation of parametric estimates in different model structures. 

D Presentation of models 
Simulation of models, estimation and plotting of poles and zeros, computation 
of frequency functions and plotting in Bode diagrams, and so on. 

E Model validation 
Computat ion and analysis of residuals (e(t, 0^)): comparison between differ
ent models" properties, and the like. 
The existing program packages differ mainly by various user interfaces and by 

different options regarding the choice of model structure according to item C. 
One of the most used packages is Math Work's SYSTEM IDENTIFICATION TOOLBOX 

(SITB). Ljung (1995), which is used together with MATLAB . The command structure 
is given by MATLAB'S programming environment with the work-space concept and 
M A C R O possibilities in the form of m-files. SITB gives the possibility to use all model 
structures of the black-box type described in Section 4.2 with an arbitrary number of 
inputs. ARX-models and state-space models with an arbitrary number of inputs and 
outputs are also covered. Moreover, the user can define arbitrary tailor-made linear 
state-space models in discrete and continuous time as in (4.62), (4.84), and (4.91). A 
Graphical User Interface helps the user both to keep track of identified models and 
to guide him or her to available techniques. 
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Other packages of general type include PIM. Landau (1990), the Identification 
module in Matrix-X. Van Overschee et.al. (1994), A d a p t * . Larimore (1997). and 
the Frequency-Domain Identification Toolbox in MATLAB , Kollar (1994). A tool 
for specifically dealing with gray box identification, IDK1T. is described in Graebe 
(1990). 

17.2 THE PRACTICAL SIDE OF S Y S T E M IDENTIFICATION 

It follows from our discussion that the most essential element in the process of 
identification—once the data have been recorded—is to try out various model struc
tures, compute the best model in the structures, using the techniques of Chapter 
16. and then validate this model. Typically this has to be repeated with quite a few 
different structures before a satisfactory model can be found. 

The difficulties of this process should not be underestimated, and it will require 
substantial experience to master it. Here follows a procedure that could prove useful 
to try out. This is adapted from Ljung (1995). 

Step 1: Looking at the Data Plot the data. Look at them carefully. Try to 
see the dynamics with your own eyes. Can you see the effects in the outputs of 
the changes in the input? Can nonlinear effects be seen, like different responses 
at different levels, or different responses to a step up and a step down? Are there 
portions of the data that appear to be "messy" or carry no information? Use this 
insight to select portions of the data for estimation and validation purposes. 

D o physical levels play a role in the model? If not, detrend the data by removing 
their mean values. The models will then describe how changes in the input give 
changes in output, but not explain the actual levels of the signals. This is the normal 
situation. The default situation, with good data, is to detrend by removing means, 
and then select the first two thirds or so of the data record for estimation purposes, 
and use the remaining data for validation. (All of this cor/esponds to the "Data 
Quickstart" in the MATLAB Identification Toolbox.) ' 

Step 2: Getting a Feel for the Difficulties Compute and display the spectral 
analysis frequency response estimate, the correlation analysis impulse response esti
mate, as well as a fourth order A R X model with a delay estimated from the correla
tion analysis, and a default order state-space model computed by a subspace method. 
(All of this corresponds to the "Estimate Quickstart" in the MATLAB Identification 
Toolbox.) Look at the agreement between the 

• Spectral Analysis estimate and the A R X and state-space models ' frequency 
functions. 

• Correlation Analysis estimate and the A R X and state-space models ' transient 
responses. 

• Measured Validation Data output and the A R X and state-space models ' sim
ulated outputs. We call this the Model Output Plot. 

If these agreements are reasonable, the problem is not so difficult, and a relatively 
simple linear model will do a good job. Some fine tuning of model orders and noise 
models may have to be made, and we can proceed to Step 4. Otherwise go to 
Step 3. 
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Step 3: Examining the Difficulties There may be several reasons why the com
parisons in Step 2 did not look good. This step discusses the most common ones, and 
how they can be handled: 

• Model Unstable: The A RX or state-space model may turn out to be unstable, 
but could still be useful for control purposes. Then change to a 5- or 10-step 
ahead prediction instead of simulation when the agreement between measured 
and model outputs is considered. See (16.20). 

• Feedback in Data: If there is feedback from the output to the input, due to 
some regulator, then the spectral and correlation analysis estimates, as well as 
the state-space model, are not reliable. Discrepancies between these estimates 
and the A R X model can therefore be disregarded in this case. In residual anal
ysis of the parametric models, feedback in data can also be visible as correlation 
between residuals and input for negative lags. 

• Noise Model: If the state-space model is clearly bet ter than the A R X model 
at reproducing the measured output, this is an indication that the disturbances 
have a substantial influence, and it will be necessary to carefully model them. 

• Model Order: If a fourth order model does not give a good Model Output 
plot, try eighth order. If the fit clearly improves, it follows that higher order 
models will be required, but that linear models could be sufficient. 

• Additional Inputs: If the Model Output fit has not significantly improved by 
the tests so far. think over the physics of the application. Are there more signals 
that have been, or could be, measured that might influence the output? If so, 
include these among the inputs and try again a fourth order A R X model from 
all the inputs. (Note that the inputs need not at all be control signals: anything 
measurable, including disturbances, should be treated as inputs). 

• Nonlinear Effects: If the fit between measured and model output is still bad. 
consider again the physics of the application. Are there nonlinear effects in 
the system? In that case, form the nonlinearities from the measured data. This 
could be as simple as forming the product of voltage and current measurements, 
if it is the electrical power that is the driving stimulus in. say, a heating process, 
and temperature is the output. This is of course application dependent . It 
does not cost very much work, however, to form a number of additional inputs 
by reasonable nonlinear transformations of the measured signals, and just test 
whether inclusion of them improves the fit. 

• General Nonlinear Mappings: In some applications physical insight may be 
lacking, so it is difficult to come up with structured non-linearities on physical 
grounds. In such cases, nonlinear, black box models could be a solution. See 
Sections 5.4-5.6. 

• Still Problems? If none of these tests leads to a model that is able to reproduce 
the validation data reasonably well, the conclusion might be that a sufficiently-
good model cannot be produced from the data. There may be many reasons for 
this. The most important one is that the data simply do not contain sufficient 
information, e.g., due to bad signal to noise ratios, large and non-stationary 
disturbances, varying system properties, etc. 
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Otherwise, use the insights on which inputs to use and which model orders to expect 
and proceed to Step 4. 

Step 4: Fine Tuning Orders and Noise Structures For real data there is no 
such thing as a "correct model structure." However, different structures can give 
quite different model quality. The only way to find this out is to try out a number of 
different structures and compare the properties of the obtained models. There arc a 
few things to look for in these comparisons: 

• Fit Between Simulated and Measured Output. Look at the fit between the 
model 's simulated output and the measured one for the validation data. For
mally, pick that model, for which this number is the lowest. In practice, it is 
better to be more pragmatic, and also take into account the model complexitv. 
and whether the important features of the output response are captured. 

• Residual Analysis Test. For a good model, the cross correlation function be
tween residuals and input does not go significantly outside the confidence re
gion. See Section 16.6. A clear peak at lag k shows that the effect from input 
w(r — k) on y(r) is not properly described. A rule of thumb is that a slowly 
varying cross correlation function outside the confidence region is an indication 
of too few poles, while sharper peaks indicate too few zeros or wrong delays. 

For models that are to be used for control design, it is quite valuable to 
display the result of residual analysis in the frequency domain as in Example 
16.3. ' 

• Pole Zero Cancellations. If the pole-zero plot (including confidence inter
vals) indicates pole-zero cancellations in the dynamics, this suggests that lower 
order models can be used. In particular, if it turns out that the order of A R X 
models has to be increased to get a good fit, but that pole-zero cancellations are 
indicated, then the extra poles are just introduced to describe the noise. Then 
try A R M A X . O E . or BJ model structures with an Aj or F-polynomial of an 
order equal to that of the number of non-cancelled poles. 

What Model Structures Should be Tested? Well, any amount of time can be spent 
on checking out a very large number of structures. It often takes just a few seconds to 
compute and evaluate a model in a certain structure, so one should have a generous 
attitude to the testing. However, experience shows that when the basic properties 
of the system's behavior have been picked up, it is not much use to fine tune orders 
in absurdum just to improve the fit by fractions of percents. For A R X models and 
state-space models estimated by subspace methods there are also efficient algorithms 
for handling many model structures in parallel. 

Multivariable Systems. Multivariable systems are often more challenging to model. 
In particular, systems with several outputs could be difficult. A basic reason for the 
difficulties is that the couplings between several inputs and outputs leads to more 
complex models: The structures involved are richer and more parameters will be 
required to obtain a good fit. 

