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Abstract—The steady state response of a system to a periodic
input is still corrupted by noise transients. For lightly damped
systems these noise transients increase considerably the variance
of the measured frequency response function (FRF). This paper
presents a method that suppresses the influence of the noise
transients (leakage errors) in FRF measurements. The method is
based on a local polynomial approximation of the noise leakage
errors on the FRF. Compared with the classical approaches, the
proposed procedure is more robust and needs less measurement
time. The theory is supported by a real measurement example1.

I. INTRODUCTION

Frequency response functions (FRF) give a lot of insight
in the dynamic behaviour of a system. They are measured by
standard commercially available dynamic signal analyzers and
network analyzers, and are used in all kinds of engineering
disciplines for analysis, modeling, design, and protoyping
[1], [2], [3]. Since the noise variance is used to calculate
uncertainty bounds on the FRF with a given confidence level
[3], [4], [5], a good estimate of the variance of the FRF is as
important as the FRF value itself.

A first basic choice to be made when measuring the FRF
concerns the nature of the excitation signal: arbitrary ([1], [2],
[6], [7]) or periodic ([3], [4], [5], [8]). The advantages of
using arbitrary excitations are the higher frequency resolution,
the fact that operational data can be handled, and the simple
experimental set up (no synchronisation between the generator
and the acquisition unit is required). The disadvantages are
the random magnitude of the DFT spectrum, and the need of
a reference signal for solving the errors-in-variables problem
(the input and the output observations are noisy). Periodic
excitations have the following advantages [3]: the magnitude
of the DFT spectrum can be imposed exactly, and suppression
of the system transient (leakage) errors. Their disadvantages
are the smaller frequency resolution and the more complicated
experimental set up (exact synchronisation between the gen-
erator and the acquisition units is needed). This paper handles
the periodic case for single-input, single-output systems.

Although the steady state response of a dynamic system
to a periodic input is not subject to system transients, it is
still corrupted by the noise transients. For lightly damped
systems these noise transients (leakage errors) can increase
considerably the variance of the FRF measurement. In this
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paper we present a method for suppressing the noise transients
(leakage errors) in nonparametric FRF measurements. The
method assumes that the noise leakage (transient) errors on the
FRF can locally be approximated by a polynomial of degree
R. The main difference with the local polynomial approach
for random excitations ([6], [9]) is that no local polynomial
approximation of the FRF is needed by exploiting the periodic
nature of the excitation. Via an in depth theoretical comparison
with the classical methods [8], [10] it is shown in this paper
that the proposed local polynomial approach reduces (i) the
variance of the FRF measurement, (ii) the experimental time.
These reductions are significant for lightly damped systems.

II. LINEAR SYSTEMS EXCITED BY A PERIODIC SIGNAL

A. Measurement setup

Fig. 1 shows a general setup for measuring the FRF of a
linear time invariant (LTI) system using a periodic excitation.
The LTI system can be measured in open (black lines) or
closed (black and gray lines) loop, and the actuator and
controller may behave nonlinearly. P periods of N samples
each of the input and output are measured under steady state
conditions. Hence, the measured input-output discrete Fourier
transform (DFT) spectra of the pth period are given by

X [p] (k) = X0 (k) +N
[p]
X (k)

X (k) =
1√
N

N−1∑
t=0

x (t) e−j
2πkt
N (1)

with p = 1, . . . , P ; X (k), X = U, Y , the DFT spectrum
of x (t), x = u, y; Y0 (k) = G (Ωk)U0 (k), U0 (k) the DFT
spectrum of the periodic part of the actual input of the LTI
system; G (Ωk) the true FRF of the LTI system; and N [p]

U (k),
N

[p]
Y (k) the input-output errors depending on the generator,

the controller, and the process noise sources, and respectively
the input and output measurement errors [3]. The generalized
frequency variable Ωk equals jωk for continuous-time systems
(Ω = s), and e−jωkTs for discrete-time systems (Ω = z−1),
where ωk = 2πkfs

N with fs = 1/Ts the sampling frequency.
Modeling the input-output errors as filtered discrete-time or
band-limited continuous-time white noise, the DFT spectra
N

[p]
U (k) and N [p]

Y (k) can be written as

N
[p]
X (k) = HX (Ωk)E[p]

X (k) + T
[p]
HX

(Ωk) (2)
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Figure 1. Measurement of the FRF of an LTI system in an open (black)
or closed (black and gray) loop setup. r (t): signal stored in the arbitrary
waveform generator; ng (t), nc (t), np (t), mu (t), and my (t): respectively
the generator, the controller, the process, and the input-output measurement
noise sources. The actuator and the controller may behave nonlinearly.

where HX (Ω), X = U, Y , is a rational function of Ω rep-
resenting the noise dynamics, E[p]

X (k) is the DFT of the un-
observed (band-limited) white noise source (var

(
E

[p]
X (k)

)
=

O
(
N0
)
), and T

[p]
X (Ω) is a rational function of Ω represent-

ing the leakage (transient) error of the DFT [3]. The latter
decreases to zero as an O

(
N−1/2

)
, increases the variance of

the measured DFT spectrum, and introduces a correlation of
the input-output noise over the signal period p.

The DTF (1) is scaled by
√
N such that the variance of the

frequency domain noise is an O
(
N0
)
, which simplifies the

bias analysis of the estimated noise (co-)variances. Afterward,
to obtain an estimate of the Fourier coefficients, the DFT
spectra are divided by

√
N . The latter are independent of the

number of periods P and the number of samples N in the DFT,
which simplifies the comparison over the different methods.

B. Nonparametric modeling - the classical method

The classical approach [3], [10] calculates the sample mean
and sample (co-)variances over P > 6 DFT spectra (1)

X̂rect (k) =
1
P

P∑
p=1

X [p] (k)

σ̂2
XL, rect (k) =

1
(P − 1)

P∑
p=1

r
[p]
X (k) r[p]L (k)

r
[p]
X (k) = X [p] (k)− X̂rect (k) (3)

with, x the complex conjugate of x, σ̂2
XX (k) = σ̂2

X (k), and
X, L ∈ {U, Y }. The expected values of the sample means
and the sample (co-)variances equal

E
{
X̂rect (k)

}
= X0 (k) (4)

E
{
σ̂2
XL, rect (k)

}
= σ2

XL (k) +Oleak
(
N−1

)
with X0 (k) the true DFT spectrum, Oleak the bias contribution
of the noise leakage errors T [p]

HX
and T

[p]
HL

, and σ2
XL (k) the

true noise (co-)variance

σ2
XL (k) = λXLHX (Ωk)HL (Ωk) (5)

λXL = E
{
E

[p]
X (k)E[p]

L (k)
}

= E
{
e[p]x (t) e[p]l (t)

}
with X, L ∈ {U, Y }, x, l ∈ {u, y}, and λXX = λX . Finally,
the sample means and the sample (co-)variances of the sample
means of the input-output Fourier coefficients are given by

X̂k, rect =
1√
N
X̂rect (k) (6)

σ̂2
k, X̂L̂, rect =

1
PN

σ̂2
XL, rect (k) (7)

where the factors 1
P and 1

N in (7) account for respectively the
averaging over the P periods in (3), and the scaling in (6).

C. Nonparametric modeling - the overlap method

The overlap method [12] reduces the influence of the noise
leakage errors in the DFT spectra by handling P > 4 periods
of the input-output signals in blocks of 2 consecutive periods.
To suppress the leakage at the excited DFT frequencies without
introducing systematic errors, each block of two periods is
multiplied by a time window of the type

w (t) = 1 + α cos (πt/N) + β cos (3πt/N) (8)

wrms = rms (w (t)) =
(
1 + 0.5α2 + 0.5β2

)1/2
wmean = mean (w (t)) = 1

for t = 0, 1, . . . , 2N − 1, where N is the number of samples
in one signal period, and with wrms and wmean respectively
the rms and mean value of the window w (t). To prove this
statement it is sufficient to note that the DFT spectrum of the
windowed signal

X [p]
w (k) =

1√
2Nwrms

2N−1∑
t=0

x[p] (t)w (t) e−j
2πkt
2N (9)

with p = 1, 2, . . . , P2 , evaluated at the even DFT lines
X

[p]
w (2k), is related to the unwindowed DFT spectrum

X [p] (k) of 2 signal periods ((9) with w (t) = 1) as

wrmsX
[p]
w (k) = X [p] (k) + . . .

0.5α
(
X [p] (2k + 1) +X [p] (2k − 1)

)
+ . . .