Generally speaking, it is preferable to work with state-space models in the 
multivariable case, since the model structure complexity is easier to deal with. It is 
essentially just a matter of choosing the model order. 
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Working with Subsets of the Input-Output Channels. In the process of identifying 
good models of a system it is often useful to select subsets of the input and output 
channels. Partial models of the system's behavior will then be constructed. It might 
not. for example, be clear if all measured inputs have a significant influence on the 
outputs. That is most easily tested by removing an input channel from the data, 
building a model for how the output(s) depend on the remaining input channels, 
and checking if there is a significant deterioration in the model output 's fit to the 
measured one. See also the discussion under Step 3 above. Generally speaking, 
the fit gets better when more inputs are included and worse when more outputs are 
included. To understand the latter fact, it should be realized that a model that has to 
explain the behavior of several outputs has a tougher job than one that simply must 
account for a single output. If there are difficulties to obtain good models for a multi-
output system, it might thus be wise to model one output at a time, to find out which 
are the difficult ones to handle. Models that just are to be used for simulations could 
very well be built up from single-output models, for one output at a time. However, 
models for prediction and control will be able to produce better results if constructed 
for all outputs simultaneously. This follows from the fact that knowing the set of all 
previous output channels gives a better basis for prediction than just knowing the 
past outputs in one channel. 

Step 5: Accepting the Mode! The final step is to accept, at least for the time 
being, the model to be used for its intended application. Note the following, though: 
No matter how good an estimated model looks on the computer screen, it has only 
picked up a simple reflection of reality. Surprisingly often, however, this is sufficient 
for rational decision making. 

17.3 S O M E APPLICATIONS 

The Hairdryer; A Laboratory Scale Application 

Consider as a real, but laboratory scale process, Feedback's Process Trainer PT326. 
depicted in Figure 17.2. Its function is like a hairdryer: air is fanned through a tube 
and heated at the inlet. The input u is the power of the heating device, which is just 
a mesh of resistor wires. The output is the outlet air temperature. It should be said 
that the process is well behaved: it has reasonably simple dynamics with quite small 
disturbances. It also allows measurements with good signal-to-noise ratio. 

Transient Response. The step response of the process is given in Figure 17.3. It 
reveals that the dynamics is simple, with no oscillatory poles, the dominating time 
constant is around 0.4 seconds, and there is a pure time delay of about 0.14 seconds. 

Experiment Design. To collect data for further analysis, a few decisions have to 
be taken. Following the discussion of Section 13.7, we select a sampling interval 
of 0.08 s, since Figure 17.3 clearly shows that the dominating time constant is not 
much less than 0.4 s. A shorter sampling interval would also mean several delays 
between the (sampled) input and output sequences. The input was chosen to be a 
binary random signal shifting between 35 and 65 W. The probability of shifting the 
input at each sample was set to 0.2. A record of 1000 samples was collected, and the 
data set is shown in Figure 17.4. As a first step, the sample means of the input and 
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Figure 173 The step response from the process. 
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Figure 17.4 The data set from the process trainer. This is the same set as d r y e r 2 
supplied with the System Identification Toolbox. 
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Figure 17.5 The step responses according to the correlation analysis estimate 
(solid), the fourth order ARX model (dashed), and the 3rd order state-space 
model (dotted). 

output sequences were removed (see the discussion of Section 14.1). Then the data 
set was split into two halves, the first to be used for estimation, and the second one 
for validation. 

Preliminary Models. Following Step 2 in Section 17.2 we estimate the step/ 
impulse response by correlation analysis, as described in Section 6.1, compute the 
spectral analysis estimate of the frequency function, as well as a fourth order A R X 
model and a state-space model (using a subspace method, according to (7.66)). The 
order of this model is selected automatically, and turned out to be 3 in this case. 
The results of these calculations are shown in Figures 17.5, 17.6. and 17.7. These 

Frequency (rad/s) 
Figure 17.6 The Bode plots from spectral analysis (solid), the ARX model 
(dashed) and the state-space model (dotted). 
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Measured and simulated model output 
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Figure 17.7 The measured output (dash-dotted) for the validation data set. 
together with the output from the ARX model (arxqs. solid), and the state-space 
model (n4s3, dashed) when simulated with the input sequence from the validation 
data set. The figures shown are the RMS-values of the difference between 
measured and simulated output. 

plots show that we have good agreement between the models computed in different 
ways. This is a clear indication that the models have picked up essential features of 
the true process. Moreover, the comparisons in Figure 17.7 show that even these 
" immediate" models are able to reproduce the input-output behavior quite well. All 
this indicates, according to Step 4 of Section 17.2. that a linear model will do fine, 
and some further work to fine-tune orders and delays is all that remains. 

Further Models. To look into suitable orders and delays, \£Q compute, simultane
ously. 1000 ARX-models of the type 

y(r ) + fliy(/ - 1) + . . . + a„ay(t - nfl) = b\u(t - nk) + . . . + bnbu(t - nk - n b + 1) 

consisting of all combinations na. and nk in the range 1 to 10. The different A R X 
models will be referred to as ARX(r t r t , rib. nk). The prediction errors of each model 
are then computed for the validation data, and their sum of squares is computed. The 
result is shown in Figure 17.8. where the fit for the models is depicted as a function of 
the number of parameters used. Only the fit for best model with a given number ot 
parameters is shown. The overall best fit is obtained for a model with 15 parameters, 
which turns out to be na = 6, n& = 9 and nk = 2. The figure also shows thai 
almost as good a fit is obtained also for models with much less parameters, like 4. 
In this case the best orders turn out to be na = 2, nb = 2, and nk = 3. These 
models are added to the model output comparisons in Figure 17.9. We see that the 
higher order A R X model is able to reproduce the validation data best, but that the 
differences between the models really are minor. We compute also a state-space 
model of order 6 as well as an ARMAX-mode l with na = 3, nb = 3, nc = 2 . and 

' ' • 1 —i r 
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Figure 17.8 The best fit to validation data for ARX-models as a function of the 
number of used parameters. 

rtfc = 2. These models are also shown in the same plot. The residuals of the models 
(computed from the validation data) are analyzed in Figure 17.10. It shows that the 
ARMAX(3,3,2,2) model and the ARX(9,6.2) model both give residuals that pass 
whiteness and independence tests, while the model ARX(2,2,3) shows statistically 
significant correlation between past inputs and the residuals. 

Final Choice of Model. Based on this analysis we conclude that there are many 
linear models that give a good fit to the system. The ARX(9.6,2) model shows the 
best fit to validation data, but is at the same time only marginally better than the 
simpler, third order ARMAX(3,3,2.2) model. Both also pass the residual analysis 

Figure 17.9 Comparisons between several different models, based on the fit 
between measured and simulated output. 
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Figure 17.10 Results from the residual analysis of three different models: solid 
line ARX{9.62). dashed line ARX(2.2.3). Dotted lines ARMAX(3,3.2.2). The 
horizontal lines mark the confidence regions. 

tests. It seems reasonable to pick this simple model as the final choice. The numerical 
value is 

y(f) - 1.4898y(r - 1) + 0.7025y(f - 2) - 0.1123y(f - 3) = 0.0039«(f - 2.) 

+ 0.0621w(r - 3) + 0.0284a(r - 4) + e(t) - 0.5474e(f - 1) 

+ 0.2236e(r - 2) 

The estimated standard deviations of the 8 parameters are 

[0.0574 0.0849 0.0333 0.0015 0.0023 0.0055 Tj.0710 0.0523] 

We see that the coefficient for u(t — 2) is on the borderline from being significantly 
different from zero. This is the reason why models with delay H*=3 also work well. 
However, the small effect from the term u(t — 2) does give an improved fit. 

The estimated standard deviation of the noise source e(t) is 0.0388. 

A Fighter Aircraft 

Consider the aircraft Example 1.2 with data shown in Figure 1.6. Note that these 
data were collected under closed loop operation. 

To develop models of the aircraft's pitch channel from these data, we proceed 
as follows. The data set is first detrended, so that the means of each signal is removed. 
Then the data is split into one set consisting of the first 90 samples, to be used for 
estimation, and a validation data set consisting of the remaining 90 samples. As a 
main tool to screen models we computed the R M S fit between the measured output 
and the 10-step ahead predicted output according to the different models. In these 
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Figure 17.11 Measured output (dash-dotted line) and 10-step ahead predicted 
output (solid line) for aircraft validation data, using an ARX model with 
na = 4.,i* = 4,/ij; = I.Jk = 1.2.3. 

calculation the whole data set was used—in order to let transients die out—but the 
fit was computed only for the validation part of the data. The reason for using 10 step 
ahead predictions rather than simulations is that the pitch cannel of the aircraft is 
unstable, and so will most of the estimated models also be. A simulation comparison 
may therefore be misleading. 

A typical starting A R X model, using 4 past outputs and 4 past values of each 
of the 3 inputs, gave a fit according to Figure 17.11. We see that we get a good fit, so 
it seems reasonable that we can do a good modeling job with fairly simple models. 
As a next step we calculate 1000 A R X models corresponding to orders in inputs and 
outputs and delays ranging between 1 and 10. (In this case all 3 input orders were 
kept the same.) The best 1-step ahead prediction fit to the validation data turned out 
to be for a model 

v(r) + tfiy(f - 1) + . . . + a„ay(t - na) 

= b{l)uAt - 1 ) + b\2}u2(t - 1 ) + b[3)u3(t - 1 ) + e(t) (17.1) 

with na = 8. See Figure 17.14. Note in particular that models that use many 
parameters are considerably much worse for the validation data. Models of the kind 
(17.1) with other values of na were also estimated, as well as A R M A X models and 
state-space models using the N4SID method. A comparison plot based for several 
such models is shown in Figure 17.12. The best 10-step ahead prediction fit is obtained 
for the A R X model with na = 4. (Note, though, that the best 1-step ahead prediction 
is obtained for na = 8. as was said above.) The comparison for that model is shown 
in Figure 17.13. The result of residual analysis for this model on validation data is 
shown in Figure 17.15. We see that this simple model with 7 parameters is capable 
of reproducing new measurements quite well, at the same time it is not falsified by 
residual analysis. 
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Figure 17.12 As Figure 17.11 but for several different models. 
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Figure 17.13 As Figure 17.11 but for the best ARX model. 
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Figure 17.14 Comparisons of the 1-step ahead prediction error for 1000 
ARX-models for the aircraft data. 
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Figure 17.15 Residual analysis the best ARX model for the validation aircraft 
data. 

Buffer Vessel Dynamics 

This example concerns a typical problem in process industry. It is taken from the 
pulp factory in Skutskar, Sweden. Wood chips are cooked in the digester and the 
resulting pulp travels through several vessels where it is washed, bleached etc. 

The pulp spends about 48 hours total in the process, and knowing the residence 
time in the different vessels is important in order to associate various portions of 
the pulp with the different chemical actions that have taken place in the vessel at 
different times. Figure 17.16 shows data from one buffer vessel. We denote the 
measurements as follows: 

y(t) : The K-number of the pulp flowing out 

u(t) : The /c-number of the pulp flowing in 

f(t) : The output flow 

h{t) : The level of the vessel 

The problem is to determine the residence time in the buffer vessel. (The K-number 
is a quality property that in this context can be seen as a marker allowing us to trace 
the pulp.) 

To estimate the residence time of the vessel it is natural to estimate the dynamics 
from u to y. That should show how long time it takes for a change in the input to 
have an effect on the output. 

We can visually inspect the input-output data and see that the delay seems to 
be at least an hour or two. The sampling rate may therefore be too fast and we 
resample the data (decimate it) by a factor of 3, thus giving a sampling interval of 12 
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Figure 17.16 From the pulp factory at Skutskar. Sweden. The plots show the K -number of 
the pulp flowing into a buffer vessel. The K -number of the pulp coming out from the buffer 
vessel. Flow out from the buffer vessel. Level in the buffer vessel. The sampling interval is 4 
minutes, and the time scale shown in hours. 

minutes. We proceed as before, remove the means from the K -number signals, split 
into estimation and validation data and estimate simple ARX-models . This turns out 
to give quite bad results. 

According to the recipe of Section 17.2 we should then contemplate if there 
are more input signals that may affect the process. Yes, clearly the flow and level of 
the vessel should have something to do with the dynamics, so we include these two 
inputs. The best model output comparison was achieved for an A R X model with 4 
parameters associated with the output and each of the inputs, a delay of 12 from u 
and a delay of 1 from / and h> This comparison is shown id Figure 17.17. This does 
not look good. 

Measured and simulated model output 

Best Fits 
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Figure 17.17 The measured validation output y (dash-dotted line) together with 
the best linear simulated model output for the system from u, f.h to y. 
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Some reflection shows that this process indeed must be non-linear (or time-
varying): the flow and the vessel level definitely affect the dynamics. For example, if 
the flow was a plug flow (no mixing in the vessel) the vessel would have a dynamics of 
a pure delay equal to vessel volume divided by flow. This ratio, which has dimension 
time, is really the natural time scale of the process, in the sense that the delay would 
be constant in this time scale for a plug flow, even if vessel flow and level vary. 

Let us thus resample the date accordingly, i.e. so that a new sample is taken (by 
interpolation from the original measurement) equidistantly in terms of integrated 
flow divided by volume. In MATLAB terms this will be 

z = [y#u]; pf = f./h; 
t =1:length(z) 
newt = interpl<cumsum(pf+0.00001),t,[pf(1):sum(pf)]' ); 
newz = interplft,z, newt); 
yl=newz(:,1); ul=newz(:,2) 

(The small added number to pf is in order to overcome those time points where the 
flow is zero.) The resampled data are shown in Figure 17.18. We now apply the same 
procedure to the resampled data u\ and y\. The best A R X model fit was obtained 
for 

y\{t) + - 1) + . . . + a4yi(t - 1) = M i t t - 9) + e(t) 

Slightly better fit was obtained for an output-error model (4.25) with the same orders 
(fif, = l,n/ = 4, / I* = 9). The comparison is shown in Figure 17.19. This k i looks 
good." 

K - number of Inflow 

Figure 17.18 The input and output K -numbers resampled according to the text. 
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Figure 17.19 The measured validation output >•[ (dash-dotted line) together with 
simulated model outputs from resampled M.. An ARX{419) model is shown as 
well as an OE model of the same orders. 

The impulse responses of these models are shown in Figure 17.20. We see a 
delay of about 1.75 hours and then a time constant of about 2 hours. The vessel thus 
gives a pure delay as well as some mixing of the contents. The two impulse responses 
are in good agreement, if we take into account their uncertainties. See Andersson 
and Pucar (1995)for a more comprehensive treatment of the data in this example. 
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Time (h) Time (h) 
Figure 17JO The impulse response of the ARX (solid) and OE (dashed) models. The right 
figure shows also the corresponding estimated 99% confidence intervals. 

17.4 W H A T DOES S Y S T E M IDENTIFICATION HAVE T O OFFER? 

System identification techniques form a versatile tool for many problems in science 
and engineering. The techniques are. as such, application independent. The value of 
the tool has been evidenced by numerous applications in diverse fields. For example, 
the proceedings from the IFAC symposium series in System Identification contain 
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thousands of successful applications from a wide selection of areas. Still, there are 
some limitations associated with the techniques, and we shall in this final section give 
some comments on this. 

Adaptive and Robust Designs: Have They Made Modeling 
Obsolete? 

As we discussed in Section 1.2, models of dynamical systems are instrumental for 
many purposes: prediction, control, simulation, filter design, reconstruction of mea
surements, and so on. It is sometimes claimed that the need for a model can be 
circumvented by more elaborate solutions: adaptive mechanisms where the decision 
parameters are directly adjusted or robust designs that are insensitive to the cor
rectness of the underlying model. One should note, though, that adaptive schemes 
typically can be interpreted as the recursive identification algorithms described in 
Chapter 11 applied to a specific model structure (e.g., the model parameterized in 
terms of the corresponding optimal regulator): see Chapter 7 in Ljung and Soder
strom (1983). The model-building feature is thus very much present also in adaptive 
mechanisms. 

Robust design is based on a nominal model and is determined so that good 
operation is secured even if the actual system deviates from the nominal model. 
Usually, a neighborhood around the nominal model can be specified within which 
performance degradation is acceptable. It is then a very useful fact that models 
obtained by system identification can be delivered with a quality tag: estimated 
deviations form a true description in the parameter domain or in the frequency 
domain. Such models are thus suited for robust design. 