0.5β
(
X [p] (2k + 3) +X [p] (2k − 3)

)
(10)

where X [p] (k) contains no signal energy at the odd DFT lines
(see Fig. 2). The choice α = −1, β = 0 in (8) gives the
Hanning window, while α = β = − 1

2 defines the minimum
variance window [12]. The sample mean of the overlap method
is the mean value of (9) over the P

2 blocks

X̂over (2k) =
2
P

P
2∑

p=1

X [p]
w (2k) (11)
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Figure 2. DFT spectrum of P = 2 periods of a periodic signal (black arrows)
disturbed by noise (gray arrows). Left noiseless, and right noisy signal.

Figure 3. Circular overlap method with r = 2/3 % overlap in blocks of two
consecutive periods, without (left plot) and with (right plot) window.

where X ∈ {U, Y }.
To estimate the noise (co-)variances the following time

domain residuals are first calculated

ê[p]x (t) = x[p] (t)− x̂ (t) (12)

where x[p] (t) is the pth block of 2 consecutive signal periods,
p = 1, 2, . . . , P2 , and with x̂ (t) the sample mean over the
P
2 blocks. Next, the noise power spectra of the time domain
residuals (12) are calculated via circular overlapping sub-
records of length 2N (see Fig. (3), left plot). To suppress the
leakage errors in the estimates, the sub-records are windowed
with w (t) (8) as shown in the right plot of Figure (3)

σ̂2
XL, over (2k) =

1− r
P

P
1−r∑
i=1

Ê
[i]
XW

(2k) Ê[i]
LW

(2k) (13)

where Ê
[i]
XW

(k) is the DFT (9) of the windowed residual
ê
[i]
x (t)w (t) (12), and with r the fraction of overlap.

The expected values of the sample means (11) and the
sample (co-)variances (13) equal

E
{
X̂over (2k)

}
= X0 (2k) (14)

E
{
σ̂2
XL, over (2k)

}
= σ2

XL (2k) + . . .

Oleak
(
N−2

1

)
+Oint

(
N−2

1

)
with N1 = 2N (1− r), σ2

XL (2k) the true (co-)variance de-
fined in (5), and where Oleak and Oint are the bias contribution
of respectively the noise leakage and the noise interpolation
errors (proof: see [12]). The latter is due to the combination of
3 (Hanning window) or 5 (minimum variance window) noisy
DFT lines in the windowed DFT spectrum (10). Finally, the
sample means and the sample (co-)variances of the sample
means of the input-output Fourier coefficients are given by

X̂k, over =
wrms√

2N
X̂over (2k) (15)

σ̂2
k, X̂L̂, over =

2
P

(
wrms√

2N

)2

σ̂2
XL, over (2k) (16)

where 2
P and

(
wrms√
2N

)2

in (16) accounts for respectively the

averaging over the P
2 blocks in (11), and the scaling in (15).

The factor w2
rms in (16) quantifies the increase in noise variance

of the sample mean (11) w.r.t. that with a rectangular window:
wrms = 1.225 (or 1.76 dB) for the Hanning window; and
wrms = 1.118 (or 0.97 dB) for the minimum variance window.

D. Nonparametric modeling - the local polynomial approach

The local polynomial approach starts from the input-output
DFT spectra of all measured data samples NP ,

X (k) =
1√
PN

PN−1∑
t=0

x (t) e−j
2πkt
PN (17)

where P > 2 and X ∈ {U, Y }. Next, the non-excited DFT
lines (see, for example, the odd DFT frequencies in the right
plot of Fig. 2) are used for estimating the noise (co-)variances
and the noise transient terms. Finally, the input-output sample
means are the DFT spectra at the excited frequencies minus
the estimated noise transient terms. The whole procedure is
explained in detail in the sequel of this section.

To calculate the input-output noise (co-)variances the input-
output signals are put on top of each other into a 2× 1 vector
z (t) =

[
y (t) u (t)

]T
, with xT transpose of x. At the

non-excited DFT frequencies kP + m, k = 0, 1, . . . , N/2 −
1 and m = 1, 2, . . . , P − 1, the DFT spectrum Z (k) (17)
of z (t) only contains noise contributions of the form (2) that
can be written as

Z (kP +m) = V (kP +m) + THZ (ΩkP+m) (18)
V (kP +m) = HZ (ΩkP+m)E (kP +m)

where THZ (Ω) is a smooth function of the frequency. Follow-
ing the lines of [6] THZ (ΩkP+m) is be expanded at the excited
frequency Ω = ΩkP using Taylor’s formula with remainder

THZ (ΩkP+m) = THZ (ΩkP ) +
R∑
r=1

tr (k)mr + . . .