Limitations: Data Quality 

It is obvious that the limitation of the use of system identification techniques is linked 
to the availability of good data and good model structures. Without a reasonable 
data record not much can be done, and there are several reasons why such a record 
cannot be obtained in certain applications. A first and quite obvious reason is that the 
time scale of the process is so slow that any informative data records by necessity will 
be short. Ecological and economical systems may clearly suffer from this problem. 
Another reason is that the input may not be open to manipulations, either by its 
nature or due to safety and production requirements. The signal-to-noise ratio could 
then be bad, and identifiability (informative data sets) perhaps cannot be guaranteed. 
Bad signal-to-noise ratios can. in theory, be compensated for by longer data records. 
Even if the plant, as such, admits long experimentation time, it may not always be a 
feasible way out. due to time variations in the process, drift, slow disturbances, and 
so on. 

Finally, even when we are allowed to manipulate the inputs, can measure for 
long periods, and have good signal-to-noise ratios, it may still be difficult to obtain 
a good data record. The prime reason for this is the presence of unmeasurable 
disturbances that do not fit well into the standard picture of "stationary stochastic 
processes". We have discussed how to cope with such slow disturbances in Section 
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14.1 and how to handle occasional "bursts" by robust norms (Section 15.2). and such 
measures may often be successful. The fact remains though: data quality must be a 
prime concern in system identification applications. This also determines the cost of 
the exercise. 

Limitations: Model Structures 
It is trivia! that a bad model structure cannot offer a good model, regardless of the 
amount and quality of the available data. For example, the A R X model structure 
in Figure 17.17 can never provide a good description of the buffer vessel dynamics 
even if fitted to data collected over several years. The crucial nonlinear mechanisms 
must be built in, and this requires physical insight. 

The first problem thus is whether the process (around its operation point of 
interest) admits a standard, linear, ready-made ("black-box"') model description, or 
whether a tailor-made model set must be constructed. In the first case, our chances 
of success are good; in the second, we have to resort to some physical insight before 
a model can be estimated or hoping that the nonlinear dynamics can be picked up by 
a nonlinear black-box structure. This problem clearly is application dependent and 
therefore not so much discussed in the identification literature. It cannot, however, 
be sufficiently stressed that the key to success lies here: Thinking, intuition, and 
insights cannot be made obsolete by automated model construction. 



Appendix I 

SOME CONCEPTS FROM 
PROBABILITY THEORY 

In this appendix we list some basic concepts and notions from probability theory 
that are used in the book. See a textbook like Papoulis (1965)or Chung (1979)for a 
proper treatment. 

A random variable e describes the possible numerical outcomes of experi
ments whose results cannot be exactly predicted beforehand. The probability of the 
numerical values falling in certain ranges is then expressed by the probability density 
function (PDF) fe(x): 

P(a < e < b) = / fe(x)dx (1.1) 
Ja 

If e may assume a certain value with nonzero probability, we can think of fe contain
ing a 8-function component of that value. A formal t reatment then replaces (1.1) by 
a Stieltjes integral, but this is not essential to our needs. 

For a random vector 
*i(0 

e = 

a corresponding P D F fe(x) = fe(x].. 

P(e € B) 

Len(t)J 

. , x„) from R" to R is defined and 

= / feix)dx (1.2) 

B here is a subset of R" and P(A) means "the probability of the event A." fe(x) is 
also known as the joint PDF for e\,... ,e„. The expectation or mean value of e is 
defined as 

Ee xfe{x)dx 

while the covariance matrix is 

Cov e = E(e — m)(e — m)T\ m = Ee 

(1.3) 

(1.4) 
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Pia < y < b) 

Since 

- / fy{Xy)dXy 
Ja 

P{a < y < b) = Pia < y < b and - oc < z < +00) 

fixx.xz)dxzdxx 

ro fx 

Jxy=a Jxz=—z 

we find that 

/v (*v) = f fix,.xz)dxz (1.7) 

We can now introduce the conditional PDF of z given y as^-

/
/ 1 \ J V» ) , . 

: ! v(x = Xv) = • , (1.8) 

We then have 

P(flf < z < b\y = xy) = f fz\yixz\xy)dx 
Ja 

(1.9) 

Here P{A\B) is the conditional probability of the event A given the event B. Intu
itively, we can think of (1.9) as the probability that z will assume a value between a 
and b if we already know that the outcome of y was xy. Note that formal definitions 
of these concepts require more attention, and the reader should consult a textbook 
on probability for that. The expression (1.8) can be seen as a version of Bayes's rule: 

„ , , n P ( A a n d f i ) 
PiA\B) = — (1.10) 

P{B) 

The random vector e is said to have Gaussian or norma! distribution if 

M X ) = ( 2 J r W ( d e t r ) ' . ? e X p [ ~ f o " m ) T p ' l i x ~ ™>1 <'-5> 

The mean is then m and the covariance matrix is P. This will be written 

e € N(m. P) (1.6) 

With two random variables v and z we may define the joint P D F as / ( A V . xz). T h e 
probabilities associated with outcomes of y only, disregarding z, are then given bv 
the P D F for y . / v ( . r v ) : 
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y(r) G AsNim. P) (1.17) 

Two random variables y and z are independent if 

/ ( . v v , . r : ) = / v ( . v v ) - / ,<*- ) (1.11) 

Then 

/ : | y U : | x v ) = fz(zz) (1.12) 

We occasionally deal with complex-valued random variables in this book. If e may 
assume complex values, we define the covariance matrix as 

Cov e = E(e - tn)(e - m)T (1.13) 

where the overbar means complex conjugate. Notice that this concept does not give 
full information about the covariation between the real and imaginary parts of e. 
For a complex-valued random vector e. the notation 

e € Nt.(m. P) (1.14) 

will mean that 

1. The real and imaginary parts of e are jointly normal. 

2. Ee = m (a complex number) . 

3. Cov e = P [defined as in (1.13)]. 

4. Re e and Im e are independent. 

5. Cov Re e = Cov Im e = \P. 

Let yit), t = 1. 2,... , be a sequence of random vectors (a discrete time 
stochastic process). The outcome or realization of this sequence will then be a 
sequence of vectors. Suppose that the event that this sequence converges to a limit 
y* (that may depend on the realization) as : tends to infinity has probability 1. Then 
we say that {y(t)} converges to y* (a random vector) with probability 1 (w.p. 1) (or 
"almost surely." a.s.. "almost everywhere." a.e.): 

v ( 0 y*> w.p. l a s r oc (1.15) 

Often in our applications y* will in fact not depend on the realization. 
If the associated sequence of PDFs. fyit)(x), converges (weakly) to a P D F / * , 

fymix) -> / * ( . r ) (1.16) 

we say that {y(f)} converges in distribution to the P D F / * . In the special case when 
/ * is the Gaussian distribution (1.5), we say that {y(f)} is asymptotically normalwith 
mean m and covariance P. and denote it as 
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oc 

Pi\y{k)\ > e) < oc , for all e > 0. then 
(1.18) 

>•(/) - > Ow.p. l a s f —> o c " 

(see Chung, 1974, for a proof). 
To estimate probabilities of this kind, Chehyshevs inequality is useful: 

P(\y\ > e) < ^ • £ ly l 2 (1.19) 

Useful theorems for proving results like (1.17) are given in Problem II.3 and in 
Lemmas 9A.1 . 9A.2. They are usually known as central limit theorems (CLTs). 
To prove convergence with probability 1, the following version of Borel-Cantelli's 
lemma is a good tool: 



Appendix II 

SOME STATISTICAL 
TECHNIQUES FOR LINEAR 

REGRESSIONS 
The purpose of this appendix is twofold: First, to provide a refresher of basic statis
tical techniques so as to form a proper background for Part II of this book: second, 
methods, algorithms, theoretical analysis, and statistical properties for linear regres
sion estimates are all archetypal for the more complicated structures we discuss in 
Part II. This appendix can therefore also be read as a preview of ideas and analysis, 
maximally stripped from technical complications. The appendix has a format so that 
it can be read independently of the rest of the book (and vice versa). 

11.1 LINEAR REGRESSIONS A N D THE LEAST S Q U A R E S ESTIMATE 

Linear regressions are among the most common models in statistics, and the least-
squares technique with its root in Gauss's (1809) work is certainly classical. Treat
ments of these techniques are given in many textbooks, and we may mention Rao 
(1973)(Chapter 4), Draper and Smith (1981), and Daniel and Wood (1980)as suitable 
references for further studv. 