(PN)−1/2
O
(
N
−(R+1)
2

)
(19)

with N2 = PN
m . The O () term in the remainder stems from the

frequency difference fkP+m−fkP = m
PN fs, and the additional

factor (PN)
−1/2 in the remainder originates from the fact that

THZ (Ω) is an O
(
N−1/2

)
[3]. Neglecting the remainder in

(19), (18) can be written as

Z (kP +m) = ΘK (m) + V (kP +m) (20)



where Θ is the 2 × (R+ 1) complex matrix of the unknown
transient parameters

Θ =
[
THZ (ΩkP ) t1 (k) t2 (k) . . . tR (k)

]
(21)

K (m) is the (R+ 1)× 1 vector containing the powers of m

K (m) =
[

1 m . . . mR
]T

(22)

Collecting (20) for 2n consecutive non-excited DFT lines
kP ± mi, with mi, i = 1, 2, . . . , n, the first n numbers of
the set N r {kP | k ∈ N}, gives

Zn = ΘKn + Vn (23)

where Zn, Kn, and Vn are respectively 2×2n, (R+ 1)×2n,
and 2× 2n matrices of the form

Xn =
[
X (kP −mn) . . . X (kP −m1) , (24)
X (kP +m1) . . . X (kP +mn)

]
with X = Y, K, andV . Note that (23) does not contain the
DFT frequency kP of the Taylor series expansion (19). This
is the main difference with the approach in [6].

Choosing 2n > R + 1, (23) is an overdetermined set of
equations in the unknown transient parameters Θ that can be
solved in least squares sense as

Θ̂ = ZnK
H
n

(
KnK

H
n

)−1
= ZnU1Σ−1

1 V H1 (25)

with U1Σ1V
H
1 the singular value decomposition of KH

n , and
where xH is the hermitian (complex conjugate) transpose of
x. The residual of the least squares fit V̂n = Zn − Θ̂Kn is
related to the noise Vn as,

V̂n = VnPn (26)

Pn = I2n −KH
n

(
KnK

H
n

)−1
Kn

where the idempotent matrix Pn has rank 2n − (R+ 1).
Assuming that the noise is white in the band
[kP −mn, kP +mn], an estimate of the noise covariance
matrix CV (kP ) = Cov (V (kP )) at the excited DFT
frequency kP , with V (kP ) defined in (18), is obtained as

ĈV (kP ) =
1
q
V̂nV̂

H
n (27)

with q = 2n− (R+ 1). Eq. (27) defines the local polynomial
estimates of the input-output noise (co-)variances

σ̂2
Y, poly (kP ) =

(
ĈV (kP )

)
[1, 1]

σ̂2
U, poly (kP ) =

(
ĈV (kP )

)
[2, 2]

(28)

σ̂2
Y U, poly (kP ) =

(
ĈV (kP )

)
[1, 2]

Recalling that the first column of Θ̂ is an estimate of the input
and output noise transient terms,

Θ̂[:, 1] = T̂HZ (ΩkP ) =
[
T̂HY (ΩkP )
T̂HU (ΩkP )

]
(29)

with X[:, 1] the first column of X , the local polynomial
estimates of the input-output sample means are calculated as

Ŷpoly (kP ) = Y (kP )− T̂HY (ΩkP )

Ûpoly (kP ) = U (kP )− T̂HU (ΩkP ) (30)

The expected value of the sample means (30) and sample
(co-)variances (25) equal

E
{
X̂poly (kP )

}
= X0 (kP ) (31)

E
{
σ̂2
XL, poly (kP )

}
= σ2

XL (kP ) + . . .

Oleak

(
N
−(R+2)
3

)
+Oint

(
N−2

3

)
with N3 = PN/mn, σ2

XL (2k) the true (co-)variance defined
in (5), and where Oleak and Oint are the bias contribution
of respectively the noise leakage and the noise interpolation
errors. The latter is due to the combination of 2n noisy DFT
lines in the linear least squares estimate (25). Finally, the
sample means and the sample (co-)variances of the sample
means of the input-output Fourier coefficients are given by

X̂k, poly =
1√
PN

X̂poly (kP ) (32)

σ̂2
k, X̂L̂, poly = µpoly

1
PN

σ̂2
XL, poly (kP ) (33)

where 1
PN in (33) accounts for the scaling in (32). The factor

µpoly quantifies the increase in noise variance of the sample
means (30) w.r.t. the DFT spectra X (kP ) without leakage
(transient) suppression, and is calculated as

µpoly = 1 +
∥∥∥Σ−1

1 V H1[1, :]

∥∥∥2

2
(34)

with ‖x‖22 = xHx, X[1, :] the first row of X , and Σ1,
V1 defined in (25). Numerous simulations indicate that the
variance increase due to the leakage suppression µpoly is about
1 dB.

E. Comparison of the methods

The expected value of the estimated Fourier coefficients (6),
(15), and (32), and their estimated (co-)variances (7), (16), and
(33), can be written as

E
{
X̂k, estim

}
= Xk, 0 (35)

E
{
PNσ̂2

k, X̂L̂, estim

}
= µestimσ

2
XL (k) + bestim (36)

with estim ∈ {rect, over, poly}, σ2
XL (k) the true noise (co-

)variance defined in (5), Xk, 0 the true Fourier coefficient,



µrect = 0 dB, µover = 0.97 dB for the minimum variance
window, and µpoly ≈ 1 dB. The bias term bestim in (36)
decreases to zero for N → ∞ as brect = O

(
N−1

)
for the

classical method, bover = O
(
N−2

)
for the overlap method,

and bpoly = O
(

(PN)−2
)

for the local polynomial approach.
The following conclusions can be made. In those frequency

bands where the noise leakage (transient) terms in (2) are
dominant, we have that bestim > µestimσ

2
XL (k) in (36). Hence,

σ̂2
k, X̂L̂, poly < σ̂2

k, X̂L̂, over � σ̂2
k, X̂L̂, rect (37)

because the local polynomial approach and the classical
method have respectively the best and the worst leakage
suppression properties. However, if the noise transient terms
can be neglected, then bestim < µestimσ

2
XL (k), and

σ̂2
k, X̂L̂,poly ≈ σ̂

2
k, X̂L̂, over = 1.25σ̂2

k, X̂L̂, rect (38)

The factor 1.25 (about 1 dB) in (38) is the (small) price to be
paid for estimating and removing a zero leakage contribution
in the sample means.

F. Non-steady state conditions

If the input-output signals in Figure 1 are measured under
non-steady state conditions, then (1) is replaced by

X [p] (k) = X0 (k) +N
[p]
X (k) + T

[p]
GX

(Ωk) (39)

where the input-output transient terms TGX (Ω), X = U, Y ,
are rational functions that depend on the dynamics of the
actuator, the system, and the controller, and on the difference
between the initial and final conditions of the experiment [3].
Combining (2) and (39) it follows that no distinction can
be made between the input-output noise transient (leakage)
terms and the input-output system transients, and that (18),
where THZ is replaced by TZ = THZ + TGZ , remains
valid. As a consequence, the overlap (Section II-C) and local
polynomial (Section II-D) methods also suppress the system
transients and, therefore, can also be applied to non-steady
state measurements. For lowly damped systems this may result
in a significant reduction of the experiment time. Since the
local polynomial approach supresses much better the transient
(leakage) errors than the overlap method (compare Oleak in eq.
(14) and (31)), it can be concluded that the local polynomial
approach is (much) less sensitive to the system transients in
the measurements.

III. NONPARAMETRIC FRF MODELING

A nonparametric estimate of the frequency response func-
tion (FRF) is obtained by dividing the estimated input-output
Fourier coefficients (6), (15), (32)

Ĝestim (Ωk) = Ŷk, estim/Ûk, estim (40)

For noisy input observations the FRF estimate (40)
is biased. However, if the input signal-to-noise ratio∣∣∣Ûk, estim

∣∣∣ /σ̂k, Û, estim is larger than 10 dB, then the relative bias
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Figure 4. Root mean square (rms) value of the difference between each
signal period and the last signal period (dashed line: input signal; solid line:
output signal).

on the FRF estimate is smaller than 10−4 [3]. Although the
variance of the FRF estimate (40) does not exist, confidence
bounds with a given confidence level can be constructed using
the following variance expression [3], [4]

σ̂2
Ĝ

(k) =
∣∣∣Ĝ (Ωk)

∣∣∣2
 σ̂2

Ŷk∣∣∣Ŷk∣∣∣2 +
σ̂2
Ûk∣∣∣Ûk∣∣∣2 − 2Re

(
σ̂2
ŶkÛk

ŶkÛk

)
with Re (x) the real part of x, and where σ̂2

X̂kL̂k
, X, L ∈

{Y, U}, denotes the noise (co-)variance σ̂2, noise
k, X̂L̂, estim

.