The Regression Concept 

The statistical theory of regression is concerned with the prediction of a variable y. 
on the basis of information provided by other measured variables <p\, .. .(pj. The 
dependent variable y could, for example, be the yield of a certain crop, while the 
independent variables cp, (the regressors) give information about rainfall, sunshine, 
soil quality, and the like. There are abundant examples of this situation across all 
fields of science and society. The dynamical systems that we consider in Part I clearly 
form another application of the regression concept, v being the output of a system 
(at a given time) and <pi containing information about past behavior. Let us denote 

<p = 
<P2 
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The problem is to find a function of the regressors g{<p) such that the difference 

becomes small (i.e., so that y = g(<p) is a good prediction of y ) . If y and ip are 
described within a stochastic framework, one could, for example, aim at minimiz
ing 

It is well known that the function g that minimizes (II. 1) is the conditional expecta
tion of y, given <p\ 

This is also known as the regression function or the regression of y on <p. 
Another approach would be to look for the function g{(p) that has maximal 

correlation with v. The answer is essentially the regression function. See Prob
lem 11.2. 

Linear Regressions 

With unknown properties of the variables y and <p. it is not possible to determine 
the regression function g(cp) a priori. It has to be estimated from data and must 
therefore be suitably parametrized. The special case where this parametrization is 
constrained to be linear has been studied extensively. We are then trying to fit y to 
a linear combination of the 

y - g((p) 

E[y-g(<p)]2 (II.1) 

g(<p) = E[y\<p] UI.2) 

g(<p) = Oi<p] + 02<P2 + . . . + 0rf<Prf. (II.3) 

With the vector 

e = 
#2 

\-9dA 

(11.3) can be written 

g(<P) = <pTo (11.4) 

Remark: Of course, "affine^ functions 

g(<p) = 0d+i + <pT0 (II.5) 

could also be considered. By extending the regressors by the constant = 
1 and the parameter vector 0 accordingly, the case (II.5) is however subsumed 
in (II .4) . 
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Least-squares Estimate 

Typically, we are not supplied with exact a priori information about the relationship 
between y(t) and <p(t). What we have instead are "historic data," a collection of 
previous observations of related values of y and <p. It is convenient to enumerate 
these values using an argument / : 

y(t),<p(t). t = \ N (11.6) 

With the historic data we could replace the variance (II. 1) by the sample variance 

1 A 

^ £ [ v < ' > -*<<P(/>>] 2 

In the linear case (II.4), we thus have 

1 V 

vN(0) = - [yio - phnef (ii.7) 

instead of ( I I . l ) , and a suitable 0 to choose is the minimizing argument of (II.7): 

0N = a rgmin VN(0) (II.8) 

This is the least-squares estimate (LSE) . Based on the previous observations, we 
would thus use 

<pT6N 

as a predictor function. 
Notice that this method of selecting 0 makes sense whether or not we have 

imposed a stochastic framework for the problem. The parameter 0\ is simply the 
value that gives the best performing predictor when applied to historic data. This 
"pragmatic" interpretation of the LSE was given also by its inventor. K. F. Gauss: 

In conclusion, the principle that the sum of the squares of the differences 
between the observed and the computed quantities must be minimum may, 
in the following manner, be considered independently of the calculus of 
probabilities (Gauss, 1809). 

The unique feature of (II.7) is that it is a quadratic function of 0. Therefore, it can 
be minimized analytically (see Problem 7D.2). We find that all 0A that satisfy 

1 V 

Os = jfj^v(t)y(t) (H .9) 

yield the global minimum of V,\<(0). This set of linear equations is known as the 
normal equations. If the matrix on the left is invertible, we have the LSE 

1 V 
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Matrix Formulation 

For some calculations, the expressions (II.6) to (11.10) can be written more conve
niently in matrix form. Define the N x 1 column vector 

and the N x d matrix 

" v(D 

~}'(N)J 

' <PT(D ' 

( i i . i i 

(11.12} 

Then the criterion (II.7) can be written 

Viv(0) = ~\YN - <b*0 | 2 = ±-{YN - *K9)T{YN - 4>*0) 
N N 

(11.13) 

(11.14) 

(H.15) 

(11.16) 

The normal equations take the form 

[<S>J>JV)0/V = *T

NYN 

and the estimate 

9N = [<t>T

N*N]-l*T

NYN 

We may in (11.15) recognize the (Moore-Penrose) pseudoinverse of 

Equat ion (11.15) thus gives the pseudoinverse solution to the overdetermined 
(N > d) system of linear equations 

YN = <D*0 (11.17) 

Geometric Interpretation 

The least-squares solution can be given a geometric interpretation that may be helpful 
when determining certain properties. Let 

®N = [<f>\ - - - 4>d] 

and consider YN and <f>\.. .<f>d as vectors in the vector space R j V . The problem 
expressed in (11.17) is to find a linear combination of the vectors fa, i = 1 d. 
that approximates YN as well as possible. Let DD be the of-dimensional subspace 
that is spanned by the fa. If YN happens to belong to this subspace. we can describe 
it as a unique linear combination of fa. Otherwise, the best approximation of YK in 
the subspace DD is the vector in DD that has the smallest distance to YN, which is 
well known to be the orthogonal projection of Y^ on DD. See Figure ILL 
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Y 

4>2 

Figure II.l The least-squares solution as orthogonal projection, (d = 2 and 
N = 3. 

Let this projection be denoted by T JV . Since it is the orthogonal projection, we 

have 

That is, 

(YN - YN)T<f>i = 0, i = 

and since T,v € D j , we have for some coordinates 0, 
YN = 

7=1 

This gives 
d 

which in matrix form is (11.14). 

Weighted Least Squares 

In (11.7) the different observations are given equal weight in the criterion. Sometimes 
there is occasion to consider a weighted criterion 

N 

VN(0) = [y(t) - <pT(t)0]2 (11.19) 
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The reason for this could be twofold. 

1. The observations v could be of varying reliability. Some observation could, 
for example, be subject to more disturbances and should therefore be down-
weighted. (11.20; 

2. The observations could be of varying relevance. It is perhaps not believed that 
a linear model holds over all ranges of (p. An observation, corresponding to 
<p in such a questionable region, even if accurate, should therefore carry less 
weight. (i 1.211 

With the diagonal matrix 

Qs = 
0 

0 

the criterion (11.19) can be written 

VN($) = (YN - ^NB)TQN(YN - *N0) = \YN - *NO\2

QN 

It is immediate to verify that the minimizing element is given by 

ON = [*NQN*N]-1*TNQSYN 

(11.22) 

(11.23] 

' N 

L / = l 

-1 

5^af«p(r)>'(0 (11.24) 

There could also be reason to use the criterion (11.23) for a general, symmetric 
positive definite QN. The former part of (11.24) then still h^lds. To interpret what is 
going on in terms of the original measurements, it is convenient to factorize Qs: 

QN = LNDNLN 

with L.y as a lower triangular matrix with Ts along the diagonal: 

(11.25) 

LN — 

1 0 

^31 ^32 

. . . 0 " 

. . . 0 
0 . . . 0 (11.26) 

_ ^ A ' l ZN! ••• 1 

and D.v a diagonal matrix as in (11.22). Then (11.23) takes the form 

VNO) = \YN - * N Q \ 2

D L L 

Y,\ = LNYN, <t>.v = LNQ>N 

(N.27) 

(11.28) 
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The elements of these matrices are 

t - i 

yit) = J2C'0-k>>U - k) 

t-i 

(II.29a) 

(II.29b) 

*=o 
We thus have 

(II.30a) 

9K- = 

- 1 - 1 

^a,tp(t)<pT{t) 
Lr=l 

^at<p(t)y(t) (I1.30b) 

The effect of the general norm Qx in (11.23) is consequently that the original obser
vations have been filtered by the filter (11.25) to (11.29). 

Residuals and Prediction Errors 

The difference 

sit.9) = yit) - <pTit)9 (1131 

is the error associated with the value 9. We shall call this error the prediction error 
corresponding to 9. The vector of prediction errors is 

Ex (9) = 

F 8(1.0) 

L£(N,0)J 
(11.32) 

and the criteria (II.7) and (11.23) are just different quadratic norms of this vector. 
Norms Q,\ that are not diagonal correspond to sums of squares of filtered prediction 
errors analogously to (11.29). 

We shall call 

Exit) = eitJs) 

the residuals ("leftovers") associated with the model 9\. 
Consider now for simplicity the case Qx = / . Denote the residual vector 

and the predicted output 

£,v = EA\(0,\) 

h- = <M,v 

(11.33) 

(11.34) 
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K = ^ = i - 1j=z (n-38) 
t=\ _ . _ r=l 

iV ~ ~ ,V 

t=\ f=l 

measures the proportion of the total variation of y that is explained by the regression. 
It is known as the multiple correlation coefficient (squared) and is often expressed 
in percent. Sometimes the mean value of y is subtracted from y and y before cal
culating R2.. ( 

Quality of the Parameter Estimate 

To investigate what properties the estimate 0\ may have, let us assume that the 
actual measurements yit), t = 1 N, can be described by 

yit) = <pT{t)e0 + w0{t) (11.39) 

where {u'o(r)} is some disturbance or error sequences of yet unspecified nature. If 
this sequence has some , k nice" (to be specified later) properties, it is natural to call 
0o ' ' the true parameter." 

If we denote 
r w>b<i) 

we may write (11.39) as 

(11.40) 

L u * ( /V ) J 

YN = 4>.V0O + WN (11.41 

From the geometrical interpretation we know that £.v and Y\ are orthogonal. 
Hence 

\YN\2 = (YN + EN)T{YS + EN) = l ^v t 2 + \EN\2 (H.35) 

which also can be written 
iV A' Af 

]C>' 2 ( / ) = £ > * ( f ) + ("-36) 

r=1 r=l r=l 

which shows how the sum of squared observation splits into predictions 
hit) = tpT{t)eN 

and residuals 
ES(t) = e(f ,0,v) (H.37) 

The ideal situation is when the predicted outputs h are capable of explaining a 
major part of the actual output. The ratio 
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Inserting this into (11.24) gives 

ON = [QNQN*N]~1*SQN[*NOO + WN] = ^ + On 

where 

0N = [^IQN^NV^IQNWN 

which in the case Q$ = \/N • / also reads 

(11.42) 

1 N 

-2><O*R(O 
-1 I -

(11.43) 

This expression for the parameter error is of purely algebraic nature and holds for 
all sequences {u' 0(0}- If <P and are quasistationary, we see that, as N tends to 
infinity. ON tends to 

0 = [ / ^ ( O ) ] " 1 / ^ u . ( 0 ) (11.44) 

with the notation (2.62). If R^iO) is invertible [which corresponds to an assumption 
that the sequence <p{t) has full rank) and R^wiQ) is zero (which corresponds to a 
certain " independence" between the regressors and the disturbance), then 0,\ will 
tend to the true value OQ when more observations become available. 

To be able to tell more about the properties of 0 y . it is natural to create a 
probabilistic framework for the disturbance sequence. This will be done in the next 
section. 

11.2 STATISTICAL PROPERTIES OF THE LEAST-SQUARES ESTIMATE 

A Probabilistic Setup 

To achieve further results on the properties of the LSE, we shall introduce more 
specific assumptions about the generation of the observations y. Typical assumptions 
follow: 

• The sequence of regressors {(pit)} is a deterministic sequence. (11.45) 

• yit) = (p7(t)0Q + u,,o(r) where tf'o(0 is a sequence of independent random 
variables with zero mean values and variances Ao. (11.46) 

Let it immediately be said that assumption (11.45) is too restrictive for most 
applications to system identification, since then the regressors typically contain past 
outputs. This means that the analysis will not be applicable to system identification 
methods. However, (11.45) greatly simplifies the analysis, at the same time as the 
results are archetypal for what holds also in the general case. The contents of this 
section can therefore be read as a simple preview of the material of Chapters 8 
and 9. 
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In this section we shall relax assumption (11.46) somewhat. We shall allow more 
general disturbances {!£'()(/)} and also, occasionally, that the true regression function 
is not compatible with the given linear model. We thus have the description 

v ( ' ) = gt(<p(t)) + w0(t) 

where 

<p(t) is deterministic 

Ewn{t) = 0 

Ewo{t)wQ(s) = rts 

In matrix form, with (11.11). (11.12), (11.40), and 

" « iWD) " 

-8N(<P(N))J 

we have 

YN = G j V (4> j V ) + WN 

EWN = 0 

EWNWjj = Rx 

We shall frequently specialize to 

and 

Convergence and Consistency 

(I1.47a) 

(II.47b) 

(II.47c) 

(II.47d) 

(11.48) 

(II.49a) 

(II.49b) 

(11.49c) 

(11.50) 

(11.51) 

Consider the special case (11.10) (i.e., Qx = ( 1 / A 7 ) / ) . Then if (11.50) holds we can 
write, as in (11.43). 

h< - Oo = (11.52; 

The first sum consists of deterministic variables. Suppose that it converges to an 
invertible matrix R^iO): 

1 s 

— ^ < ^ ( r ) ^ r ( t ) - » i? v (0) as/V oo, / ^ ( 0 ) invertible (11.53) 
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The second sum consists of random variables with zero mean values under assump
tion (II.47b. c. d). Various "strong laws of large numbers" describe when such sums 
converge to zero with probability 1. This will depend on the properties of \wo(t)}. 
See, for example. Chung (1974)or Hall and Heyde (1980)for thorough treatments of 
such results. Our Theorem 2.3 shows that 

1 N 

— ^<p(t)w0(t) 0, w.p. l a s / V oc (11.54) 

if {WQU)} can be described as filtered white noise as in (2.88) and {<p(t)} is a bounded 
sequence. When (11.53) and (11.54) hold, we have 

0.v 0o, w.p. 1 as N oo (11.55) 

This means that 0,v is a strongly consistent estimate of 0Q. 

Bias and Variance 

Consider the general weighted LSE 

dN = [<t>lQN<t>N]-l®NQsYv (H.56) 

Since O.v and Qx are deterministic, it is easy to calculate the expectation of (11.56). 

E6N = 0* = [QlQNQNr^lQxGxi®*) (11.57) 

When (11.50) holds, we have 

E0N = So (11.58) 

which means that the estimate 0# is unbiased in case a true description (11.50) is 
available. 

For the parameter difference, we obtain from (11.56), (11.57). and (II.49a) 

6 N = 0 N - E$N = [4>t

nQN*N\~X*NQNWN (IT59) 

which gives the covariance matrix 

Covg l V = P.v = EBNdl = [*NQN*Nrl*NQsKsQs*N[<l>NQ.v<l>Nrl 

(11.60) 
Notice that this holds regardless of the form of G ,V(QXV)-

For the nonweighted LSE [Qs = (1 /A0 • / ] and independent disturbances, 
case (11.51), we find that 

Px = A o [ * v < M _ 1 = A 0 

N i - l 

Lr=l 

(11.61) 
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The covariance matrix of #,v is thus determined by the residuals' variance A 0 and 
properties of the regressors. When the </?(f) are open to manipulation during the data 
collection, it is an important experiment design issue to make the inverse in (11.61) 
"small," subject to constraints that may be at hand. 

Note that computation of P\> requires knowledge of A 0 - Since this may not be 
known to the user, it is important to estimate it from data. 

Estimating the Noise Variance 

We have the following result: 

Lemma ILL Let the criterion be given by (IL7) and suppose that (11.49) to (11.51) 
hold. Then 

x* = Y ^ V ^ = ^ " *TW»f
 (1L62) 

is an unbiased estimate of A.Q. (Recall that d = d i m 0 . ) 

Proof. We have 

YN - <MA/ = y.\ - ^s[^N^Nr^lYN 

= [/ - OvK^vr1 ]̂̂  + W | V ] (11.63) 

= [/ - <M<̂ *rlc*>Jv] WS = FSWN 

Note that F j F.v = F,v. Hence . 

E\YN - <M.v! 2 = EW%FN'FNWN = EWjJFxWs 

= Eir FNWNw£r = A o t r F N 

Now 

t rF .v = t r [ / - ^ [ d ^ d ^ ] " ' ^ ] = t r / - tr ^ [ ( D ^ v ] " 1 ^ 
1 (11.64) 

= tr / - t r ^ j v ^ " 1 ^ ' * * — N ~ d 

Recall that F,v is an N x N matrix and <t>J<I\v is a d x d matrix. Here we made 
use of tr AB = tr BA. 

Consequently, 

EXN = £ - J - _ | y . v - <b , v 0 ; V | 2 = Xo 
N — d 

and the lemma is proved. • 
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Notice that both assumptions (11.50) and (11.51) are important for this result. 
It is not feasible to estimate a general covariance matrix R\ from data. Also, if 
the true description is of the general form (II.47a). the estimate A ; V will contain a 
contribution 

.v 
j ^ £ [ g , M 0 ) - <PT<MN]2 

t=\ 

that will not tend to zero. This makes A,v systematically larger than A 0 . and the noise 
level is overestimated. This points to a very typical dilemma in many applications: 
to distinguish noise effects from bias effects. 