IV. EXAMPLE: FLEXURAL VIBRATIONS OF A STEEL BEAM

A steel beam (density 7800 kg/m3, length 61 cm, height
2.47 cm, and width 4.93 mm) under free-free boundary
conditions is excited in its transverse direction by a periodic
force applied at 10 cm from the end of the beam (see [11] for
a detailed description of the experimental set up). The force
(excitation) and acceleration (response) at the excitation point
are measured with an impedance head. The generator and ac-
quisition units all operate at the same sampling frequency fs =
10 MHz/29 ≈ 19.531 kHz. A crest factor optimized multisine
excitation r (t) [3] consisting of the sum of F = 306 har-
monically related frequencies kfs/N (k = 1, 2, . . . , F , and
N = 1024) in the band (0 Hz, 6 kHz], with equal harmonic
amplitudes, is applied to the steel beam via a mini-shaker. The
rms-value of the resulting force signal u (t) equals 99 mV,
and the first 50 periods of the force u (t) and acceleration
y (t) signals are measured. Subtracting the last signal period
from the other signal periods and calculating the rms value
of the residuals over each period, it follows (see Figure 4)
that the system reaches steady state (the system transients are
below the noise level) after about 14 periods. Therefore, the
last P = 36 measured periods are used for the analysis under
steady state conditions.

The sample means and sample (co-)variances of the Fourier
coefficients are calculated using the classical (rectangular
window) method (7), the overlap method with r = 3/4
(15), (16), and the local polynomial approach (32), (33) with
R = 2 (second order polynomial approximation). For the local
polynomial approach, n in (27) is chosen such that the equiv-
alent number of degrees of freedom (dof) q = 2n−(R+ 1) of
the noise variance estimate is the same as that of the classical
approach where dof = P − 1 = 35. For the 75% overlap
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Figure 5. Estimated input-output Fourier coefficients and their variance of the
steady state measurements (last 36 periods)- steel beam. Top row: DFT spectra
(bold black), variance rectangular window (light gray), variance overlap (thin
black), and variance local polynomial approach (dark gray). Bottom row: ratio
varrect/varpoly (bold black); and varoverlap/varpoly (light gray).

method the equivalent number of degrees of freedom equals
dof = 27.

Figure 5 shows the estimated input-output Fourier coeffi-
cients and the top row of Figure 6 the corresponding FRF
estimates. It can be seen that the noise variance of the rect-
angular window estimates is almost everywhere significantly
larger than that of the overlap method and the local polynomial
approach. Note also that the noise variance of the overlap esti-
mates is at least 0.5 dB larger than that of the local polynomial
approach (see the light gray lines of Figure 5, bottom row,
and Figure 6, bottom right plot). Both observations indicate
that the noise leakage is important this experiment. It can be
explained by the lowly damped resonances in the input-output
noise power spectra (see the bold black lines of Figure 5, top
row).

To verify the robustness of the methods w.r.t. system
transients, the same calculations are repeated on the first
P = 36 measured periods. The results are shown in Figure 6.
It can be seen that the variance of the overlap and the rectan-
gular window FRF estimates using the transient measurements
(bottom row) are much larger than those using the steady state
measurements (top row). This is not the case for the local
polynomial FRF estimates: except at a few frequencies, the
variance using the transient data almost coincides (only 0.5 dB
larger) with the variance using the steady state measurements.
We conclude that the local polynomial approach is much more
robust to system transients than the classical methods.

V. CONCLUSIONS

A nonparametric method for estimating the frequency re-
sponse function and its noise variance from noisy input-output
observations of dynamic systems excited by periodic signals
has been presented. The only assumption made is that the noise
dynamics is a smooth function of the frequency that can locally
be approximated very well by a polynomial of degree R. A
theoretical analysis confirmed by a real life experiment shows
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Figure 6. Estimated FRF estimated and its variance - steel beam. Top
row: steady state measurements (last 36 periods). Bottom row: transient
measurements (first 36 periods). Left column: FRF (bold black); variance rect-
angular window (light gray); variance overlap (thin black); and variance local
polynomial approach (dark gray). Right column: ratio varrect/varpoly (bold
black); and varoverlap/varpoly (light gray).

that the local polynomial approach with R ≥ 2 suppresses
much better the noise transients than the classical methods.
Moreover, the local polynomial approach is robust to the
presence of system transients. Hence, measuring the first two
periods of the transient response to a periodic input is enough
for the local polynomial approach. For lightly damped systems
this implies a significant reduction in measurement time.
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