Minimizing the Variance 

From (11.60) we know that the variance of #,v depends on the choice of norm Q\. 
One might ask what the best choice of (7.v is in the sense that it gives the smallest 
covariance matrix. This question is answered by the following lemma: 

Lemma IL2. Let fl.v be a positive definite matrix and define 

Then for all symmetric, positive semidefinite Q, 

PN(RN

1) < PsiQ) 

Proof. The matrix 

" ]R-i\ X = r ****** " 
is positive semidefinite by construction. Hence, according to Problem 7D.8, 

Inverting both sides proves the lemma. Z 

The estimate (11.24) obtained for Q = Rj} is also known as the Markov 
estimate or the best linear unbiased estimate (BLUE) . Notice that it requires 
knowledge of the covariance matrix R\, which might not be a realistic assumption. 

In case the noise terms in (11.47) are independent with different variances, 

Ewl(t) = A, 

the lemma tells us that the variance of the estimate is minimized when the criterion 
(11.19) is used with 

ctt - — (11.65) 
A, 
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That is. the observations should be weighted with their inverse variances. This choice 
of weights is thus optimal in the sense of (11.20). Notice, though, that when (11.50) 
does not hold, the weights at will also affect the bias of 0\. and this effect mav be in 
conflict with (11.65). 

Distribution of the Estimates 

The estimates 0,v of 0o and X.v of Ao are random variables, since they are constructed 
from the random variables {y (f)}. It is thus of interest to determine their distribution. 
In order to do that we shall introduce the following additional assumption: 

The vector Wy of disturbance terms has a Gaussian distribution. (11.66) 

This assumption implies that K.v will also have a Gaussian distribution with mean 
value G,v(d>. v) and variance RN: 

YN € N{GN(*N),RN) (11.67) 
A. /S 

Since $N in (11.56) is a linear combination of V.v, 0,v will also be Gaussian: 

9N € N(6*, P.v) (11.68) 

where 6* and P,v are given by (11.57) and (11.60). respectively. This answers the 
question of the distribution of 0\ under assumption (11.66). 

Even when the observations are not normally distributed, it is often the case 
that the distribution of 9,\ approaches the normal distribution as N increases to 
infinity. This follows from application of central limit theorems (CLTs) to the sum 
of random variables that constitutes the estimates. See Problem 11.3. 

The distribution of A,v in (11.62) is somewhat more technical to determine. Let 
us again consider the special case (11.50) and (11.51) a n d i e t V,Y(0) be defined b \ 
(II.7). Then 

N N 

N • VV(0o) = £ [ > ' ( ' ) - <PT(t)90]2 = ] [ > o ( ' ) 01.69) 

Now, under (11.51) and (11.66). {u»o(/)}f is a sequence of independent Gaussian 
random variables with variances A<J. Hence 

^ V l V ( 0 ( ) ) € x 2 W (IL70) 
A() 

That is, the left side is x 2 -d is t r ibuted with /V degrees of freedom, by definition of 
the x 2 -dis t r ibut ion. When 0o is replaced by 0 ;y, we have a related result: 

Lemma IL3. Assume that (11.49) to (11.51) and (11.66) hold. Then 

N 

~ • VN(9N) = ^ Y \y(t) - <PT{09N]2 € x 2 ( A / - d) (11.71) 
An A ( ) L J 
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which implies that 

Confidence Intervals 
In the case (11.50) where a true parameter Oo exists, the distribution result (11.68) 
tells us how the deviation between 0;v and Oo is distributed: 

0v - Oo e /V(0, P l V ) (11.74) 

For the i th component , we thus have 

ON ~ ^ € Af<0. P j f ) 
or 

, v 0 € /V(0, 1) (11.75) 

Here f y " indicates the / th diagonal element of P,v- Hence the probability that 

0Q ] deviates from 0^ with more than a • ^ PN"1 is the (1 — a)-level of the normal 
distribution, which is available in standard statistical tables. 

Proof. Compare with the proof of Lemma ILL Let 

f l V = / - 4> Jv[<D.j4> !vr 14>J 

which is a symmetric N x N matrix. Then, as in (11.63). F\ = F\> F,\ , which implies 
that all eigenvalues of F\> are either 0 or 1. Since tr F\ = N — d by (11.64). we find 
that there are N — d eigenvalues that are 1 and d that are 0. Since Fy is symmetric, 
it can be diagonalized by an orthogonal matrix U.\: 

UsFNUl = DN 

where D\ consists of N — d ones and d zeros along the diagonal. As in the proof 
of Lemma II.1. 

^-VffQs) = TV* - <t>N$N\2 = ~\FNWN\2 = ^-WlF(;FxWN 

/-O A() Ao Ay 

1 1 1 ; V _ J 

= T-W^FHWH = —WZ:UZ-DNUNWN = — V l 7 j 2

v ( f ) 

where TF2v(t) are the components of the vector Us But since the components 
of W\> are independent and normal, with variance A ( ) . so are those of Us'W\, the 
matrix U\ being orthogonal. This proves the lemma. • 

A consequence of the lemma is that the estimate k,\ of A ( ) obeys 

(N - d)^- 6 x2(N - d) (11.72) 
Ao 

*• -j 2A/\ 
E(XN - X 0 r = T T — ~ T ( " - 7 3 ) N — d 
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9 

o?-

Figure II.2 Shaded area: [9^ — p_, < constant. 

In case QN — I and R N = I, the expression for PN is (11.61) 

PN = A 0 [ < D ? > ; v r l (11.78) 

While the matrix [ d P ^ O j v ] - 1 is known to the user, A 0 is typically not. which impairs 
the use of the results (11.75) and (11.76). An immediate approach would be to replace 
An by the estimate A.y. In view of (11.73), this is a good approximation for large N. 
and the use of the preceding confidence limits is still reasonable. With Lemma II.2. 
a more exact result can, however, be achieved. We have 

1 * T . T *• (0\ — 9of P\i^(9\ — 9o) 
— • (ON ~ 0b) r[*£<M<0jv " Oo) = — :  

A.y A,V/A() 

€ F(d, N - d) (11.79) 

In fact, (11.68) tells us more than how each component of 9s is distributed. 
Since Py is the covariance matrix of the joint distribution of the vector 9s. we also 
have useful information about the covariance and correlation between the different 
components of 0.y. This is most easily utilized as follows. From (11.74) we have 

($N - OofP^iOs - 0G) e X

2(d) (11.76) 

by a direct application of the definition of the x 2 -distribution. The probability that 

\0N - 0o|2 i = (ON ~ Oof P^1 (ON - 0Q) > a (11.77) 

is thus x « ( ^ ) * t n e or-level of the x 2 (d)-dis tr ibut ion. The expressions (11.77) define 
ellipsoids in R^, whose shape is determined by PN- See Figure II.2. 
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where the last step follows from the definition of the F-distribution as the distribu
tion of the ratio of two x 2-distributed variables. The leftmost expression is available 
to the user, and thus the probability that OQ deviates from #,y in such a way that 

-ft>l?4>'*vi - 0 1 ( I I - 8 0 ) 

can be computed as the or-Ievel of the F(d. N — d) distribution. Note that, as 
/V —> o o , F(d. N — d) approaches x2(d). Hence using A # for XQ in F \ in (11.77) is 
often reasonable. Similarly, using X\ for A(> in (11.75) replaces the normal distribution 
by Student 's / -distribution. 

11.3 SOME FURTHER TOPICS IN LEAST-SQUARES ESTIMATION 

Selecting Regressors 

A major problem when applying regression analysis to practical problems is to settle 
for a good set of regressor variables. This means that we have to determine which 
variables <pj(t) may influence the output y(t) in (II.3). Clearly, this is a very applica
tion dependent task and requires a good understanding of the process to be described. 
The choice of <pi may, however, also be supported by some formal procedures that 
are described in the statistical literature. 

Selecting the regressors in (II.3) corresponds to the choice of model structure 
in system identification setup. This problem is discussed in more detail in Chapter 
16. and we shall only provide a short preview here. 

A basic tool is to investigate the sequence of residuals {e(/)}j V . defined by 
(11.37). If (11.49) to (11.51) hold and 0\ gives a correct description of the process, then 
£ ,v (t) would equal WQ (/) in (11.46) and would thus be a sequence of random variables. 
Such a hypothesis can be tested in various ways. Also, the residual sequence should 
be uncorrelated with all potential regressors. If it is not, the regressor in question 
has something to offer for the prediction of y(f) and it should thus be included in 
the regressor set. This may be a useful way of conducting the search for informative 
regressors. Daniel and Wood (1980)contains practical advice in this respect. 

Another way of determining whether a regressor should be included in the 
regressor set is to check whether it leads to a significant reduction of the criterion 
function VN(0\). It should be clear that the minimal value of the criterion function 
will automatically decrease when a new regressor is added, whether or not it is 
actually correlated with the output. This follows since the minimization of V\ is 
performed over a larger set. As a simple special case, think of the process (11.49) to 
(11.51) with OQ = 0. The criterion function 

•V .v 

/=! t=l 
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and let 

Let 

Then 

,v 
V™ = m i n Y W ) - <pTit)B - rT(t)n]2 (11.83) 

d = dim r = dim r] 

(a) e x2W-d-r) 
AO 

(b) ^ — € x~(r) 
AO 

(c) V{

N

A> - VN

2) and are independent 

N - d - r V ^ - V ? 

(d) t(d, r, N) = * ^ - € F(r. N-d-r) (11.84) 

Proof, (a) is a restatement of Lemma 11.2 and (d) is a consequence of (a), (b). and 
(c) by the definition of the F-distribution. The proofs of (b) and (c) are analogous 
to the proof of Lemma 11.2. Z 

then has mean value Ay. If, however, we minimize over a d-dimensional regressor 
space 0 . we obtain 

1 , v 

which according to Lemma II.l has mean value [(N — d)/N]k(). We thus sec an 
average decrease of the criterion function of (d/N)X{). despite the fact that there 
was nothing in y(f) to explain by the regressors! The improved fit is spurious and 
can be seen as an overfit to the particular realization of {u'n(f)}*. 

Consequently, the observed decrease in VA\ when new regressors are added 
must be matched against this overfit. Several ways to do this are discussed in Chapter 
16. For the present setup we have the following formal result: 

Lemma IL4. Suppose that the data can be described by 

v(r) = ^ r ( /)6> 0 + e0(t) (11.81) 

where {eoit)} is white Gaussian noise with variance A(>. Let 

jV 

V ^ 1 = min V W ) - <pT{t)0]2 (11.82) 
t=i 

Consider another regression with some added regressors 

v ( l ) = <PTU)0 + ;T{t)n 
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The lemma implies that, if (11.81) holds so that the inclusion of r\ is "unneces
sary," then the normalized decrease in the criterion is distributed according to (11.84). 
If the observed decrease is significantly larger [i.e., if t(d,r. N) > Fa(r, N — d — r)J. 
then the conclusion should be that the inclusion of r) is useful and that, consequently, 
(11.81) does not hold. Recall that the F-distribution can often be approximated by 
the / 2 -distribution for large N. 

Multiple Regressions 

Sometimes there is occasion to study the simultaneous prediction of several, say p, 
variables. This means that our variable y(t) will be a p-dimensional column vector. 
In systems applications this corresponds to multivariable systems. Much of what has 
been said here about linear regression will hold also for the multivariate case, but 
some algebraic expressions take a slightly different form. 

It is convenient to distinguish between two cases: 

The same set of regressors is used for each component of y (f): Denote the regres
sors by the /--dimensional column vector (fit). Then write the regression as 

y(t) = %J(p{t) (11.85) 

where 8 now is an r x ^-dimensional matrix with its / th column containing the coef
ficients associated with the ith component of y. The number of estimated parameters 
thus is d = rp. The LS criterion becomes 

1 N 

VN(*) = - £ \y(t) - OVOI2
 (IL86) 

which is minimized by 

0 » = N i £ <p(t)<pT(t) 1 £ tp(t)yT(t) (11.87) 
f=i J t=i 

(see Problem 7D.2). 

Different regressor sets for the different components of v: In case the different 
outputs are associated with different regressor sets, one must introduce a d x p 
matrix <p(r) whose / th column contains the regressors associated with output / and 
very possibly several zeros. Then the regression is written 

y(t) = <pT(t)$ (11.88) 

with 6 as a -dimensional column vector. The LS criterion becomes 

1 N 

f=l 

1 N 

= T7 £ > ( / ) - *T(t)e)TA-l[y(t) - V

T(t)0) N 
f = i 

(11.89) 
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Here we allowed a general quadratic norm to give different weights to the different 
components of y( f ) . T h e element that minimizes (11.89) is 

ON = -£<P(?)A -V(» 
- i 

1 V 

N 
L / = l 

(11.90) 

(see Problem 7D.2). 
Comparing (11.90) with (11.87), we see the advantage with the special structure 

(11.85): To determine the r x p estimate 6,y in (11.87), it is sufficient to invert an /• x r 
matrix. In (11.90), #v is a pr vector and the matrix inversion involves a pr x pr 
matrix. 

Correlation Interpretation and the Instrumental-variable Method 

A useful interpretation of the LS method is as follows. Given the description 

y(r ) = <pTU)00 + wQ(t) 

multiply both sides by <p{t) and sum over t = 1 , . . . , N. This leads to 

N 

f=l 6 O + T̂ £?(OUJ0(D (11.91) r=1 

Provided that the disturbance {ttfo(r)} and the regression vector <p(t) are uncorre
lated, which means that the rightmost term is small, we find that the LSE 

9N = 

- i - i 

i ] T <p(t)<PT(0 jj £ 9i4y{t) (H.92) 

is a reasonable estimate of $Q. We have, thus "correlated out" 0Q from the noise 
using the regressor sequence. 

In some cases we may expect correlation between the noise and the regressors. 
A natural extension of the preceding correlation idea would then be to use a d-
dimensional vector sequence {C ( 0} that is uncorrelated with the noise, but correlated 
with the regressor. Multiplying by £ (r) and summing over t leads to 

Lt=\ 

1 , V 

#o + TT̂ CÔ OO) (H.93) 
f=1 

If {£ (r)} has the two above-mentioned properties, we find that 

.v 

Lt=l 

1 , V 

-J]C(0v(0 (11-94) 
r=l 
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is a reasonable estimate of OQ. This estimate was introduced by Reiers0l (1941 )and is 
discussed in some detail in Kendall and Stuart (1961). It is known as the instrumental-
variable estimate ( IVE) . and £ (/) is called instrumental variables or the instruments. 
It remains to be discussed how to choose £ ( / ) , and that is done in Section 7.6 in 
connection with applications to dynamical systems. 

Nonlinear Regressions 

The characterizing feature of the linear regression model (11.3) is that the regression 
function is linearly parametrized in 6. Often one has to consider more general 
parametrizations of the regression function: 

SOM) ( H . 9 5 ) 

We thus obtain a nonlinear regression 

y{t) = g(tp(t).S) (11.96) 

The weighted least-squares criterion 

1 N 

V * ( 0 ) = Jf ]C«'[>'(') - 8(<P(t).0)]2 (11.97) 
t=i 

can still be used as a measure of fit. and the estimate becomes 

0N = arg min V* {6) 
a 

just as in (II.7) and (II.8). The important difference is that it may not be possible 
to find explicit expressions for 0/v as in (11.10), but one has to resort to numerical, 
iterative techniques. 

To make things still more general, it is not necessary to use a quadratic measure 
of fit in (11.97). Let I is) be a function that assumes positive values suitable to measure 
the "size" of s and take 

1 *V 

0v = a rgmin VN{0) (11.98) 
e 

The problem (11.96) and (11.98) clearly is more general and more difficult than (II.7) 
and (II.8). but it certainly is in the same spirit. Gauss 's pragmatic interpretation of 
the LS criterion as a measure of fit of historic data applies equally well to (11.98). This 
way of selecting an estimate makes sense also without a probabilistic framework. 
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11.4 PROBLEMS 

U . l Show that 
g(<p) = E[y\<p] 

minimizes 
E[y ~ 8(<P)f 

with respect to g [see ( I I . l ) and (11.2)]. Hint: Add and subtract g(<p) in the latter 
expression. 

11.2 Let p(a.b) be the correlation between the random variables a and b: 

Co\(a.b) 
~ (Var(fl) • V a r ( / ? ) ) , ; -

Let g{<p) be defined as in Problem II . l . Show that 

Piy.giv)) > \p{y,g(v))\ 
for any function g(cp) [Rao (1973), Section 4g. l ] . 

113 Lyaponov's central limit theorem states: "Let 

,v 
= £«(*. N)w(k) 

k=l 

where (u ' (^ ) l is a sequence of independent random variables with 

Ew(k) - 0 

Ew2(k) = kk 

E\w\k)\ = yk 

Assume that 

hm / a (k. N)Ak 

*=i 

N 

Um y^a\k.N)yk = 0 A' —»• rx> 

Jt=l 
Then 

Z j V e i4sN(0,X)* 

Use this result to prove that the est imate (11.10) is asymptotically normal under suitable 
assumptions on {u,'o(01-
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